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Abstract. Mills, Robbins, and Rumsey’s work on cyclically symmetric plane partitions
yields a simple product formula for the number of lozenge tilings of a regular hexagon,
which are invariant under rotation by 120◦. In this extended abstract, we generalize
this result by enumerating the cyclically symmetric lozenge tilings of a hexagon in
which four triangles have been removed in a symmetric way.
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1 Introduction

A plane partition can be defined to be a rectangular array of non-negative integers with
weakly decreasing rows and columns. Plane partitions with bounded entries are in
bijection with lozenge tilings of a hexagon on the triangular lattice. Here a lozenge is
a union of any two unit equilateral triangles sharing an edge, and a lozenge tiling of a
region is a covering of the region by lozenges so that there are no gaps or overlaps.
MacMahon [10] proved that these lozenge tilings are enumerated by

a

∏
i=1

b

∏
j=1

c

∏
k=1

i + j + k− 1
i + j + k− 2

. (1.1)

It has been shown that 10 symmetry classes of lozenge tilings of a hexagon are all given
by simple product formulas (see e.g. the classical paper by Stanley [11], or the excellent
survey by Krattenthaler [7]). Macdonald [9] conjectured a q-enumeration for the cyclically
symmetric tilings (i.e. the tilings invariant under 120◦ rotation) of a regular hexagon.
Andrew succeeded in proving the q = 1 case of the conjecture [1]; the full conjecture
was later proved by Mills, Robbins, and Rumsey [12]. This result implies the following
formula for number of the cyclically symmetric tilings of a regular hexagon of side a:

a

∏
i=1

(
3i− 1
3i− 2

a

∏
j=i

a + i + j− 1
2i + j− 1

)
. (1.2)
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Generalizing MacMahon’s classical tiling formula (1.1) is an important topic in the
study of plane partitions and the study of enumeration of tilings. A natural way to
generalize MacMahon’s tiling formula is to enumerate lozenge tilings of a hexagon with
certain ‘defects’. In particular, we are interested in hexagons with several triangles re-
moved. Even though the enumeration of tilings of defected hexagons has been investi-
gated extensively, the study of their cyclically symmetric tilings is very limited. One of
such a few results is Ciucu and Krattenthaler’s formula for the number of cyclically sym-
metric tilings of a hexagon with a triangle removed in the center [5]. It is worth noticing
that Krattenthaler [6] proved an one-to-one correspondence between the lozenge tilings
in Ciucu and Krattenthaler’s formula (with the central triangular hole of size 2) and the
descending plane partitions.

This paper is devoted to the study of cyclically symmetric lozenge tilings of two new
families of defected hexagons as follows. Unlike most known defects in hexagons that
are either a single triangle or a cluster of adjacent or aligned triangles, the defects in our
regions are four non-aligned, non-adjacent triangular holes.

Let x, y, z, a be non-negative integers. Our first family of defected hexagons consists
of the hexagons with side-lengths1 t + x + 3a, t, t + x + 3a, t, t + x + 3a, t, where
an up-pointing triangle of side-length x has been removed from the center, and three
satellite up-pointing triangles of side-length a have been removed equally along the
three intervals connecting the center of the hexagon to the midpoints of its southern,
northeastern, and northwestern sides. In addition, we set to 2y the distance from the
central triangular hole to each of three satellite holes. Denote by Ht,y(a, x) the resulting
defected hexagon (see Figure 1 for an example; the black triangles indicate the triangles
that have been removed). The second family, denoted by Ht,y(a, x), is similar to the first
one, the only difference is that the satellite holes are now on the opposite side of the
central hole as in Figure 2.

As in the case of the ordinary hexagons, we are interested in cyclically symmetric
tilings of the defected hexagons Ht,y(a, x) and Ht,y(a, x) (see Figures 1(b) and 2(b) for
examples).

Theorem 1.1. The number of cyclically symmetric lozenge tilings of the hexagon with four holes
Ht,y(a, x) is given by a simple product formula when x is even.

Theorem 1.2. The number of cyclically symmetric lozenge tilings of the hexagon with four holes
Ht,y(a, x) is given by a simple product formula when a is even.

The rest of this extended abstract is organized as follows. In Section 2, we state
precisely our main result. Then we present a sketched proof of the main result in Section
3.

1From now on, we always list the side-lengths of a hexagon in clockwise order, starting from the
northwestern side.
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Figure 1: (a) The hexagon with four holes H5,1(2, 2). (b) A cyclically symmetric tiling
of H5,1(2, 2).
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Figure 2: (a) The hexagon with four holes H5,1(2, 2). (b) A cyclically symmetric tiling
of H5,1(2, 2).
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2 Precise statement of the main result

In this section, we show an explicit formula for the number of cyclically symmetric tilings
of Ht,y(a, x) in Theorem 1.1. The explicit tiling formula for Theorem 1.2 is similar, and
will be omitted here.

For non-negative integer n, the Pochhammer symbol (x)n is defined by

(x)n =


x(x + 1) . . . (x + n− 1) if n > 0;
1 if n = 0;

1
(x−1)(x−2)...(x+n) if n < 0,

(2.1)

and its “skipping” version is

[x]n =


x(x + 2)(x + 4) . . . (x + 2(n− 1)) if n > 0;
1 if n = 0;

1
(x−2)(x−4)...(x+2n) if n < 0.

(2.2)

Next, we define four products as follows:

P1(x, y, z, a) :=
1

2y+z

y+z

∏
i=1

(2x + 6a + 2i)i[2x + 6a + 4i + 1]i−1

(i)i[2x + 6a + 2i + 1]i−1
× (2.3)

a

∏
i=1

(z + i)y+a−2i+1(x + y + 2z + 2a + 2i)2y+2a−4i+2(x + 3i− 2)y−i+1(x + 3y + 2i− 1)i−1

(i)y(y + 2z + 2i− 1)y+2a−4i+3(2z + 2i)y+2a−4i+1(x + y + z + 2a + i)y+a−2i+1
.

P2(x, y, z, a) :=
[x + 3y]a(x + 2y + z + 2a)a

22(ay+z)[x + 3y + 2z + 2a + 1]a

y+z

∏
i=1

(2x + 6a + 2i− 2)i−1[2x + 6a + 4i− 1]i
(i)i[2x + 6a + 2i− 1]i−1

×

a

∏
i=1

(z + i)y+a−2i+1(x + y + 2z + 2a + 2i− 1)2y+2a−4i+3(x + 3i− 2)y−i(x + 3y + 2i− 1)i−1

(i)y(y + 2z + 2i− 1)y+2a−4i+3(2z + 2i)y+2a−4i+1(x + y + z + 2a + i− 1)y+a−2i+2
.

(2.4)

F1(x, y, z, a) =
1

2ya+z
[x + y + 2z + 2a + 1]y

[x + y + 2a− 1]y
∏
b a

3 c
i=1(x + 3y + 6i− 3)3a−9i+1

∏
b a−1

3 c
i=1 (x + 3y + 6i− 2)

×
y+z

∏
i=1

i!(x + 3a + i− 3)!(2x + 6a + 2i− 4)i(x + 3a + 2i− 2)i(2x + 6a + 3i− 4)
(x + 3a + 2i− 2)!(2i)!

×
a−1

∏
i=1

(x + 3i− 2)y−i+1(x + y + 2z + 2a + 2i)2y+2a−4i (2.5)

×
y

∏
i=1

[2i + 3]z−1(x + 3a + 3i− 5)2y+z−a−4i+5

(a + i + 1)z−1(i)a+1[2i + 3]a−2[2x + 6a + 6i− 7]z+2y−4i+3
.
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F2(x, y, z, a) =
1

2y(a+2)+2a+z+1

∏
b y+1

3 c
i=1 (x + 3i− 2)3y−9i+4

∏
b y

3 c
i=1(x + 3y− 6i)

×
y+z

∏
i=1

i!(x + 3a + i− 1)!(2x + 6a + 2i)i(x + 3a + 2i)i(x + 3a + 3i)
(x + 3a + 2i)!(2i)!

(2.6)

×
y

∏
i=1

[2i + 3]z−1(x + y + 2a + 2i− 1)y+z−3i+2(x + y + 2z + 2a + 2i)2y+2a−4i+3

(a + i + 2)z−1(i)a+2[2i + 3]a−1[2x + 6a + 6i− 1]2y+z−4i+2
.

The number of cyclically symmetric tilings of Ht,y(a, x) is given by a simple product
formula when x is even. However, for odd x, the region does not yield a simple product
formula.

Theorem 2.1. For non-negative integers y, t, a, x

CS(H2t+1,y(2a, 2x)) = 22t+4a+1P1(x + 1, y, t− y, a)P2(x + 1, y, t− y, a), (2.7)

CS(H2t,y(2a, 2x)) = 22t+4aP1(x + 1, y, t− y− 1, a)P2(x + 1, y, t− y, a), (2.8)

CS(H2t+1,y(2a + 1, 2x)) = 22t+4a+3F1(x + 1, y, t− y, a + 1)F2(x + 1, y, t− y, a), (2.9)

CS(H2t,y(2a + 1, 2x)) = 22t+4a+2F1(x + 1, y, t− y− 1, a + 1)F2(x + 1, y, t− y, a), (2.10)

where we use the notation CS(R) for the number of cyclically symmetric tilings of a region R.

3 Sketched Proof of the main result

A (perfect) matching of a graph is a collection of vertex-disjoint edges covering all the
vertices of the graph. We use the notation M(G) for the number of matchings of G, or
the weighted sum of the matchings in the weighted case. Here the weight of a matching
is the product of weights of its constituent edges.

The lozenge tilings of a region (on the triangular lattice) are in bijection with match-
ings of its (planar) dual graph (the graph whose vertices are unit equilateral triangles in
the region and whose edges connect precisely two unit equilateral triangles sharing an
edge). In this point of view, we use the notation M(R) for the number (or weighted sum
in the weighted case) of tilings of a region R.

One of our main tools is the following powerful graphical condensation of Kuo [8], that
is usually referred to as Kuo condensation, and a factorization due to Ciucu [2].
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Figure 3: An illustration of Ciucu’s factorization theorem. The removed edges are
given by the dotted lines to the right and left of `.

Lemma 3.1 (Kuo Condensation [8]). Assume that G = (V1, V2, E) is a weighted bipartite
planar graph with |V1| = |V2| + 1. Assume that u, v, w, s are four vertices appearing in this
cyclic order on a face of G, such that u, v, w ∈ V1 and s ∈ V2. Then

M(G− {v})M(G− {u, w, s}) =M(G− {u})M(G− {v, w, s}) (3.1)
+ M(G− {w})M(G− {u, v, s}).

Lemma 3.2 (Ciucu’s Factorization Theorem [2]). Let G = (V1, V2, E) be a weighted bipartite
planar graph with a vertical symmetry axis `. Assume that a1, b1, a2, b2, . . . , ak, bk are all the
vertices of G on ` appearing in this order from top to bottom2. Assume in addition that the
vertices of G on ` form a cut set of G (i.e. the removal of those vertices separates G into two
disjoint subgraphs). We reduce the weights of all edges of G lying on ` by half and keep the other
edge-weights unchanged. Next, we color the two vertex classes of G by black and white, without
loss of generality, assume that a1 is black. Finally, we remove all edges on the left of ` which are
adjacent to a black ai or a white bj; we also remove the edges on the right of ` which are adjacent
to a white ai or a black bj. This way, G is divided into two disjoint weighted graphs G+ and G−

(on the left and right of `, respectively). Then

M(G) = 2k M(G+)M(G−). (3.2)

See Figure 3 for an example of the construction of weighted graphs G+ and G−.
The enumeration of the following regions will be employed in our proof. We start

with a pentagonal region whose northern, northeastern, southeastern, southern sides

2It is easy to see that if G admits a perfect matching, then G has an even number of vertices on `.
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Figure 4: (a) The region R4,2,3(2), (b) The region ∗∗R4,2,3(2); the lozenges with shaded
cores have weight 1/2. (c) How to apply Kuo condensation to an R-type region. (d)
The region R4,0,3(2) with forced lozenges.

have lengths x, y + z + 2a, y + z, x + y + z + 3a + 1, respectively, and the western side
follows a zigzag lattice path with length 2y + 2a + 2z. We remove a half triangle of
side 2a at level 2z from the western side. Denote by Rx,y,z(a) the resulting region (see
Figure 4(a)). We are also interested in a weighted variation ∗∗Rx,y,z(a) of Rx,y,z(a), that
are obtained by assigning weight 1/2 to lozenges along the western and northeastern
sides (see Figures 4(b)). Each tiling of ∗∗Rx,y,z(a) is weighted by 1/2n, where n is the
number of the latter weighted lozenges in the tiling.

Lemma 3.3. For any non-negative integers x, y, z, a

M(Rx,y,z(a)) = P1(x, y, z, a) (3.3)

and

M(∗∗Rx,y,z(a)) = P2(x, y, z, a), (3.4)
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where P1(x, y, z, a) and P2(x, y, z, a) are defined in (2.3) and (2.4), respectively.

Proof. We only proof here (3.3), as (3.4) can be obtained in an analogous manner.
We prove (3.3) by induction on z + a. The base cases are the situations when at least

one of the parameters y, z, a is equal to 0.
The case a = 0 was proved in [3, Proposition 3.1], and the case z = 0 was enumerated

in [4, Theorem 1.1]. Finally, if y = 0, our region has several lozenges that are forced to
be in any tilings. By removing these forced lozenges, we get back a region in the case
a = 0 (see the region restricted by the bold contour in Figure 4(c)).

For the induction step, we assume that y, z, a > 0 and that equation (3.3) holds for any
R-type regions in which the sum of the z- and a-parameters is strictly less then z+ a. We
apply Kuo condensation (Lemma 3.1) to the dual graph G of the region R obtained from
Rx,y,z(a) by adding a band of unit triangles along the side of the semi-triangular hole
(see the shaded band in Figure 4(d)). The four vertices u, v, w, s in Lemma 3.1 correspond
to the black triangles in the figure.

We consider the region corresponding to the graph G − {v}. The removal of the
v-triangle yields several forced lozenges on the top of the region. By removing these
forced lozenges, we obtain the region Rx+3,y,z(a − 1) (see the region restricted by the
bold contour in Figure 5(a)). Therefore,

M(G− {v}) = M(Rx+3,y,z(a− 1)). (3.5)

Similarly, by considering forced lozenges as indicated respectively in Figures 5(b)–(f), we
have: M(G− {u, s, w}) = M(Rx,y,z−1(a)), M(G− {u}) = M(Rx,y,z(a)),
M(G− {v, w, s}) = M(Rx+3,y,z−1(a− 1)), M(G− {w}) = M(Rx,y+1,z(a− 1)),
M(G− {u, v, s}) = M(Rx+3,y−1,z−1(a)).

Plugging the above six equalities into equation (3.1) in Lemma 3.1, we obtain the
following recurrence:

M(Rx+3,y,z(a− 1))M(Rx,y,z−1(a)) =M(Rx,y,z(a))M(Rx+3,y,z−1(a− 1))

+ M(Rx,y+1,z(a− 1))M(Rx+3,y−1,z−1(a)). (3.6)

One readily sees that all the regions in (3.6), except for Rx,y,z(a), have the sum of their
z- and a-parameters strictly less than z + a. Thus, their numbers of tilings are given by
the formula (2.3). Plugging in these formulas into (3.6) and performing some straight-
forward algebraic simplification, one gets M(Rx,y,z(a)) equal to P1(x, y, z, a).

Proof of Theorem 2.1. We only show here the proof of (2.7) and (2.8), the other formulas
can be proved similarly.

As the lozenge tilings of the defected hexagon H2t+1,y(2a, 2x) can be naturally iden-
tified with the matchings of its dual graph G, the number of cyclically symmetric tilings
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Figure 6: A symmetric embedding of Orb(G) in the plane and the subsequent appli-
cation of Ciucu’s Factorization Theorem.
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Figure 7: Orb(G)+ and Orb(G)− are the dual graphs of certain (possibly weighted)
R-type regions.
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of H2t+1,y(2a, 2x) is equal to the number of matchings of G, which are invariant under
the rotation r by 120◦.

Consider the action of the group generated by r on G, and let Orb(G) be the ‘orbit
graph’. The matchings of Orb(G) can be identified with the r-invariant matchings of G.
Figure 6(a) shows that the graph Orb(G) in the case t = 2, a = 1, b = 1, y = 1; moreover,
the orbit graph can be embedded in the plane so that it accepts a vertical symmetry axis
`. This allows us to apply Ciucu’s Factorization Theorem (Lemma 3.2) to Orb(G) as in
Figure 6(b) and obtain

CS(H2t+1,y(2a, 2x)) = M(Orb(G)) = 22t+4a+1 M(Orb(G)+)M(Orb(G)−), (3.7)

where the component graphs Orb(G)+ and Orb(G)− is obtained by applying the cutting
procedure as in Lemma 3.2.

The component graphs Orb(G)+ and Orb(G)− can be re-drawn as in Figure 7(a),
where the bold edges have weight 1/2. One readily sees that Orb(G)+ and Orb(G)− are
the dual graphs of the regionsR+ andR− in Figure 7(b). The regionR+, after removing
forced lozenges on the top, is exactly the region Rx+1,y,t−y(a) (see Figure 7(b)); and the
region R− is the region ∗∗Rx+1,y,t−y(a). Therefore, (2.7) follows from (3.7) and Lemma
3.3.

Next, we prove (2.8). Similar to the proof of (2.7), by applying Ciucu’s Factorization
Theorem to the dual graph G′ of the region H2t,y(2a, 2x), we obtain

CS(Hy,2t(2a, 2x)) = M(Orb(G′)) = 22t+4a M(Orb(G′)+)M(Orb(G′)−). (3.8)

The components graphs Orb(G′)+ and Orb(G′)− now correspond to the regions
Rx+1,y,t−y−1(a) and ∗∗Rx+1,y,t−y(a), respectively (illustrated in Figure 7(c)). Then (2.8)
follows from (3.8) and Lemma 3.3.
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