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Abstract. In recent work, Benkart, Klivans, and Reiner defined the critical group of
a faithful representation of a finite group, which is analogous to the critical group of
a graph. In this paper we study maps between critical groups induced by injective
group homomorphisms and in particular the map induced by restriction of the repre-
sentation to a subgroup. We prove that in the abelian group case the critical groups
are isomorphic to the critical groups of a certain Cayley graph and that the restriction
map corresponds to a graph covering map. We also prove that when the group is an
element in a differential tower of groups, critical groups of certain representations are
closely related to words of up-down maps in the associated differential poset. We use
this to generalize an explicit formula for the critical group of the permutation repre-
sentation of the symmetric group given by the second author, and to enumerate the
factors in such critical groups.

Keywords: Differential posets, Cayley graphs, critical groups, chip firing, Young’s
lattice.

1 Introduction

The critical group K(Γ) is a well-studied abelian group invariant of a finite graph Γ which
encodes information about the dynamics of a process called chip firing on the graph (see
[6] where critical groups are called sandpile groups). Recent work of Benkart, Klivans,
and Reiner defined analogous abelian group invariants K(V), also called critical groups,
associated to a faithful representation V of a finite group G [2]. It is known (see, for
example, [16]) that graph covering maps induce surjective maps between graph critical
groups. This paper investigates maps on critical groups of group representations which
are induced by group homomorphisms.

Differential posets, introduced by Stanley [13], generalize many of the combinatorial
and enumerative properties of Young’s lattice. In [9], Miller and Reiner introduced a
very strong conjecture about the Smith normal form of UD + tI where U, D are the up
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and down maps in a differential poset, and t is a variable. We investigate how this
conjecture, which was proven for powers of Young’s lattice by Shah [12], can be used to
determine the structure of critical groups in certain differential towers of groups.

Section 2 defines critical groups for group representations and gives background
results. It also discusses background on differential posets and differential towers of
groups which will be used throughout the later sections.

In Section 3 we study maps between critical groups which are induced by group
homomorphisms. In particular, restriction of representations to a subgroup H ⊂ G
induces a map Res : K(V) → K(ResG

HV). When G is abelian, Theorem 3.5 shows that
K(V) can be identified with the critical group of a certain Cayley graph Cay(Ĝ,SV), and
that the restriction map Res agrees with a map on graph critical groups induced by a
natural graph covering.

In [3], the second author determined the exact structure of the critical group for the
permutation representation of the symmetric group Sn. This result depended on a rela-
tionship between tensor products with the permutation representation and the up and
down maps in Young’s lattice of integer partitions. Section 4 formalizes this connection
and generalizes it to the context of differential towers of groups, allowing us to explicitly
compute the critical group for a generalized permutation representation of the wreath
product A oSn in Theorem 4.3. It also investigates properties of the critical groups as-
sociated to representations V(w) which occur by repeatedly applying restriction and
induction to the trivial representation in a differential tower of groups. The pattern of
restriction and induction is specified by a word w ∈ {U, D}∗, where U, D are the up and
down operators in the corresponding differential poset. In Theorem 4.7 we show that
the structure of the critical group K(V(w)) is closely related to combinatorial properties
of the up and down operators, as studied in [13].

Finally, in Section 5, Theorem 5.1 gives an enumeration of the factors in the elemen-
tary divisor form of K(V(w)) as a rank size of the corresponding differential tower of
groups. Please see [1] for the proofs of the results outlined in this extended abstract.

2 Background and definitions

2.1 Critical groups of group representations

See the survey [6] for the definition and basic properties of critical groups of graphs.
Except in Theorem 3.5, we will be interested in critical groups of graphs primarily by
analogy.

We now briefly review critical groups of group representations, as defined in [2]. Let
G be a finite group and V a faithful complex (not-necessarily-irreducible) representation
of G; let 1G = V0, V1, ..., V` denote the irreducible complex representations and χi, i =
0, ..., ` denote their characters. Let R(G) denote the representation ring of G. This is the
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commutative Z-algebra of formal integer combinations of representations of G modulo
the relations [W ⊕W ′] = [W] + [W ′]; the product structure is defined as [W] · [W ′] =
[W ⊗C W ′]. As a Z-module, R(G) is isomorphic to Z`+1, since the classes of irreducible
representations [1G], [V1], ..., [V`] form a basis. For g ∈ G, we define elements

δ(g) =
`

∑
i=0

χi(g) · [Vi]

of R(G) corresponding to the columns in the character table of G. The representation
ring R(G) is endowed with a Z-algebra homomorphism dim : R(G) → Z sending rep-
resentations [W] to their dimensions as vector spaces (which we also denote by dim(W)),
and extending by linearity to virtual representations. The kernel of this map, which we
denote by R0(G), is the ideal of elements in R(G) with virtual dimension 0. Multiplica-
tion by the element dim(V)[1G]− [V] defines a linear map C̃V : R(G) → R(G). Since
dim(V)[1G]− [V] ∈ R0(G), this descends to a linear map

CV : R0(G)→ R0(G)

Definition-Proposition 2.1 ([2, Proposition 5.20]). If V is a faithful finite dimensional
representation of G, then the linear map CV is nonsingular, and so coker(CV) is a finite
abelian group. We define the critical group K(V) to be this cokernel. We also have that
coker(C̃V) = Z · δ(e) ⊕ K(V).

Theorem 2.2 ([3, Theorem 3]).

a. Let e = c0, ..., c` be a set of conjugacy class representatives for G. Then

|K(V)| = 1
|G|

`

∏
i=1

(dim(V)− χV(ci)) (2.1)

b. Suppose a is an integer value of χV achieved on m different conjugacy classes, then
K(V) contains a subgroup isomorphic to (Z/(dim(V)− a)Z)m−1.

Example 2.3. Let G = S4 and let V = C4 be the 4-dimensional representation where G
acts by permuting coordinates. Working in the basis of R(G) given by the classes of irre-
ducible representations Vλ, we decompose each tensor product V ⊗Vλ into irreducibles,
giving the rows of the matrix C̃V .

C̃V =


3 −1 0 0 0
−1 2 −1 −1 0
0 −1 3 −1 0
0 −1 −1 2 −1
0 0 0 −1 3
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To calculate the cokernel of C̃V : R(G)→ R(G), we compute the Smith normal form (see
Section 2.3 below) of C̃V to get diag(0, 1, 1, 1, 4). This shows that coker(C̃V) ∼= Z⊕Z/4Z,
and so K(V) ∼= Z/4Z.

Alternatively, we could note that the non-trivial values of the character χV are 2, 1, 0, 0
and apply Theorem 2.2(a) to see that |K(V)| = 1

4! (4− 2)(4− 1)(4− 0)(4− 0) = 4 and
apply part (b) to see that K(V) has a subgroup isomorphic to Z/4Z. This forces K(V) ∼=
Z/4Z. The critical groups for the permutation representation of Sn were computed by
the second author in [3]. In Section 4 we generalize this result further.

2.2 Differential posets and differential towers of groups

Differential posets are a class of partially ordered sets defined by Stanley in [13]. Dif-
ferential posets retain many of the striking enumerative and combinatorial properties
of Young’s lattice Y, the lattice of integer partitions ordered by containment of Young
diagrams. We refer the reader to [14] for basic definitions related to posets in what
follows.

Definition 2.4 ([13, Definition 1.1 and Theorem 2.2]). For r ∈ Z>0, a poset P is called an
r-differential poset if the following properties hold:

(DP1) P is a graded locally-finite poset with 0̂.

(DP2) Let ZPn be the free abelian group spanned by elements of the n-th rank of P.
Define the up and down maps Un : ZPn → ZPn+1 and Dn : ZPn → ZPn−1 by

Unx := ∑
xly

y, Dny := ∑
xly

x

Where x l y means that y covers x. Then we require that for all n we have

Dn+1Un −Un−1Dn = rI

When the context is clear we omit the subscripts from the up and down maps.
When P is a differential poset, we let pn = |Pn| denote the size of the n-th rank, and

we let ∆pn = pn− pn−1 denote the difference in the sizes of consecutive ranks. We make
the convention that pi = 0 for i < 0. In the case of Young’s lattice, pn = p(n) where
p(n) denotes the number of integer partitions of n. The following results of Stanley
characterize the eigenspaces of UD in terms of the rank sizes.

Theorem 2.5 ([13, Theorem 4.1]). Let P be an r-differential poset and let n ∈ N. Then
UDn is semisimple and has characteristic polynomial:

ch(UDn) =
n

∏
i=0

(x− ri)∆pn−i .
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Theorem 2.6 ([13, Proposition 4.6]). Let En(ri) denote the eigenspace of UDn belonging
to the eigenvalue ri, then En(0) = ker(Dn) = (UPn−1)

⊥ and En(ri) = UiEn−i(0) for
1 ≤ i ≤ n.

We will be interested in differential posets which come from the branching rules of a
tower of finite groups.

Definition 2.7 ([9, Definition 6.1]). For r ∈ Z>0 define an r-differential tower of groups G

to be an infinite tower of finite groups:

G : {e} = G0 ⊆ G1 ⊆ G2 ⊆ · · ·

such that for all n:

(DTG1) The branching rules for restricting irreducibles from Gn to Gn−1 are
multiplicity-free, and

(DTG2) ResGn+1
Gn

IndGn+1
Gn
− IndGn

Gn−1
ResGn

Gn−1
= r · id where both sides are regarded as lin-

ear operators on R(Gn).

An r-differential tower of groups G corresponds to an r-differential poset P = P(G)
whose n-th rank Pn is in bijection with the set Irr(Gn) of irreducible representations of
Gn. We will use Greek letters like λ to denote elements of P(G) and Vλ to denote the
corresponding irreducible representation. We write |λ| = n if λ ∈ Pn, or equivalently if
Vλ is a representation of Gn. For λ ∈ Pn and µ ∈ Pn+1, λl µ in P if and only if ResGn+1

Gn
Vµ

contains Vλ in its irreducible decomposition, thus condition (DTG2) becomes condition
(DP2).

Example 2.8. Let Y denote Young’s lattice of integer partitions. It is well known that
irreducible representations of the symmetric group Sn are indexed by partitions λ =
(λ1, λ2, ...) with |λ| = ∑i λi = n; we refer the reader to [7] for background on the repre-
sentation theory of the symmetric group. Young’s rule says that ResSn

Sn−1
Vλ decomposes

as a direct sum of Vν where ν ranges over all possible ways to remove a single box from
the Young diagram for λ. It is well known [13] that Y is a 1-differential poset, so (DP2)
holds, and by the above identification (DTG2) also holds. Thus

S : {e} ⊂ S1 ⊂ S2 ⊂ · · ·

is a 1-differential tower of groups, with P(S) = Y.
More generally, if A is an abelian group of size r, then Okada [10] showed that the

tower of wreath products A oS : {e} ⊂ A ⊂ A oS2 ⊂ A oS3 ⊂ · · · is an r-differential
tower of groups with P(A oS) = Yr. Recent work of the second author [5] shows that
these are the only differential towers of groups when r is one or prime.
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The following result shows that the groups in any differential tower of groups have
the same order as those in A oS.

Proposition 2.9. Let G : {e} = G0 ⊂ G1 ⊂ · · · be an r-differential tower of groups, then
|Gn| = rn · n! for all n ≥ 0.

2.3 Smith normal form and cokernels of linear maps

The cokernel of a linear map over a PID is described by the Smith normal form of the
corresponding matrix; see [15] for a review of the basic properties of Smith forms and
their applications in combinatorics.

We will primarily be interested in determining Smith normal forms over Z, but we
will use some results about Smith normal forms over Z[t] as a computational tool. When
R = Z we will always assume that the si are nonnegative (this can be achieved since ±1
are the units in Z). When referring to an abelian group A = coker(M), we say that A
has k factors if exactly k of the si are different from 1; dually, we write ones(A) = k if
exactly k of the si are equal to 1.

In [9] Miller and Reiner make the following remarkable conjecture; note that Z[t] is
not a PID, so Smith forms are not guaranteed to exist:

Conjecture 2.10 ([9, Conjecture 1.1]). For all differential posets P, and for all n, the map
Un−1Dn + tI : Z[t]pn → Z[t]pn has a Smith normal form over Z[t].

Shah showed that Conjecture 2.10 is true for Yr, giving us the following corollaries.

Theorem 2.11. ([12]) For any r ≥ 1:

a. The Smith form diag(s1, ..., spn) of UDn in Yr is given by

sn+1−i = ∏
k

m(k)≥i

k

where m(k) denotes the multiplicity of the eigenvalue k of UDn.

b. For all n the down maps Dn : Zpn → Zpn−1 in Yr are surjective.

3 Maps induced between critical groups

For σ : H → G a group homomorphism and W a representation of G, we let Wσ denote
the representation of H given by h ·w := σ(h)w for all h ∈ H, w ∈W. If σ is the inclusion
of a subgroup, then Wσ = ResG

HW. If σ is an automorphism of G, then Wσ corresponds
to the usual notion of twisting by σ. We extend by linearity to define Wσ for W a virtual
representation.
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Theorem 3.1. Let σ : H ↪→ G be an injective group homomorphism and V a faith-
ful representation of G, then σ : [W] 7→ [Wσ] is a well-defined group homomorphism
K(V)→ K(Vσ). If σ is an isomorphism, then so is σ.

Example 3.2. Let σ denote the unique outer automorphism of S6 (the map σ is uninter-
esting for inner automorphisms since W ∼= Wσ). Indexing the irreducible representations
of S6 by partitions in the usual way, it can easily be calculated that the action of σ sends
V(5,1) ↔ V(2,2,2). One can calculate that

K(V(5,1))
∼= K(V(2,2,2))

∼= (Z/6Z)2 ⊕Z/120Z.

In the case σ : H ↪→ G, one might have hoped that, in analogy with the known sur-
jective homomorphism between critical groups of graphs induced by a graph covering
map, the map σ : [W] 7→ [ResG

HW] would be surjective on critical groups; the following
example shows that this is not the case for general groups H ⊂ G.

Example 3.3. Let G = D5 be the dihedral group of order 10, and let V be the direct sum
of a two-dimensional irreducible and the non-trivial one-dimensional irreducible. This
is the complexification of the action of G in R3 by rotation of a fixed plane and reflection
across that plane. One can calculate (see [4, Appendix C]) that K(V) ∼= Z/2Z. Letting
H = C5 be the cyclic subgroup, however, one can show that K(ResG

HV) ∼= Z/5Z. Thus
Res : K(V) → K(ResG

HV) cannot be surjective. This is a natural counterexample to pick,
since C5 has more conjugacy classes than D5, and so Res : R(D5) → R(C5) cannot be
surjective.

There are two classes of groups for which Res can be seen to be surjective for all V,
both of which will be investigated further throughout the paper.

Proposition 3.4. The map Res : K(V)→ K(ResG
HV) is surjective if:

(i) G is abelian,

(ii) G = A oSn and H = A oSm for A an abelian group and m ≤ n.

3.1 Cayley graph covering maps

In this section we investigate the relationship between critical groups of group represen-
tations and critical groups of graphs when G is abelian.

For any finite group G, we let Ĝ = Hom(G, C) denote the Pontryagin dual group.
When G is abelian, all irreducible representations are 1-dimensional, and so Ĝ is equal to
the group of irreducible characters of G under point-wise multiplication. If V is a faithful
representation of an abelian group G, then the multiset SV of characters of irreducible
components appearing in V generates Ĝ as a group. This follows from the standard fact
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that all irreducible representations of a finite group appear as factors in a sufficiently
large tensor power of a fixed faithful representation.

If G is a group with generating multiset S , the Cayley graph Cay(G,S) is the directed
multigraph with vertex set G and directed edges g→ gx whenever x ∈ S .

Theorem 3.5. For V a faithful representation of an abelian group G the critical groups
K(V) and K(Cay(Ĝ,SV)) can be naturally identified, and the diagram

K(V) K(Cay(Ĝ,SV))

Res

y yϕ

K(ResG
HV) K(Cay(Ĥ,SResV))

commutes, where ϕ is the surjection on critical groups induced by the natural graph
covering map ϕ : Cay(Ĝ,SV)→ Cay(Ĥ,SResV).

Remark 3.6. For graph covering maps ϕ : Γ→ Γ′, Reiner and Tseng [11] give an interpre-
tation of the kernel of ϕ : K(Γ) � K(Γ′) as a certain “voltage graph critical group”. Thus
the identification in Theorem 3.5 allows one to describe the kernel of Res in these same
terms in the abelian group case.

4 Critical groups and differential posets

By a word of length 2k, we mean a sequence w = w1...w2k of U’s and D’s. A word w is
balanced if the number of U’s is equal to the number of D’s. When a tower of groups
G0 ⊂ G1 ⊂ · · · is clear from context, we let w(Ind, Res) denote the linear operator⊕

i R(Gi) →
⊕

i R(Gi) defined by replacing the U’s in w with Ind and the D’s with Res
and viewing the resulting sequence as a composition of linear operators. We always
assume that induction and restriction are between consecutive groups in the sequence
and that Res[V] = 0 for [V] ∈ R(G0). Similarly, if P is a differential poset, then we let the
linear map w(U, D) :

⊕
i ZPi → ⊕

i ZPi be defined as the natural composition of linear
operators. When w is balanced, then for each i, w(Ind, Res) (resp. w(U, D)) restricts
to a map R(Gi) → R(Gi) (resp. ZPi → ZPi) which we denote by w(Ind, Res)i (resp.
w(U, D)i).

Example 4.1. Let S be the tower of symmetric groups, and Y = P(S) denote Young’s
lattice. Fix i ≥ 1, then w(U, D) = UD is a linear map ZYi → ZYi and w(Ind, Res) is
a linear map R(Si) → R(Si) sending [W] 7→ [IndSi

Si−1
ResSi

Si−1
W]. It is easy to see that

w(Ind, Res)[1Si ] = [IndSi
Si−1

1Si−1 ] is the class of the permutation representation of Si. If
we identify ZYi with R(Si) via the differential tower of group structure, then one can
check that w(Ind, Res)[1Si ] · (−) and w(U, D) in fact agree as linear maps. This fact is
generalized in Proposition 4.2 below.
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When f = ∑i ciw(i) is a finite nonnegative sum of balanced words, and a differential
tower of groups G is understood, write V( f )n for the representation of Gn given by:

f (Ind, Res)[1Gn ] = ∑
i

ciw(i)(Ind, Res)[1Gn ]

For example, if f consists of the single word UkDk, and we are working in the tower S of
symmetric groups, then V( f )n = IndSn

Sn−k
1 is a basic object of study in the representation

theory of the symmetric group. Under the standard characteristic map ch : R(Sn)
∼−→ Λn

between the representation ring of Sn and the ring of degree-n symmetric functions, this
representation is sent to the complete homogeneous symmetric function h(n−k,1k) indexed
by a “hook shape”.

Proposition 4.2. Let G : G0 ⊂ G1 ⊂ · · · be an r-differential tower of groups with cor-
responding differential poset P = P(G), let f be a finite nonnegative sum of balanced
words. Then, identifying ZPn and R(Gn), the maps f (U, D)n and [V( f )n] · (−) are equal.
Furthermore the character values of V( f )n are equal to the eigenvalues of f (U, D)n.

4.1 The generalized permutation representation

The representation IndSn
Sn−1

1 of the symmetric group Sn is easily seen to be isomorphic to
the n-dimensional permutation representation, where Sn acts by permuting coordinates
in Cn. In [3], the second author was able to explicitly compute the critical group for this
representation, generalizing Example 2.3 to arbitrary n. Here we extend that result to a
broader class of differential towers of groups:

Theorem 4.3. Let G = G0 ⊂ G1 ⊂ · · · be an r-differential tower of groups such that the
associated differential poset P = P(G) satisfies Conjecture 2.10 (such as G = A oS with
A abelian of order r). Let V = V(UD)n = IndGn

Gn−1
1Gn−1 . Then

K(V) =
pn⊕

i=2

Z/qiZ

where
qi = ∏

1≤j≤n
∆pj≥i

rj.

Remark 4.4. In Corollary 2.8 of [8], Miller showed that for any differential poset the largest
Smith factor of UD agrees with the form predicted by Conjecture 2.10. We can use this
to prove that the largest factor in the critical group is given by q2, without assuming that
P(G) satisfies this conjecture.
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4.2 The structure of K(V( f ))

In this section we investigate the order and subgroup structure of K(V( f )n) for general
finite sums of balanced words f . Although exact formulas for the critical group, like that
given in Theorem 4.3 for the case f (U, D) = UD remain elusive in general, the results
below considerably restrict the structure of K(V( f )n).

The following proposition of Stanley characterizes eigenspaces for sums of balanced
words in a differential poset:

Proposition 4.5 ([13, Proposition 4.12]). Let P be an r-differential poset and let f (U, D)
be a finite sum of balanced words. Uniquely write f (U, D) = ∑j≥0 β j(UD)j and define
αi = ∑j≥0 β j(ri)j. Then the characteristic polynomial of f (U, D)n : ZPn → ZPn is given
by ch f (U, D)n = ∏n

j=0(x− αi)
∆pn−i .

Proposition 4.5 allows us to characterize the order and subgroup structure of critical
groups K(V( f )n). Since it is clear from the definition that K(V ⊕ 1) = K(V) for all
representations V, we are free to assume in Proposition 4.5 that β0 = 0, and we use this
convention in what follows.

Proposition 4.6. Let f be a nonnegative finite sum of balanced words, and maintain the
notation of Proposition 4.5. Assume further that P = P(G) for G a differential tower of
groups. Then dim(V( f )n) = αn, and V( f )n is a faithful representation.

Theorem 4.7. Let G be an r-differential tower of groups and let f (U, D) be a nonnegative
finite sum of balanced words. Then, using the notation of Proposition 4.5, we have:

a. The size of the critical group K(V( f )n) is given by:

|K(V( f )n)| =
1

rn · n!

n−1

∏
i=0

(αn − αi)
∆pn−i .

b. For each i = 1, ..., n− 1, the critical group K(V( f )n) has a subgroup isomorphic to
(Z/(αn − αi)Z)∆pn−i−1.

5 Enumeration of factors in critical groups

In what follows, when a differential tower of groups and a rank n are understood, we
let ones(w) denote the number of ones in the Smith normal form of C̃V(w)n , where w is
a balanced word. Then the number of nontrivial factors in the critical group K(V(w)n)
is pn − 1− ones(w), since C̃ is a pn × pn-matrix and there is always a unique zero in the
Smith form, by Definition-Proposition 2.1.
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Theorem 5.1. Let w be any balanced word of length 2k ≤ 2n. Consider the r-differential
tower of groups A oS, where A is abelian group of order r ≥ 2, and the corresponding
differential poset Yr. Then

ones(w) = |(Yr)n−k| = ∑
i1+···+ir=n−k

i1,...,ir≥0

r

∏
j=1

p(ij).

In particular, ones(w) depends only on r and n− k, and not on the particular w chosen.

Example 5.2. This example shows that the hypothesis r ≥ 2 in Theorem 5.1 is necessary.
Let w = (UD)2 and work in the tower S of symmetric groups. Then for n = 7 one can
calculate that ones(w) = 9 6= p(7− 2) = 7.

We can still give some upper and lower bounds in the r = 1 case. For a balanced
word w of length 2k, write

w(U, D) =
k

∑
i=0

ciUiDi (5.1)

Then define `(w) = min{i|ci 6= 0}; clearly 0 ≤ `(w) ≤ k, with equality on the right if
and only if w = UkDk.

Proposition 5.3. Let w be a balanced word of length 2k ≤ 2n. Then, working in the tower
S of symmetric groups, we have p(n− k) ≤ ones(w) ≤ p(n− `(w)).
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