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One-dimensional packing: maximality implies
rationality
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Abstract. Every set of natural numbers determines a generating function convergent
for q ∈ (−1, 1) whose behavior as q → 1− determines a germ. These germs admit a
natural partial ordering that can be used to compare sizes of sets of natural numbers
in a manner that generalizes both cardinality of finite sets and density of infinite sets.
For any finite set D of positive integers, call a set S “D-avoiding” if no two elements
of S differ by an element of D. It is shown that any D-avoiding set that is maximal
in the class of D-avoiding sets (with respect to germ-ordering) is eventually periodic.
This implies an analogous result for packings in N. It is conjectured that for all finite
D there is a unique maximal D-avoiding set.

Keywords: packings, power series, partial ordering

1 Introduction

This article is concerned with two related kinds of optimization problems in N: packing
problems and distance-avoidance problems. In the former, we are given a nonempty set
B ⊆ N = {0, 1, 2, . . . } and we wish to find a collection of disjoint translates of B whose
union is as big a subset of N as possible. In the latter, we are given a finite set D of
positive integers and we wish to find as big a set S ⊆ N as possible such that no two
elements of S differ by an element of D. In both cases, the crucial issue is defining what
“as big as possible” should mean.

For instance, consider the distance-avoidance problem with D = {3, 5}. Three D-
avoiding sets are S0 = {0, 2, 4, 6, . . . }, S1 = {1, 3, 5, 7, . . . }, and S2 = {0, 1, 2, 8, 9, 10, . . . }
(note that the third set is obtained via an obvious general algorithm for greedily con-
structing D-avoiding sets for arbitrary D). In terms of subset-inclusion, all three sets are
maximal: none of them can be augmented without violating the D-avoidance property.
We will say S0 is “bigger” than S1, which is in turn “bigger” than S2, in the sense that
∑n∈S0

qn > ∑n∈S1
qn > ∑n∈S2

qn for all q < 1 sufficiently close to 1. That is, we propose
to measure of the size of a set S ⊆ N by forming the generating function Sq := ∑n∈S qn

and examining its germ “at 1−”.
For example:
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1. If S is finite, Sq = |S|+ o(1), or equivalently, Sq → |S| as q→ 1−; if S is infinite, Sq
diverges as q→ 1−.

2. If S is infinite with density α, Sq = α 1
1−q + o( 1

1−q ).

3. In particular, if S = {a, a + d, a + 2d, . . . } with a ≥ 0 and d > 0, Sq = ( 1
d )

1
1−q +

( d−1−2a
2d ) + O(1− q).

This approach is related to Abel’s method of evaluating divergent series; its appli-
cation to measuring sets of natural numbers is (apparently) new, but it is likely to hold
little novelty for analytic number theorists, who have long used the philosophically sim-
ilar but technically more recondite notion of Dirichlet density to measure sets of primes.
Our definition also has thematic links to work from the earliest days in the study of in-
finite series. For instance, Grandi’s formula 1− 1 + 1− 1 + 1− 1 + · · · = 1

2 corresponds
to the fact that the germ of (2N)q exceeds the germ of (2N+ 1)q by 1

2 + O(1− q), while
Callet’s formula 1 + 0− 1 + 1 + 0− 1 + · · · = 2

3 corresponds to the fact that the germ of
(3N)q exceeds the germ of (3N+ 2)q by 2

3 + O(1− q).
Our approach resembles the sort of “tame nonstandard analysis” in which R is re-

placed by the ordered ring R(x) where 1/x is a formal infinitesimal (also known as
“the ring of rational functions ordered at infinity”); our ordering of rational functions
corresponds to that of R(x) if one identifies 1/x with 1− q.

Theorems 2.2 and 2.4 show that for both packing problems and distance-avoidance
problems in N, every optimal (that is, germ-maximal) solution is eventually periodic.
The proof we give may seem surprisingly complicated, given that the corresponding
periodicity property for maximum-density packings and maximum-density distance-
avoiding sets is fairly easy. This discrepancy is explained by the fact that the germ-
topology does not admit compactness arguments.

We conjecture that for both the packing and distance-avoidance problems, there is a
unique optimum subset of N (guaranteed to be eventually periodic).

The motivation for this work was the study of disk packings. It is our hope that
the approach taken here will ultimately lead to results establishing a strong kind of
uniqueness for optimal sphere-packings in dimensions 2, 8, and 24. (See [5] for a survey
of the recent breakthroughs in the study of 8- and 24-dimensional sphere-packing.) We
also hope that the germ approach will have relevance to the study of densest packings
in other dimensions.

For other approaches to measuring efficiency of packings, see [7]. The most sophisti-
cated of these approaches is that of Bowen and Radin [3]; their ergodic theory approach
has attractive features (for instance, it works in spaces with nonamenable symmetry
groups), but it does not seem to work so well when the region being packed is not the
entire space. Packings in N could be viewed as special packings of R≥0; the lack of
symmetry makes it hard to apply the constructions of Bowen and Radin.
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See also [1], [2], [4], and [6] for work on measuring sizes of sets bearing some philo-
sophical similar to ours.

2 Statement of main theorem

Recall that a subset S of N = {0, 1, 2, . . . } is eventually periodic if and only if there exist
N ∈ N and d ≥ 1 such that for all n ≥ N, n ∈ S if and only if n + d ∈ S. It is easy to
show that S is eventually periodic if and only if its generating function Sq := ∑n∈S qn is
a rational function of q. We call such sets S rational. (Note that this usage coincides with
the notion of rationality for subsets of a monoid in automata theory, specialized to the
monoid N.) If S is a finite set, then S is rational and Sq is a polynomial. If S is rational
and infinite, then Sq has a simple pole at 1, and letting t = 1− q we can expand Sq as a
Laurent series ∑n≥−1 antn where a−1 is the density of S. This series converges for all q
in (−1, 1), though we will only care about q in (0, 1).

Given two sets of natural numbers S and S′ (not necessarily rational), write S � S′

if and only if there exists ε > 0 such that Sq ≤ S′q for all q in the interval (1− ε, 1); we
say that S′ dominates S in the germ-ordering. The partial ordering � (which we call
the germ-ordering at 1−) is a total ordering on the rational subsets of N that refines the
preorder given by comparing density. Also, if two sets have finite symmetric difference
they are �-comparable. (Both of these assertions are consequences of the fact that the
sign of a polynomial can oscillate only finitely many times.) In the case where S and S′

are finite, the germ-ordering refines ordering by cardinality; when the finite sets S and S′

have the same cardinality n, the germ-ordering refines lexicographic ordering of subsets
of N of size n. (When S, S′ are eventually periodic infinite sets of the same density c,
there is also a combinatorial criterion for deciding which of S, S′ is larger, though it is
more complicated.)

The germ-ordering has the “outpacing property” [6]: if for all sufficiently large k the
kth element of S is less than or equal to the kth element of S′, then S � S′.

We mention that, although � is a total ordering for rational subsets of N, the same
is not true for unrestricted subsets of N; for instance, if S is the set of natural numbers
whose base ten expansion has an even number of digits and S′ is its complement, then
it can be shown that S and S′ are �-incomparable.

Given a finite nonempty subset B of N (a packing body), say that a set T ⊂ N is
a translation set for B if and only if the translates B + n (n ∈ T) are disjoint. If T
is a translation set, the generating function of ∪n∈T(B + n) is just the product of the
generating function of T and the generating function of B; so if T and T′ are translation
sets, T � T′ if and only if ∪n∈T(B + n) � ∪n∈T′(B + n).

Conjecture 2.1. For every packing body B, there is a unique germ-maximal translation set for
B, and it is rational. That is, there is a translation set T∗ such that T∗ is rational and such that
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T � T∗ for every translation set T.

This Conjecture is easy to prove for many specific packing bodies, such as {0, 1, . . . k− 1}
for arbitrary k (see Section 4), but we do not have a general proof. Theorem 2.2 is the
best result we currently have that applies to all packing bodies B.

Theorem 2.2. For every packing body B, every germ-maximal translation set is rational. That
is, if T∗ is a translation set with the property that there exists no translation set T � T∗, then T∗

is rational.

We hope to (but cannot yet) prove that the collection of translation sets for B contains
a maximal element; it is a priori conceivable that there exist translation sets T1 ≺ T2 ≺
T3 ≺ . . . but no translation set that dominates them all. Thus Theorem 2.2 does not
immediately imply Conjecture 2.1.

Our proof of Theorem 2.2 goes by way of a shift of context from the packing problem
to the forbidden distance problem (which in N might with equal aptness be called the
forbidden difference problem). The condition that T is a translation set for B is equivalent
to the condition that the difference set T − T = {x − y : x, y ∈ T} has no element in
common with the difference set B − B = {x − y : x, y ∈ B} other than 0. Thus the
problem of finding the germ-maximal translation set for the packing body B is a special
case of the problem of finding the germ-maximal set T ⊆ N that has no differences
in the finite set DB where DB is the set of positive elements of B− B. More generally,
for any finite set D of positive integers, say that S ⊆ N is D-avoiding if there exist
no two elements in S that differ by an element of D. In this setting we can broaden
Conjecture 2.1 and Theorem 2.2.

Conjecture 2.3. For every finite set D of positive integers, there is a unique germ-maximal
D-avoiding set S∗ and it is rational.

Theorem 2.4. For every finite set D of positive integers, every germ-maximal D-avoiding set is
rational.

Of course Conjecture 2.3 implies Conjecture 2.1 and Theorem 2.4 implies Theorem 2.2.
The conclusions of Theorem 2.2 and Theorem 2.4 cannot be strengthened to assert

that the set must be periodic, as is demonstrated by the following example (jointly found
with Aaron Abrams, Henry Landau, Zeph Landau, Jamie Pommersheim, and Alexander
Russell): Let B = {0, 4, 11} and D = {4, 7, 11} (the set of positive elements of B− B). The
germ-maximal periodic D-free subset of N is the period-3 set {0, 3, 6, 9, 12, 15, 18, . . . }
but the eventually periodic set {0, 1, 3, 6, 9, 15, 18, . . . } (in which 12 is replaced by 1) is
infinitesimally larger, and is indeed the germ-maximal D-free subset of N. It follows
that the germ-densest packing of B is eventually periodic but not periodic. (Details will
appear elsewhere.) It is possible that every one-dimensional packing problem has a
periodic solution that is optimal modulo infinitesimals (that is, up to germs that are o(1)
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as q → 1). Abrams et al. also showed that the set 2N is the germ-maximal D-avoiding
set for D = {3, 5}.

3 Proof of main theorem

Our approach to proving Theorem 2.4 uses a block coding of the kind often employed in
dynamical systems theory. Let m = max(D) + 1 and replace the indicator sequence of S
(an element of {0, 1}N) by a symbolic sequence using a block code of block length m, with
an alphabet containing (at most) 2m symbols, which we will call letters. More concretely,
if the indicator sequence of S is written as (b0, b1, b2, . . . ) (where bn is 1 or 0 according
to whether n ∈ S or n 6∈ S), then we define the m-block encoding of (b0, b1, b2, . . . ) to
be (w0, w1, w2, . . . ) where the letter wn is the m-tuple (bn, bn+1, . . . , bn+m−1); we call wn
a consonant or a vowel according to whether bn = 1 or bn = 0 (conditions that align
with the respective cases n ∈ S and n 6∈ S). Say that a letter α = (b1, . . . , bm) in {0, 1}m

is legal if the set {i : bi = 1} is D-avoiding; we let A be the set of legal letters. Given
two letters α and α′ in A, say that α′ = (b′1, . . . , b′m) is a successor of α = (b1, . . . , bm) if
and only if and only if b′i = bi+1 for 1 ≤ i ≤ m− 1. For every set S ⊆ N, the associated
block-encoding w = (w0, w1, w2, . . . ) has the property that for all n ≥ 1, wn is a successor
of wn−1; S is D-avoiding if and only if w has the additional property that every letter wn
is legal. Call such an infinite word (w0, w1, w2, . . . ) D-legal. Finding a germ-maximal D-
avoiding set is equivalent to finding a D-legal infinite word for which the set of locations
of consonants is germ-maximal. We write w � w′ if and only if the associated sets S, S′

satisfy S � S′.
Suppose S is some D-avoiding subset of N that is germ-maximal in the collection

of D-avoiding subsets of N. Let w = (w0, w1, . . . ) be the associated infinite word in
AN. Assume for simplicity that the letter w0 = α occurs infinitely often in w. (The last
paragraph of the proof addresses what happens if this assumption fails.)

Let K = {k ∈ N : wk = α} = {k0, k1, k2, . . . }, where k0 = 0 and k0 < k1 < k2 < . . . .
This divides up the infinite word w into infinitely many subwords (wk0 , wk0+1, . . . , wk1−1),
(wk1 , wk1+1, . . . , wk2−1), (wk2 , wk2+1, . . . , wk3−1), . . . . Each of these finite words (wki , wki+1,
. . . , wki+1−1) is associated with the word ck := (wki−1

, wki−1+1, . . . , wki−1, wki) that both
begins and ends with the letter α; define a circular word as a word whose first and last
letters are the same. (Note that we are not modding out by cyclic shift of such words.)
Let C be the set of all circular words beginning and ending with α. We define the length
of a circular word to be the number of letters it contains, counting its first and last letter
as a single letter. (Thus, if α, β, and γ are letters, the circular word αβγα has length 3.)
If c ∈ C has length a and c′ ∈ C has length a′, let c : c′ denote the circular word of length
a + a′ in C obtained by concatenating c and c′ (where the final α in c gets identified with
the initial α in c′). The operation : is associative, and indeed, the word w itself can be
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written as c1 : c2 : c3 : . . . , where the circular words ci are primitive (i.e., each ci contains
α only at the beginning and at the end). We also use “:” to denote concatenation of
noncircular words.

Every circular word c ∈ C is associated with a polynomial Pc = Pc(q) (sometimes we
will omit the subscript or will write Pi to mean Pci) whose degree is at most the length
a of the circular word c and whose coefficients are 0’s and 1’s according to whether the
respective letters in the circular word are vowels or consonants; we call Pc the generating
function of c. So if w = c1 : c2 : c3 : . . . is the D-legal infinite word representing the D-
avoiding set S, Sq can be written as P1 + qa1 P2 + qa1+a2 P3 + · · · = P1 + A1P2 + A1A2P3 +
. . . where ai is the length of ci and Ai is qai .

For any circular word c with length a, we define |c| := Pc(q)/(1− qa); it is equal to
the generating function of the infinite periodic word c : c : c : c : . . . . Given two periodic
words c, c′ in C (possibly of different lengths), write c � c′ if and only if |c| � |c′|; call
this the germ-ordering on circular words. We have |c| = |c′| if and only if c : c : c : · · · =
c′ : c′ : c′ : . . . .

The following two lemmas are the linchpins of the proof of Theorem 2.4.

Lemma 3.1. If c � c′, then c � c : c′ � c′ : c � c′.

Proof. Write |c| = P/(1 − A) and |c′| = P′/(1 − A′); we also have |c : c′| = (P +
AP′)/(1 − AA′) and |c′ : c| = (P′ + A′P)/(1 − AA′). The stipulated relation c � c′

is equivalent to P/(1− A) � P′/(1− A′), or

P(1− A′) � P′(1− A); (3.1)

the desired relations c � c : c′, c : c′ � c′ : c, and c′ : c � c′ are respectively equivalent to

P/(1− A) � (P + AP′)/(1− AA′), (3.2)

(P + AP′)/(1− AA′) � (P′ + A′P)/(1− AA′), and (3.3)

(P′ + A′P)/(1− AA′) � P′/(1− A′). (3.4)

To prove (2), note that (by cross-multiplying, expanding, and cancelling terms) we can
write it equivalently as −AA′P � AP′ − AP− AAP′, which is just (1) multiplied by A.
The two denominators in (3) are identical, so (3) is equivalent to P + AP′ � P′ + A′P,
which in turn is equivalent to (1). The proof of (4) is similar to the proof of (2).

Note that the proof also tells us that if c ≺ c′, then c ≺ c : c′ ≺ c′ : c ≺ c′.

Lemma 3.2. If the concatenation w = c1 : c2 : c3 : . . . is germ-maximal in the set of D-legal
words, then we must have c1 � c2 � c3 � . . . in the germ-ordering.
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Proof. We will show that c1 � c2 since that contains the idea of the general argument.
If c1 = c2 there is nothing to prove, so assume c1 6= c2, and let w′ = c2 : c1 : c3 : . . . ,
which must be D-legal if w is (indeed, the whole reason for the block coding was to
make this claim true). The sets S and S′ respectively associated with w and w′ have finite
symmetric difference, so w and w′ must be comparable. Since we are assuming w is
germ-maximal, we must have w � w′ in the germ ordering. That is, we must have

P1 + A1P2 � P2 + A2P1

(all the later terms match up and cancel). But this is equivalent to P1/(1− A1) � P2/(1−
A2), so c1 � c2 as claimed.

Proof of Theorem 2.4. By an easy pigeonhole argument, for all N there must exist i, j ≥ N
with i < j such that the sum of the lengths of the words ci, ci+1, . . . , cj is a multiple of the
length of c1, say r times the length of c1. Let w′ be the word obtained from w by replacing
the j− i + 1 letters ci, ci+1, . . . , cj by r occurrences of the letter c1. Let S and S′ be the sets
associated with w and w′, respectively. Lemma 3.2 tells us that c1 � ci � ci+1 � · · · � cj,
so repeated application of Lemma 3.1 gives |c1 : c1 : . . . : c1| � |ci : ci+1 : . . . : cj|. If strict
inequality holds, then w′ � w, contradicting maximality of w. (Here we use the fact that
the difference S′q − Sq can be expressed as 1− qn times |c1 : c1 : . . . : c1| − |ci : ci+1 : . . . : cj|,
where n is the common value of ra1 and ai + ai+1 + · · ·+ aj.) So we must have |c1 : c1 :
. . . : c1| = |ci : ci+1 : . . . : cj|, implying that ci, ci+1, . . . , cj are all the circular word c1. Since
the circular words ci are in germ-decreasing order, this means that c1, c2, . . . , cN are all
equal. Since this is true for all N, we must have w = c1 : c1 : . . . c1; that is, w is periodic.

The above argument was predicated on the assumption that α occurs infinitely often.
If this assumption fails, then a version of the argument still goes through, but it is
slightly more complicated; one finds the smallest i for which the letter wi occurs infinitely
often in w (guaranteed to exist), and then one applies the preceding argument to the
letters wi, wi+1, wi+2, . . . , ignoring the letters w0, . . . , wi−1. Instead of concluding that w
is periodic, we obtain the weaker conclusion that w is eventually periodic.

4 Existence and uniqueness in special cases

In the case where D = {1, 2, . . . , k− 1} for some k ≥ 1, it is easy to give a direct proof
of existence and uniqueness of a maximal D-avoiding set, namely S∗ = {0, k, 2k, . . . }.
S∗ dominates every D-avoiding set S in the sense that, writing S = {s1, s2, s3, . . . } with
s1 < s2 < s3 < . . . , we have s1 ≥ 0, s2 ≥ k, s3 ≥ 2k, etc.

The result for D = {1, 2, . . . , k− 1} is also implied by a more general result:

Theorem 4.1. Suppose that for every letter α ∈ A there exists a circular word c∗α whose first
letter is α, such that c∗α � c for every circular word c whose first letter is α. Then every D-legal
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word w is dominated by an eventually periodic word whose repetend is one of the circular words
cα and whose “pre-repetend” does not contain any repeated letters.

Proof. Let α be some letter that occurs in w infinitely often, and write w as b : c1 : c2 : c3 : . . . ,
where c1, c2, c3, . . . all start with α. Let n be the length of c∗α. Consider the lengths of the
truncated words b : c1 : c2 : c3 : . . . : cm (for m ≥ 1) mod n; some residue class must
be represented infinitely often, so we can find i1 < i2 < . . . such that for all k, the
length of cik : cik+1 : . . . : cik+1−1 is a multiple of n. Then we can replace each such
stretch of w by a succession of occurrences of c∗α of the exact same total length, satisfying
c∗α : c∗α : . . . : c∗α � cik : cik+1 : . . . : cik+1−1; this results in an eventually periodic word w∗ whose
repetend is c∗α, satisfying w∗ � w.

Now we must show that w∗ is in turn dominated by a word whose pre-repetend does
not contain any repeated letters. Suppose the pre-repetend contains two occurrences of
the letter α′. Write w∗ as d : e : f : c∗α : c∗α : . . . , where the finite words e and f both start with
α′. Let A, B, C, and D be q to the power of the lengths of c∗α, d, e, and f , respectively, and
let P, Q, R, and S be the polynomial generating functions of c∗α, d, e, and f , respectively.
Since rational functions in q form a totally ordered set under germ-ordering, we must
have R � (1− C)(S + DP/(1− A)) or R � (1− C)(S + DP/(1− A)) or both. In the
former case, we have Q + BS + BDP/(1− A) � Q + BR + BCS + BCDP/(1− A), so
that d : f : c∗α : c∗α : . . . dominates w∗ (that is, we make the word w∗ bigger by removing the
subword e); in the latter case, we have Q + BR/(1− C) � Q + BR + BCS + BCDP/(1−
A), so that d : e : e : e : . . . dominates w∗ (that is, we make w∗ bigger by putting in infinitely
many e’s). Either way, we get an infinite word with strictly shorter pre-repetend, so if
we iterate the procedure as needed, we must eventually arrive at an infinite word whose
pre-repetend contains no repeated letters.

We mentioned in the introduction that germs do not come with a nice topology.
As an illustration of this (related to the famous Ross-Littlewood Paradox), consider the
sequence of sets Sn = {n, n + 1, . . . , 10n}; we have S1 ≺ S2 ≺ S3 ≺ . . . , but it is unclear
what the limit of the Sn’s should be. Surely it is not the pointwise limit of the sets, since
that is the null set! One way to understand what is going on here is to note that, even
though for each n there exists εn > 0 such that (Sn)q < (Sn+1)q for all q in (1− εn, 1), we
have inf εn = 0, so that the intersection of the intervals (1− εn, 1) is empty.

This sort of situation comes into play when one tries to prove Conjecture 2.3 by
showing that c � c1, c2, c3, . . . implies c : c : c : · · · � c1 : c2 : c3 : . . . . If we take εn satisfying
|c| ≥ |cn| for all q in (1− εn, 1), and the infimum of the εn not known to be positive, then
the obvious approach to proving the implication fails.
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5 Truncating the germs

In our approach, a rational set S ⊆ N is replaced by the power series ∑n∈S qn, which is
rewritten as the Laurent series ∑n≥−1 an(1− q)n, and the coefficients a−1, a0, a1, a2, . . . are
used to put a total ordering on the rational sets. The coefficients an carry finer and finer
information as n increases, so it is natural to discard this information after some point.
The classical theory of packings retains only a−1 (the density of S); we suggest that it
is natural to retain both a−1 and a0. That is, we define a non-Archimedean valuation ν

from the set of rational subsets of N to Q×Q, where we view Q×Q as the lexicographic
product of the ordered ring Q with itself. It can be shown that the pairs (a−1, a0) that
occur are those of the form (0, k) or (1,−k) where k is a nonnegative integer, along
with pairs of the form (p, q) where p is a rational number strictly between 0 and 1
and where q is an arbitrary rational number. This valuation is not translation-invariant;
if ν(S) = (p, q), then ν(S + 1) = (p, q − p). Note that under this valuation, the sets
{3, 6, 9, 12, 15, 18} and {1, 3, 6, 9, 15, 18} discussed at the end of section 2 have the same
size. The valuation is emphatically not countably additive, as can for instance be seen
by viewing N as a union of singleton sets.

One can try to extend this valuation to various classes of sets that include but are not
limited to the rational subsets of N. One way to do this without directly invoking the
expansion of ∑n∈S qn as a Laurent series in 1− q is to define a partial preorder on the
power set of N (the lim inf preorder) such that S dominates S′ in the lim inf preorder if
and only if lim infq→1−(∑n∈S qn − ∑n∈S′ qn) ≥ 0. This partial preordering, restricted to
the rational sets, coincides with the total preordering obtained by factoring the germ-
ordering through the valuation ν.

An important rationale for truncating the germs comes from considering the role
played by the choice of regularization scheme. If one wanted to extend our theory from
packings in N to packings in Z (with a view toward eventually looking at packings
in Rd), a different regularization scheme would be required (since for S ⊆ Z, ∑n∈S qn

diverges for all q in (0,1) unless S is bounded below). Two natural choices are the germ
of ∑n∈S q|n| as q → 1− (“L1-regularization”) and the germ of ∑n∈S qn2

as q → 1− (“L2-
regularization”). It can be shown that, for rational sets S ⊆ Z (defined in the natural way
from the monoid structure of Z) the pair (a−1, a0) is the same for L2-regularization and
L1-regularization, while later coefficients an are different in the two theories. Indeed,
the valuation ν we constructed earlier, mapping the set of rational subsets of N to Q×
Q, is quite robust; most sensible regularization schemes give rise to ν. This is just a
restatement of the fact that the Grandi series and its variants have the same value under
most sensible ways of summing divergent series.
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6 Connection to sphere-packing

In the case of packing N with translates of B = {0, 1, 2, . . . , k− 1}, there is an appreciable
efficiency gap between the best packing and all other packings:

Theorem 6.1. For k ≥ 1 and D = {1, 2, . . . , k− 1}, if S∗ is the D-avoiding set {0, k, 2k, 3k, . . . }
and S is any other D-avoiding set, Sq � (S∗)q − 1

k + O(1− q).

Proof. We focus on the case k = 2 for clarity. Let S∗ = {0, 2, 4, . . . } and let S be some
{1}-avoiding set other than S∗. We can write S as the disjoint union of two sets, one of
the form {0, 2, . . . , 2(m− 1)} (empty if m = 0) and one of the form {t1, t2, t3, . . . } (with
t1 < t2 < t3 < . . . ) satisfying t1 ≥ 2m + 1, t2 ≥ 2m + 3, t3 ≥ 2m + 5, etc. The germ of S
is dominated by the germ of {0, 2, . . . , 2(m− 1)} ∪ {2m + 1, 2m + 3, 2m + 5, . . . }; but this
germ is the same (up to O(1− q)) as the germ of {1, 3, 5, . . . }, which falls short of the
germ of {0, 2, 4, . . . } by 1

2 + O(1− q). The case k > 2 is similar.

Packing problems and distance-avoidance problems inNwere chosen as a testbed for
ideas about packing problems and distance-avoidance problems in Rn, and more specif-
ically, sphere-packing problems. Note that the problem of packing spheres of radius 1
in Rn is equivalent to the problem of packing points in Rn so that no two are at distance
less than 2 (the points are the centers of the spheres). We will not pursue the topic of
sphere-packing here, but we will mention the conjectures that motivated this work.

Conjecture 6.2. Let S be a subset of R2, no two of whose points are at distance less than 2, and
let S∗ be the set of center-points in a hexagonal close-packing of disks of radius 1 in R2. Let

δ(S) = lim inf
s→∞

 ∑
(x,y)∈S∗

e−(x2+y2)/s2 − ∑
(x,y)∈S

e−(x2+y2)/s2

 .

Then either S is related to S∗ by an isometry of R2, in which case δ(S) = 0, or else S is not
related to S∗ by an isometry of R2, in which case δ(S) > 0.

Remark 6.3. In private communication, Henry Cohn has shown that when S is related
to S∗ by an isometry of R2, δ(S) is indeed 0.

Conjecture 6.4. In Conjecture 6.2, “δ(S) > 0” can be replaced by “δ(S) ≥ 1” in the conclusion.

The dichotomy between δ(S) = 0 and δ(S) ≥ 1 in Conjecture 6.4 might at first seem
to contradict the continuity of the summands as a function of the positions of the points;
if all the points move continuously, won’t the lim inf also change continuously? The
catch is that the lim inf can (and often does) diverge. For instance, if one obtains S from
S∗ by translating a half-plane’s worth of points by ε > 0, or dilating the configuration S∗

by a factor of c > 1, then the lim inf diverges, no matter how close ε is to 0, or how close
c is to 1.

Clearly the bound in Conjecture 6.4 cannot be improved, since removing a single
point from S∗ gives a set S for which the lim inf is exactly 1.
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