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Abstract. We prove a monotonicity phenomenon for ratios of Schur polynomials. In
this we are motivated by – and apply our result to – understanding polynomials and
power series that preserve positive semidefiniteness (psd) when applied entrywise to
psd matrices. We then extend these results to classify polynomial preservers of total
positivity. As a further application, we extend a conjecture of Cuttler, Greene, and
Skandera (2011) to obtain a novel characterization of weak majorization using Schur
polynomials. Our proofs proceed through a Schur positivity result of Lam, Postnikov,
and Pylyavskyy (2007), and computing the leading terms of Schur polynomials.
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Notation: Given integers 1 6 k 6 N and a domain I ⊂ R, let Pk
N(I) denote the positive

semidefinite Hermitian N × N matrices A = (ajk), with all entries ajk in I and rank at
most k; and let PN(I) := PN

N(I). We will mostly be concerned with the case I ⊂ [0, ∞).
A function f : I → R acts entrywise on matrices in PN(I) via: f [A] := ( f (ajk))

N
j,k=1.

We say f is entrywise positivity preserving1 if f [A] is positive semidefinite whenever A
is. The present work is motivated by the classical question of classifying the entrywise
positivity preserving functions; this question has been studied for over a century.

By the Schur product theorem [16], and the fact that PN(R) is a convex closed cone, it
follows that if f : [0, ρ)→ R is of the form f (x) = ∑k>0 ckxk, and f is absolutely monotonic
– i.e., ck > 0 ∀k – then f is entrywise positivity preserving on PN for all N. The converse
was proved for continuous functions by Schur’s student, Schoenberg:

Theorem 0.1 (Schoenberg, [15]). Suppose f : (−1, 1) → R is continuous and f [−] preserves
positivity on PN((−1, 1). Then f is absolutely monotonic.
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Schoenberg’s theorem has subsequently been generalized to other settings, including
(−ρ, ρ), [0, ρ), and (0, ρ) for 0 < ρ 6 ∞, and the robustness of the absolute monotonicity
condition is valid in each of these settings. We mention the noteworthy sequel by Rudin
[14], who strengthened the result by showing that (i) the continuity hypothesis can be
removed, and (ii) one only needs to preserve positivity on Toeplitz matrices of all di-
mensions. Rudin was motivated by his work with Kahane (and Helson and Katznelson)
on preservers of Fourier–Stieltjes sequences for positive measures on the torus.

Remark 0.2. In a parallel vein to Rudin’s work, the recent work [3] studied preservers of moment
sequences for positive measures on the line. As it shows, Theorem 0.1 holds upon (i) preserving
positivity on Hankel matrices of all dimensions, and (ii) without the continuity hypothesis.

A natural and challenging mathematical refinement of the above problem is to clas-
sify entrywise positivity preservers in fixed dimension. This problem has also attained
modern relevance owing to its connections to high-dimensional covariance estimation;
for more details see the discussion and references in [2]. While it has been the subject
of significant research, and (relatively straightforward) characterizations are known for
N = 2, the problem remains open for all N > 3.

1 Polynomials preserving positive semidefiniteness

In this note we focus on the case of polynomials and power series f (x) = ∑k>0 ckxk

that preserve positivity on PN(I) for fixed N. As we reveal, the study of positivity and
its preservation by such functions has remarkable connections to type A representation
theory: Schur polynomials, Schur positivity, Gelfand–Tsetlin patterns, and the Harish-
Chandra–Itzykson–Zuber formula. For full proofs of the results below, we refer the
reader to the paper [10], of which this note is an extended abstract.

As mentioned above, a full classification of the entrywise endomorphisms of PN
for fixed N remains elusive to date. Essentially the only known necessary condition in
fixed dimension is due to Horn, who in his thesis [8] ascribes the result to his advisor,
Loewner. The result states that if I = (0, ∞) and f is entrywise positivity preserving on
PN(I) for N > 3, then f ∈ CN−3(I) and f has non-negative derivatives on I of orders
0, . . . , N− 3. In a similar vein, for polynomials and power series, a straightforward Taylor
series argument shows similar conclusions under weaker hypotheses on the test sets:

Lemma 1.1 (Horn-type necessary conditions). Let N > 2 and 0 < ρ 6 ∞, and f (x) =

∑k>0 ckxk is a convergent power series on (0, ρ).

(i) (See [2, Lemma 2.4].) If f is entrywise positivity preserving on P1
N((0, ρ)), and cn0 < 0

for some n0, then cn > 0 for at least N values of n < n0. (Thus the first N non-zero
Maclaurin coefficients of f , if they exist, must be positive.)
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(ii) Suppose ρ = ∞, and f is convergent on (0, ∞) and entrywise positivity preserving on
P1

N((0, ∞)). If cn0 < 0 for some n0, then cn > 0 for at least N values of n < n0 and at
least N values of n > n0. (Hence if f is a polynomial, then the first N non-zero coefficients
and the last N non-zero coefficients of f , if they exist, must be positive.)

The question now arises, if any other coefficient of a preserver f can be negative.
(Certainly if no coefficient is negative then f [−] : Pn → Pn ∀n > 1 by the Schur product
theorem, as explained above.) Until very recently, not a single example was known of
a power series which preserved PN((0, ρ)) entrywise for any N > 3. The only such
‘atomic’ examples were discovered in recent work [2, 4], for polynomials

f (x) = xr(c0 + c1x + · · ·+ cN−1xN−1 + cMxM)

with real coefficients (where M > N > 3, r ∈ Z>0), which preserve positivity on
PN((0, ρ)) for bounded domains, i.e., ρ < ∞.

However, the methods used in [2, 4] provably do not extend to any other set of
(non-consecutive) powers; nor to the case of unbounded domains. Consequently, there
were no other examples known to date, nor whether such examples can even exist. In
particular, apart from Lemma 1.1(i), no other constraint on the coefficients was known.

In this note, we not only address this gap and resolve it completely, but more strongly,
settle the question: What are all possible sign patterns of power series that entrywise preserve
positivity on PN((0, ρ)), for finite ρ?2 Explicitly, we show:

Theorem 1.2. Fix integers N > 0 and 0 6 n0 < n1 < · · · < nN−1, as well as a sign εM ∈
{−1, 0,+1} for each M > nN−1. Given positive reals 0 < ρ < ∞ and cn0 , . . . , cnN−1 , there exists
a convergent power series on (0, ρ) that is an entrywise positivity preserver on PN((0, ρ)):

f (x) = cn0 xn0 + cn1 xn1 + · · ·+ cnN−1 xnN−1 + ∑
M>nN−1

cMxM,

such that cM has the sign of εM for every M > nN−1.

Theorem 1.2 shows that the necessary Horn-type condition in Lemma 1.1(i) is sharp.3

In particular, it demonstrates the existence of polynomials and power series that preserve
positivity on PN((0, ρ)) but not on PN+1((0, ρ)).

To prove Theorem 1.2, we first present a ‘fewnomial’ version that is equivalent.
Namely, suppose we can show the result for exactly one cM < 0 and all other cM = 0 for
M > nN−1, i.e.,

There exists cM with the same sign as εM such that

fM(x) :=
N−1

∑
j=0

cnj x
nj + cMxM entrywise preserves positivity on PN((0, ρ)).

2We also answer the question for ρ = ∞ in the full paper [10]; here we restrict ourselves to ρ < ∞.
3Similarly for the unbounded domain case ρ = ∞, we show in [10] that the necessary condition in

Lemma 1.1(ii) is also sharp, i.e. the only restriction in the possible sign patterns.
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Then by suitably choosing each cM and rescaling fM by 2nN−1−M, and adding together the
rescaled functions (together with the Schur product theorem), one obtains the desired
power series in Theorem 1.2.

Thus, it suffices to prove the above polynomial version. The following result achieves
this goal; and moreover, obtains the exact threshold bound for cM < 0.

Theorem 1.3. Fix integers N > 0 and 0 6 n0 < n1 < · · · < nN−1 < M, as well as a real

scalar 0 < ρ < ∞. Given real scalars cn0 , . . . , cnN−1 , cM, define f (x) :=
N−1

∑
j=0

cnj x
nj + cMxM.

Then the following are equivalent:

1. The function f entrywise preserves positivity on rank-one matrices in PN((0, ρ)).

2. Either all cnj , cM > 0; or cnj > 0 ∀j, and cM > −C−1, where

C =
N−1

∑
j=0

V(nj)
2

V(n)2
ρM−nj

cnj

. (1.1)

Here n := (n0, . . . , nN−1)
T, nj := (n0, . . . , nj−1, nj+1, . . . , nN−1, M)T, and given a vector

t = (t0, . . . , tk−1)
T, its ‘Vandermonde determinant’ is V(t) := ∏16i<j6k(tj − ti).

3. The function f entrywise preserves positivity on PN([0, ρ]).

Theorem 1.3 provides a quantitative form of Schoenberg’s theorem in fixed dimen-
sion. As mentioned above, it moreover provides the first examples (for non-consecutive
powers nj) of polynomials preserving positivity on PN but not on PN+1. Also note that
the threshold C in (1.1) is attained on the boundary of the cone, on rank-one matrices.

We conclude this section by recording the following strengthening of Theorem 1.2.
First note that Theorem 1.3 can be reformulated as a linear matrix inequality:

A◦M � C
N−1

∑
j=0

cnj A
◦nj , ∀A ∈ PN([0, ρ]), (1.2)

where � denotes the positive semidefinite ordering: A � B ⇔ B − A ∈ PN(R). The
sharp bound C is also tight enough, to enable generalizing (1.2) to arbitrary power series:

Corollary 1.4 (Analytic functions). Notation as in Theorem 1.3. Given a power series g(x) =
∑M>nN−1

gMxM that is convergent at ρ, there exists a finite threshold K such that the function

x 7→ K
N−1

∑
j=0

cnj x
nj − g(x) is entrywise positivity preserving on PN([0, ρ]), i.e.,

g[A] � K
N−1

∑
j=0

cnj A
◦nj , ∀A ∈ PN([0, ρ]). (1.3)

The proof can be found in [10, Section 3].
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2 Schur positivity and ratios of Schur polynomials

This section is devoted to proving Theorem 1.3. The key ingredient in the proof, missing
from previous work in the literature, is the use of Schur polynomials; in some sense, the
classification of sign patterns starts with the Schur product theorem, and comes back
full circle to Schur, via Schur polynomials and Schur positivity.

We now set notation. Fix an integer N > 0, and define nmin to be the vector
(0, 1, . . . , N − 1)T. Given a vector n = (n0, . . . , nN−1)

T of strictly increasing non-negative
integers, define the Schur polynomial sn in the vector u = (u1, . . . , uN)

T by the formula

sn(u) := ∑
T

N−1

∏
j=0

u
aj
j+1, (2.1)

where T runs over all column-strict Young tableaux of shape (nN−1− (N− 1), . . . , n0− 0)
and with cell entries 1, . . . , N, and aj is the number of occurrences of j in the tableau T.
Schur polynomials are homogeneous symmetric polynomials of total degree ∑j nj− (N

2 ),
and are characters of irreducible representations of slN(C). We now mention two further
properties of Schur polynomials that will be of use below: (i) their relation to generalized
Vandermonde determinants, and (ii) the ‘Weyl Dimension Formula’:

det(u◦n0 | · · · |u◦nN−1) = sn(u)V(u), sn((1, . . . , 1)T) =
V(n)

V(nmin)
. (2.2)

As we explain below, a key step in the proof of Theorem 1.3 is the following mono-
tonicity phenomenon for Schur polynomials, which is interesting for additional reasons
explained in the final section.

Proposition 2.1. Fix integers 0 6 n0 < · · · < nN−1 and 0 6 m0 < · · · < mN−1, such

that nj 6 mj ∀j. Define the function f : (0, ∞)N → R via: f (u) :=
sm(u)
sn(u)

. Then f is

non-decreasing in each coordinate.

We show that this result is in fact the analytical shadow of a deeper, algebraic Schur
positivity phenomenon. To show the result, by the quotient rule and symmetry it suffices
to show that the polynomial Pm,n(u) := sn · ∂u1(sm)− sm · ∂u1(sn) sends (0, ∞)N to [0, ∞).
This is assured if Pm,n is a Z>0-linear combination of monomials, i.e. monomial-positive.
Even stronger: note that expanding sn as a polynomial in u1, the coefficient of uk

1 is a
skew-Schur polynomial sn/(k)((u2, . . . , uN)

T); and similarly for sm(u). (See [12, Chapter
I.5] for details and further properties.) Now we claim:

Proposition 2.2. Writing Pm,n(u) := sn · ∂u1(sm) − sm · ∂u1(sn) as a polynomial in u1, the
coefficient of every power of u1 is Schur positive, i.e., a non-negative integer linear combination
of Schur polynomials in u2, . . . , uN.
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Clearly, this result implies Proposition 2.1 by the above discussion.

Sketch of proof. Write u′ := (u2, . . . , uN)
T ∈ RN−1 and the vector (0, . . . , 0, 1)T ∈ ZN as

eN. Then sn(u) = ∑j>0 s(n−nmin)/jeN
(u′), where the right-hand summand is understood

to vanish whenever nN−1 − (N − 1) < j. Similarly one writes out sm(u) in terms of
skew-Schur polynomials. Now a symmetrization procedure shows that

Pm,n(u) = ∑
k>j>0

(
s(n−nmin)/jeN

(u′)s(m−nmin)/keN
(u′)− s(n−nmin)/keN

(u′)s(m−nmin)/jeN
(u′)

)
×(k− j)uj+k−1

1 .

Thus it suffices to show that each summand is Schur positive when k > j and m− nmin
dominates n− nmin coordinatewise, where nmin = (0, . . . , N − 1) as above. But this is a
special case of a Schur positivity result by Lam, Postnikov, and Pylyavskyy [11, Theorem
4]. Notice that if nN−1− (N− 1) < k then the ‘negative coefficient’ summand above van-
ishes, and then the Schur positivity of s(n−nmin)/jeN

(u′)s(m−nmin)/keN
(u′) already follows

from the Littlewood–Richardson rule [12, Chapter I, Equations (5.2), (5.3)], since it im-
plies that skew-Schur polynomials are Schur positive, whence so are their products.

With Proposition 2.1 in hand, we now complete the proof of Theorem 1.3.

Definition 2.3. For S ⊂ R a subset, SN
< comprises all vectors in SN with pairwise distinct

coordinates that are sorted in increasing order.

Sketch of proof of Theorem 1.3. Clearly (3) =⇒ (1). Next, suppose (1) holds. If cnj , cM
are not all non-negative, then cnj > 0 ∀j by Lemma 1.1(i). We claim:

Lemma 2.4. Suppose F is a field, and h(x) = ∑n∈S cnxn ∈ F[x] is a polynomial, with S ⊂ Z>0

having at least n elements. Then for any u, v ∈ (FN)T, we have:

det h[uvT] = ∑
n∈SN

<

sn(u)sn(v)V(u)V(v) ∏
n∈n

cn. (2.3)

Proof. Write S = {n1, . . . , nK} where the nj are in increasing order. Then,

h[uvT] =
K

∑
j=1

cnj u
◦nj(v◦nj)T = (u◦n1 | . . . |u◦nK)diag(cn1 , . . . , cnK)(v

◦n1 | . . . |v◦nK).

Now (2.3) follows from the Cauchy–Binet formula.

The next step is to reformulate hypothesis (1), by assuming cM < 0. Set t := |cM|−1

and define

pt(x) := t h(x)− xM, where h(x) :=
N−1

∑
j=0

cnj x
nj . (2.4)
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Then hypothesis (1) in the theorem is equivalent to assuming that pt[uuT] is positive
semidefinite for u ∈ (0,

√
ρ)N, and hypothesis (2) seeks to find the smallest threshold t

that works for all such vectors u.
Our approach is to (a) first produce the optimal threshold for a single vector u (i.e.,

matrix uuT), and then to (b) maximize over a suitable set of vectors u to obtain the
constant in (1.1). The first of these steps will follow from the following basic result.

Lemma 2.5. Fix a vector w ∈ RN and a positive definite (real symmetric) matrix H. Define
Pt := tH −wwT for t ∈ R. Then the following are equivalent:

1. Pt is positive semidefinite.

2. det Pt > 0.

3. t > wT H−1w = 1− det(H −wwT)

det H
.

Returning to the proof of (1) =⇒ (2) in the theorem, define the vectors

u(ε) := (1, ε, . . . , εN−1)T, uε :=
√

ρε u(ε), ε ∈ (0, 1). (2.5)

Now apply Lemma 2.5 with H := ∑N−1
j=0 cnj(uεuT

ε )
◦nj and w := u◦M

ε , noting via Vander-
monde determinants that H is nonsingular for all ε ∈ (0, 1). Expanding the formula in
Lemma 2.5(3) and using (2.2), it follows that t must exceed the quantity

1−
N−1

∏
j=0

c−1
nj

V(uε)
−2sn(uε)

−2

(
N−1

∏
j=0

cnjV(uε)
2sn(uε)

2 −
N−1

∑
j=0

∏
k 6=j

cnkV(uε)
2snj(uε)

2

)

for every ε ∈ (0, 1). This expression simplifies to yield:

t > sup
ε∈(0,1)

N−1

∑
j=0

snj(uε)2

cnj sn(uε)2 .

Applying Proposition 2.1, the supremum is attained as ε → 1−, and by (2.2) yields
precisely the constant C in (1.1). This proves (2).

Conversely, assuming (2), the proof of (1) proceeds similarly using Lemma 2.5. By
continuity and symmetry, it suffices to prove pt[uuT] ∈ PN for all u ∈ (0,

√
ρ)N with

strictly increasing coordinates, if t > C as in (1.1). But again by Proposition 2.1, for such
t it follows that

t > sup
u∈(0,

√
ρ)N

<

N−1

∑
j=0

snj(u)
2

cnj sn(u)2 .

Repeating (in reverse order) the arguments following (2.5), the assertion (1) follows.
Finally, the proof of (1) =⇒ (3) uses the following ‘extension principle’:
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Theorem 2.6. Fix 0 < ρ 6 ∞ and a continuously differentiable function h : (0, ρ) → R. If h
and h′ are entrywise positivity preserving on P1

N((0, ρ)) and PN−1((0, ρ)) respectively, then h
does the same on all of PN((0, ρ)).

We refer the reader to [10, Section 3] for more on this result and how it completes the
proof of Theorem 1.3.

We conclude this section by remarking that the recent works [2, 4] prove Theorem 1.3
in the special case when n = nmin, i.e., nj = j ∀0 6 j < N. In that case, the hypotheses
in the theorem are in fact equivalent to:

(3′) The entrywise map f preserves positivity on PN(D(0, ρ)), where D(0, ρ) is the complex
disc centered at the origin and of radius ρ ∈ (0, ∞); and PN here denotes complex Hermi-
tian positive semidefinite matrices.

However, as we discuss in [10, Section 7], such a general statement necessarily does not
hold if n is not an integer translate of nmin. In fact for every n 6= n0 + nmin, there are
infinitely many M > nN−1 for which f [−] fails to preserve positivity on PN(D(0, ρ)).
As a simple example, even with negative real entries one cannot have a ‘structured’
classification of sign patterns as in Lemma 1.1(i). Consider the polynomials

pk,t(x) := t(1 + x2 + · · ·+ x2k)− x2k+1, k > 0, t > 0,

acting on P2((−ρ, ρ)). Setting u := (1,−1)T and A = (ρ/2)uuT ∈ P2((−ρ, ρ)), one
computes: uT pk/2[A]u = −4(ρ/2)2k+1 < 0. Consequently, pk,t is not entrywise positivity
preserving for any t > 0 and integer k > 1. Thus, the general problem is provably harder
than the one studied in [2, 4], and new methods were required to solve it.

Remark 2.7. If one is merely interested in classifying the sign patterns of positivity preserving
power series on PN((0, ρ)), then the bound in (1.1) is stronger than what is required. As ex-
plained in [10, Section 3], a more ‘qualitative’ approach suffices to show Theorem 1.2. The key
result required is a (novel) ‘first-order approximation’ of every Schur polynomial – see Proposi-
tion 4.2, which is used below to prove an extension of the Cuttler–Greene–Skandera conjecture
[5].

Remark 2.8. In fact Theorem 1.3 holds for all real powers that lie in Z>0 ∪ [N − 2, ∞) (for
the reasons behind this set of powers, see [7]). One proof involves first extending Proposition
2.1 to real powers, i.e., using generalized Vandermonde determinants. A second, ‘qualitative’
proof involves obtaining ‘first-order approximations’ for such determinants (generalizing the ones
mentioned in the previous remark) using Gelfand–Tsetlin polytopes and the Harish-Chandra–
Itzykson–Zuber integral. For details, see [10, Sections 5, 8].
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3 Application 1: Polynomials preserving total positivity

A rectangular real matrix is totally positive [9] if every minor is non-negative. Such matri-
ces appear in representation theory, discrete mathematics, stochastic processes, and other
areas; for instance, generalized Vandermonde matrices are (strictly) totally positive.

It was recently shown in [3] that, in the spirit of Schoenberg and Rudin’s theorems,
an entrywise map f : [0, ∞) → R preserves total positivity on Hankel matrices of all
sizes, if and only if f |(0,∞) is absolutely monotonic and 0 6 f (0) 6 limε→0+ f (ε). Thus,
totally positive Hankel matrices serve as a ‘well-behaved’ test set. (In fact, the Schur
product theorem also holds for this class of matrices.) In contrast, if we work with the
larger set of all symmetric (equivalently, positive semidefinite) totally positive matrices,
then preservers f of total positivity on this set are necessarily constant or linear; and this
holds even if we restrict to just the 5× 5 symmetric matrices in this set and f analytic.

In light of these remarks, we work only with the Hankel totally positive matrices
with entries in an interval I = (0, ρ) or [0, ρ]. Denoting such sets by HTNN(I), we have:

Theorem 3.1. Notation as in Theorem 1.3. The following are equivalent.

1. The entrywise map f [−] preserves total positivity on rank-one matrices in HTNN((0, ρ)).

2. The entrywise map f [−] preserves positivity on rank-one matrices in HTNN((0, ρ)).

3. Either all cnj , c′ > 0; or cnj > 0 ∀j, and c′ > −C−1, where C =
N−1

∑
j=0

V(nj)
2

V(n)2
ρM−nj

cnj

.

4. The entrywise map f [−] preserves total positivity on HTNN([0, ρ]).

Thus, preserving total positivity on rank-one Hankel matrices in PN((0, ρ)) is the
same as preserving positivity on this test set, and also equivalent to the hypotheses in
Theorem 1.3.

To prove the result, we make use of the following connection between positive and
totally positive Hankel matrices.

Lemma 3.2 (see [6, Corollary 3.5]). Let AN×N be a Hankel matrix. Then A is totally positive
if and only if A and its truncation A(1) have non-negative principal minors. Here, A(1) denotes
the submatrix of A with the first column and last row removed.

Sketch of proof of Theorem 3.1. Clearly (4) =⇒ (1) =⇒ (2). Now observe from the
computations following Lemma 2.5 and equation (2.5) that one only needs to work with
the matrices uεuT

ε , and these are all rank-one matrices in HTNN((0, ρ)) by Lemma 3.2.
Similarly, Lemma 1.1(i) can be shown working only with uεuT

ε . Thus, (2) =⇒ (3).
Finally, if (3) holds, the map f [−] preserves positivity on PN([0, ρ)) by Theorem

1.3. Now we are done by the following ‘extension principle’, which can be shown using
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Lemma 3.2: If 0 < ρ 6 ∞ and f : [0, ρ) → R entrywise preserves positivity on PN([0, ρ)),
then f [−] preserves total positivity on HTNN([0, ρ)) ∩PN([0, ρ)).

Remark 3.3. The extension principle in the proof just above, allows one to also classify the sign
patterns of all power series that preserve total positivity in fixed dimension, for both bounded
and unbounded domains. These results follow from their counterparts for entrywise positivity
preservers; see [10, Section 9] for details.

4 Application 2: The Cuttler-Greene-Skandera conjecture,
and weak majorization via Schur polynomials

Given a real vector u = (u1, . . . , uN)
T, denote its decreasing rearrangement by u[1] >

· · · > u[N]. We say u weakly majorizes v for vectors u, v ∈ RN – and write u �w v – if

k

∑
j=1

u[j] >
k

∑
j=1

v[j], ∀0 < k < N,
N

∑
j=1

u[j] >
N

∑
j=1

v[j]. (4.1)

If moreover the final inequality is an equality, we say u majorizes v.
We begin by recalling a conjecture by Cuttler, Greene, and Skandera [5, Conjecture

7.4], which says that given m, n ∈ (Z>0)N
< (see Definition 2.3),

sm(u)
sn(u)

>
sm((1, . . . , 1)T)

sn((1, . . . , 1)T)
, ∀u ∈ (0, ∞)N, (4.2)

if m majorizes n. The conjecture was very recently proved in [17] and also in [1].
In a parallel direction, observe that if m dominates n coordinatewise, and m 6= n,

then (4.2) cannot hold at points ε(1, . . . , 1)T for ε ∈ (0, 1), by homogeneity considera-
tions. However, (4.2) holds on [1, ∞)N, as an immediate corollary of Proposition 2.1:

mj > nj ∀j =⇒ sm(u)
sn(u)

>
sm((1, . . . , 1)T)

sn((1, . . . , 1)T)
=

V(m)

V(n)
, ∀u ∈ [1, ∞)N. (4.3)

A common unification of both of these settings is thus a natural question – restricting
to u ∈ [1, ∞)N as above. The aforementioned works [1, 5, 17] all assume ∑j mj = ∑j nj;
replacing this by an inequality allows us to achieve the desired common generalization,
and to show the converse. In fact, this characterizes weak majorization, for real tuples:

Theorem 4.1. Given vectors m, n ∈ (R>0)N
< , we have

det(u◦m0 | . . . |u◦mN−1)

V(m)
>

det(u◦n0 | . . . |u◦nN−1)

V(n)
, ∀u ∈ [1, ∞)N (4.4)

if and only if m weakly majorizes n.
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While the integer tuple case was our main motivation, it is more convenient to work
with the more general real tuples in (one half of) the proof. The (other half of the) proof
proceeds through a ‘first-order approximation’ of generalized Vandermonde determi-
nants; here we write down its special case for Schur polynomials.

Proposition 4.2. Fix integers N > 0 and 0 6 n0 < · · · < nN−1, and scalars 0 6 u1 6 · · · 6
uN. With n, u as in (2.1), we have the following two sharp inequalities:

1× un−nmin 6 sn(u) 6
V(n)

V(nmin)
× un−nmin . (4.5)

Proof. By (2.2), sn(u) is the sum of V(n)
V(nmin)

monomials, one of which equals un−nmin , and
this dominates all other monomials. The sharpness can be shown by using the principal
specialization of the Weyl Character Formula [12, Chapter I.3].

Sketch of proof of Theorem 4.1. Suppose (4.4) holds. Define the partial sums of m, n:

ñj := nN−j + · · ·+ nN−1, m̃j := mN−j + · · ·+ mN−1, 0 6 j 6 N − 1.

Now fix j and set u = u(t) := (1, . . . , N − j, (N − j + 1)t, . . . , Nt) for t ∈ [1, ∞). Using
(4.4) and Proposition 4.2, we compute for all t > 1:

tñj
N

∏
k=1

knk−1 = un 6 unminsn(u) 6 unmin
V(n)
V(m)

sm(u) 6
V(n)um

V(nmin)
= tm̃j

V(n)
V(nmin)

N

∏
k=1

kmk−1 .

We infer from taking t→ ∞ that the growth rate m̃j of the right-hand side must dominate
that on the left, which is ñj. Therefore m weakly majorizes n.4

Conversely, suppose m, n are non-negative real vectors with m �w n. Given u ∈
[1, ∞)N, define Fu : [0, ∞)N → R to be the Harish-Chandra–Itzykson–Zuber integral:

Fu(m) :=
∫

U(N)
exp tr (diag(m0, . . . , mN−1)Udiag(log(u1), . . . , log(uN))U∗) dU. (4.6)

By continuity, it suffices to show (4.4) for u ∈ (1, ∞)N
< . If we show Fu(m) > Fu(n), then

we would be done by the Harish-Chandra–Itzykson–Zuber formula. Now this property
of Fu follows from [13, Chapter 3, C.2.d]. See [10, Section 10] for details.
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