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Schur-positivity of Equitable Ribbons
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Abstract. We study the Schur-positivity poset and its conjectured maximal connected
elements, which are certain equitable ribbon Schur functions. In particular, we es-
tablish sufficient conditions for the difference of two ribbon Schur functions to be
Schur-positive, and we deduce necessary conditions for the difference of two equitable
ribbon Schur functions to be Schur-positive. We use this to confirm conjectures on
maximal and minimal equitable ribbon Schur functions for many cases, including all
chains.

Résumé. Nous étudions l’ensemble ordonné de Schur-positivité et ses éléments con-
nexes maximaux, qui sont conjecturés comme étant certaines fonctions de Schur de
ruban équitables. En particulier, nous établissons des conditions suffisantes pour que
la différence de deux fonctions de Schur de ruban soit Schur-positive et nous déduisons
aussi des conditions nécessaires pour que la différence de deux fonctions de Schur de
ruban équitables soit Schur-positive. Nous utilisons ceci pour confirmer des conjec-
tures portant sur les fonctions de Schur de ruban équitables maximales et minimales,
dans de nombreux cas et en particulier pour les chaines.

Keywords: maximal element, minimal element, ribbon Schur function, symmetric
function, Schur-positive, skew diagram

1 Introduction

Schur functions were introduced in 1901 and since then have been a central topic of
research in many areas. Schur functions are characters of irreducible representations of
the general linear group and they form the most interesting and important basis for the
algebra of symmetric functions. In this algebra, the structure constants for the product of
two Schur functions are the Littlewood–Richardson coefficients, which count particular
combinatorial objects and thus are nonnegative integers. Moreover, they appear in the
cup product expansion of Schubert classes in the cohomology ring of the Grassmannian
and they are intimately related to eigenvalues of Hermitian matrices.
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Littlewood–Richardson coefficients also arise in the expansion of skew Schur func-
tions, which are a generalization of Schur functions that are indexed by diagrams known
as skew diagrams. Because this is a nonnegative linear combination, we say that skew
Schur functions are Schur-positive and, returning to representation theory, consequently
arise as the Frobenius image of the corresponding direct sum of irreducible representa-
tions of the symmetric group.

In this extended abstract, we consider the question of when the difference of two
skew Schur functions is Schur-positive. It transpires that the subclass of connected skew
diagrams known as equitable ribbons is central to this study.

In Section 3 we establish two ribbon Schur function inequalities in Theorem 3.2 and in
Theorem 3.5, and we also explicitly determine cases where the Schur-positivity partially
ordered set of equitable ribbon Schur functions is a chain in Theorem 3.8. In Section
4 we determine powerful necessary conditions for order relations in Theorem 4.2 and
Theorem 4.10. We also identify families of incomparable elements in Corollary 4.14,
thereby verifying that the chains identified in Theorem 3.8 are in fact the only chains,
giving a characterization in this case. Finally, we identify a minimal element of the
Schur-positivity poset of equitable ribbon Schur functions in Theorem 4.15.

2 Background

Let N be a nonnegative integer. A tuple of positive integers α = α1 · · · αR is a composition
of N if α1 + · · · + αR = N. The reverse of α is the composition α∗ = αR · · · α1 formed
by reading the entries in reverse order. A composition α is a partition if α1 ≥ · · · ≥ αR.
Every composition α determines a unique partition λ(α) given by reordering its entries
in weakly decreasing order. We denote by ∅ the unique composition of 0.

The Young diagram associated to a partition λ is the left-justified array of cells with
λi cells in the i-th row. We use the English notation, in which rows are counted from
the top. Given two partitions λ = λ1 · · · λR and µ = µ1 · · · µS that satisfy λi ≥ µi for
every 1 ≤ i ≤ S ≤ R, their associated skew diagram λ/µ is the array of cells in the Young
diagram of λ but not in that of µ. We call the number of cells in a row (respectively
column) its row length (respectively column length). The skew diagram λ/µ is called a
ribbon if it is connected with no 2× 2 block; in other words, the adjacent rows overlap
in exactly one column. In this case, we associate the ribbon with a composition by
reading the row lengths from the top. We will often denote a ribbon by its associated
composition.

A ribbon is row-equitable if its row lengths take on at most two different values and
those values are consecutive. A ribbon is column-equitable if its column lengths take on
at most two different values and those values are consecutive. A ribbon is equitable if it
is both row- and column-equitable.
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Example 2.1. The tuple α = 22335 is a composition of 15 and determines the partition
λ = λ(α) = 53322 = α∗, whose Young diagram is to the left below. The marked cells
correspond to µ = 2211 and the remaining cells form the skew diagram λ/µ, which is
the ribbon 31212. This ribbon is not row-equitable because the row lengths take on the
three values 1, 2, and 3. It is not column-equitable because the column lengths take on
the values 1 and 3, which are not consecutive.

The Young diagram of the partition σ = 975 is to the right below. The marked cells
form the Young diagram of τ = 641 and the remaining cells form the skew diagram
σ/τ, which is the ribbon 334. This ribbon is equitable because the row lengths take on
the two consecutive values 3 and 4 and the column lengths take on the two consecutive
values 1 and 2.

× ×
× ×
×
×

× × × × × ×
× × × ×
×

A semistandard Young tableau (SSYT) of shape λ/µ is a filling

T : λ/µ→N = {1, 2, . . .}

of the cells of the skew diagram λ/µ so that the rows are weakly increasing (nondecreas-
ing) when read from left to right and the columns are strictly increasing when read from
top to bottom. To an SSYT T we associate the monomial xT in countably infinitely many
commuting variables x1, x2, . . . where the exponent of xi is the number of cells containing
i. The skew Schur function sλ/µ is then

sλ/µ = ∑
T an SSYT of shape λ/µ

xT.

When µ = ∅, so that λ/∅ = λ, we call sλ/µ a Schur function and denote it by sλ. When
λ/µ is a ribbon α, we call sλ/µ a ribbon Schur function and denote it by rα. Two skew
diagrams are said to be equivalent if their corresponding skew Schur functions are equal;
in what follows, we identify a skew diagram with its equivalence class.

Example 2.2. Below are the semistandard Young tableaux of shape 22/1 that are filled
with the integers at most 3 and the corresponding monomials in the skew Schur function
s22/1.

1
1 2

1
2 2

1
1 3

1
3 3

2
2 3

2
3 3

1
2 3

2
1 3

s22/1 = x2
1x2 + x1x2

2 + x2
1x3 + x1x2

3 + x2
2x3 + x2x2

3 + 2x1x2x3 + · · ·
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The Schur functions form a basis for the algebra of symmetric functions, and since
skew Schur functions also belong to this algebra, a skew Schur function sλ/µ expands
uniquely as

sλ/µ = ∑
ν

cλ
µ,νsν.

The Littlewood–Richardson coefficients cλ
µ,ν arising in this expansion are nonnegative inte-

gers, and so this expression is called Schur-positive: a nonnegative linear combination of
Schur functions. Given two skew diagrams λ/µ and σ/τ, we write that λ/µ ≤s σ/τ if
the difference

sσ/τ − sλ/µ

is Schur-positive. The relation ≤s is a partial order on equivalence classes of skew di-
agrams, and we denote by PN the Schur-positivity poset of those equivalence classes of
skew diagrams with N cells under the order relation ≤s.

Example 2.3. Below is P4.

It transpires that for every N the skew diagram consisting of N disconnected cells
is the unique maximal element [2]. Therefore, we turn our attention to addressing the
question of which elements are maximal among connected skew diagrams and focus our
attention further due to the following result.

Proposition 2.4 ([2, Propositions 3.3 and 3.5]). For any connected skew diagram λ/µ,
there is an equitable ribbon α for which

λ/µ ≤s α.
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Therefore, a maximal element among connected skew diagrams must be an equitable
ribbon.

Two skew diagrams are incomparable if they have a different number of cells. More-
over, two ribbons are incomparable if they have a different number of rows ([2, Lemma
3.8]). So we further narrow our search to equitable ribbons α with a fixed number N of
cells and a fixed number of rows; because the row lengths of α are among {a, a + 1} for
some a, this data determines the partition λ(α) of row lengths of any such ribbon. So
the objects of study are the following.

Definition 2.5. The subposet of PN consisting of ribbons with n rows of length a+ 1 and
m rows of length a is denoted by R((a + 1)nam).

From here on we will fix N, n, m, and a. Without loss of generality, m 6= 0.

Example 2.6. Below are R(3224) and R(3324).

Note that if a ribbon has all row lengths at least 2, then the column lengths will all be
1 or 2 so it will automatically be column-equitable. Therefore, R((a + 1)nam) is indeed
the subposet of equitable ribbons when a ≥ 2. However, quite surprisingly, many of
our results are independent of a and so we allow a = 1 despite such ribbons not being
equitable in general.

Recall that we identify skew diagrams corresponding to the same skew Schur func-
tion. While it remains conjectured when two skew Schur functions are equal, the case
for ribbons has been characterized ([1, Theorem 4.1]) and for equitable ribbons we have
the following result.
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Proposition 2.7. The equivalence class of an equitable ribbon contains only itself and its
reverse.

We now present the central conjectures that have guided our work.

Conjecture 2.8 ([2, Conjecture 1.3]). The posetR((a+ 1)nam) has the unique maximal el-
ement given by taking the cells whose interior or upper left corner intersect the diagonal
of the (n + m)× ((a− 1)(n + m) + n + 1) grid.

Example 2.9. The blue and green cells form the maximal elements of R(3124) and
R(3221). The green cells are included because their top left corners intersect the di-
agonal.

Conjecture 2.10 ([2, Conjecture 5.2]). The poset R((a + 1)nam) has the unique minimal
element

(a + 1)d
n
2 eam(a + 1)b

n
2 c.

One can confirm these conjectures in the partially ordered sets of Example 2.6.

3 Sufficient Conditions for Schur-positivity

We give two ribbon Schur function inequalities, which will help us to identify when
R((a + 1)nam) is a chain. These inequalities can be proved by calculating Littlewood–
Richardson coefficients.

Definition 3.1. Let α = α1 · · · αR be a composition with α1 ≥ 2 and 2 ≤ i ≤ R. Define

Mi(α) = (α1 − 1)α2 · · · αi−1(αi + 1)αi+1 · · · αR;

that is, Mi(α) is given by decrementing the first part and incrementing the i-th part of α.

Theorem 3.2. Let α = α1 · · · αR be a composition with α1 ≥ 2, 2 ≤ i ≤ R, and β = Mi(α).
If β1 ≥ β2 + · · ·+ βi − i + 1, then

α ≤s β.

Example 3.3. Let α = 7433 and i = 3. Then β = 6443 and since 6 ≥ 4 + 4− 3 + 1, we
have that 7433 ≤s 6443.
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Example 3.4. Fix a ≥ 1 and let α = (a + 1)a(a + 1)a and i = 2. Then β = a(a + 1)(a + 1)a
and since a ≥ (a + 1)− 2 + 1, we have that α ≤s β.

Theorem 3.5. Let α = α1 · · · αR be a composition with α1 ≥ 3, 2 ≤ i < j ≤ R, and
β = Mi(Mj(α)). If β1 ≥ β2 + · · ·+ β j − j + 1, then

rβ − rMi(α)
− rMj(α)

+ rα is Schur-positive.

Example 3.6. Let α = 8333, i = 2, and j = 3. Then β = 6443 and since 6 ≥ 4 + 4− 3 + 1,
we have that r6443 − r7343 − r7433 + r8333 is Schur-positive.

Remark 3.7. Theorem 3.5 further generalizes to a Schur-positive inclusion-exclusion-type
sum of ribbon Schur functions in which multiple rows have been affected. However, the
formulation in Theorem 3.5 was sufficient for the calculations we performed to deter-
mine the following order relations.

Theorem 3.8. The partially ordered set R((a + 1)nam) is a chain in the following cases.

R((a + 1)1am) : aa · · · aa(a + 1) ≤s aa · · · a(a + 1)a ≤s aa · · · (a + 1)aa ≤s · · ·
≤s ad

m
2 e(a + 1)ab

m
2 c

R((a + 1)na1) : (a + 1)d
n
2 ea(a + 1)b

n
2 c ≤s · · · ≤s (a + 1)(a + 1) · · · a(a + 1)(a + 1)

≤s (a + 1)(a + 1) · · · (a + 1)a(a + 1)
≤s (a + 1)(a + 1) · · · (a + 1)(a + 1)a

R((a + 1)2a2) : (a + 1)aa(a + 1) ≤s (a + 1)(a + 1)aa ≤s (a + 1)a(a + 1)a
≤s a(a + 1)(a + 1)a

R((a + 1)2a3) : (a + 1)aaa(a + 1) ≤s (a + 1)(a + 1)aaa ≤s (a + 1)aa(a + 1)a
≤s (a + 1)a(a + 1)aa ≤s a(a + 1)(a + 1)aa ≤s a(a + 1)a(a + 1)a

We will see in Section 4 that these are the only cases where R((a + 1)nam) is a chain.
One can verify that Conjectures 2.8 and 2.10 hold for the partially ordered sets above
and therefore for all cases where R((a + 1)nam) is a chain.

4 Necessary Conditions for Schur-positivity

4.1 Short Ends and Larger Ribbons

Theorem 3.2 suggests that a larger ribbon in PN tends to have a shorter top row. Recall-
ing that ribbons are equivalent under reversal, we suspect a larger ribbon also tends to
have a shorter bottom row. This behaviour is exhibited in Example 2.6 and Conjecture
2.10. We explicitly formalize this notion in R((a + 1)nam).
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Definition 4.1. A ribbon α = α1 · · · αR ∈ R((a + 1)nam) has two short ends if α1 = αR = a,
one short end if either α1 = a and αR = a + 1, or α1 = a + 1 and αR = a; and zero short ends
if α1 = αR = a + 1.

We can now state an easy-to-apply necessary condition, whose proof involves ana-
lyzing particular Littlewood–Richardson coefficients.

Theorem 4.2. Let α, β ∈ R((a + 1)nam). If α ≥s β, then

α has at least as many short ends as β.

Example 4.3. Let α = 4334334343 and β = 3444333343. Since α has one short end and β

has two short ends, we immediately conclude that α �s β.

Example 4.4. In the following chain, note that the number of short ends is weakly in-
creasing as the ribbons increase.

43334 ≤s 44333 ≤s 43343 ≤s 43433 ≤s 34433 ≤s 34343

Corollary 4.5. The ribbon a(a + 1) · · · (a + 1)a is a maximal element of R((a + 1)na2).
The ribbon (a + 1)a · · · a(a + 1) is a minimal element of R((a + 1)2am).

This follows because the indicated ribbons are respectively the unique ones with the
maximum and minimum numbers of short ends.

As a converse, we may ask whether a ribbon with strictly more short ends must be
larger; we will see in Corollary 4.14 that this statement fails in general. However, we do
have the following partial converse that is reminiscent of Proposition 2.4.

Proposition 4.6. Suppose that m ≥ 2. For any α ∈ R((a + 1)nam), there is a β ∈ R((a +
1)nam) with two short ends for which

α ≤s β.

Therefore, a maximal element of R((a + 1)nam) must have two short ends.

Note that R((a + 1)na1) is a chain and there the full converse to Theorem 4.2 holds.

4.2 Small Spacing and Larger Ribbons

We now come to our most powerful necessary condition. The conjectured maximal
element of R((a + 1)nan+1) is

a(a + 1)a(a + 1)a · · · (a + 1)a(a + 1)a;

this suggests that we want to avoid having adjacent rows of length (a + 1). Similar con-
siderations suggest minimizing the number of such rows separated by only one a, then
those separated by two, and so on. Indeed, we prove all of these thresholds simultane-
ously. We first prepare some notation that repackages this data.
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Definition 4.7. Write a composition α ∈ R((a + 1)nam) as

α = ap1(α)(a + 1)ap2(α)(a + 1) · · · (a + 1)apn+1(α),

where pi(α) ≥ 0. Then we define the profile of α as p(α) = p1(α) · · · pn+1(α) and the
quasi-profile of α as q(α) = q0(α)q1(α) · · · where qj(α) = |{i : pi(α) = j}|; that is, qj(α) is
the number of j’s occurring in p(α).

Remark 4.8. As it is defined, the quasi-profile q(α) has an infinite tail of zeroes. We omit
them for brevity.

Example 4.9. Let a = 3 and

α = 4 33 4 4 3 4 333 4 333 4 333.

Then p(α) = 0201333 and q(α) = 2113.

For tuples δ = δ0δ1 · · · and ε = ε0ε1 · · · , we denote by δ ≤lex ε the lexicographic order;
that is, either δ = ε or δi < εi at the smallest index i at which they differ.

Theorem 4.10. Let α, β ∈ R((a + 1)nam)). If α ≥s β, then

q(α) ≤lex q(β).

Informally, a larger ribbon has its long rows more evenly spread out.

The proof involves a number of tools, including coarsenings of integer compositions,
the complete homogeneous symmetric function basis, the Jacobi–Trudi determinantal
identities, and an extensive enumeration.

Example 4.11. Let

α = 33 4 3 4 3333333 4 33 and β = 333 4 333 4 333 4 333.

Then p(α) = 2172, p(β) = 3333, q(α) = 01200001, and q(β) = 0004. Since q(β) <lex q(α),
we immediately conclude that α �s β.

Example 4.12. Returning to Example 4.4,

43334 ≤s 44333 ≤s 43343 ≤s 43433 ≤s 34433 ≤s 34343,

the profiles from left to right are 030, 003, 021, 012, 102, and 111, and so the quasi-
profiles are 2001, 2001, 111, 111, 111, and 03, which are indeed weakly decreasing in
lexicographic order as the ribbons increase.
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Corollary 4.13. Suppose that m = d(n + 1) for some integer d. Then the ribbon

ad(a + 1)ad(a + 1) · · · ad(a + 1)ad

is a maximal element of R((a + 1)nam).

This follows from Theorem 4.10 because the indicated ribbon is the unique element
of R((a + 1)nam) with lexicographically minimal quasi-profile. This corollary confirms
Conjecture 2.8 whenever m is a multiple of (n + 1).

Corollary 4.14. For any k ≥ 0, the ribbons

a(a + 1)(a + 1)aaaak and (a + 1)aa(a + 1)aaak

are incomparable. For any γ consisting of a’s and (a + 1)’s, the ribbons

aa(a + 1)(a + 1)(a + 1)γ and (a + 1)a(a + 1)a(a + 1)γ

are incomparable. It follows that the chains identified in Theorem 3.8 are a complete
classification of all cases in which R((a + 1)nam) is a chain.

In each case, the result follows from applying Theorem 4.2 and Theorem 4.10.

Theorem 4.10, along with extending the techniques of its proof, are instrumental in
proving the following direction of Conjecture 2.10.

Theorem 4.15. The ribbon
(a + 1)d

n
2 eam(a + 1)b

n
2 c

is a minimal element of R((a + 1)nam).

In further studying R((a + 1)nam), our focus turns to ribbons α and β for which
q(α) = q(β); that is, p(α) and p(β) are permutations of each other. The following result
is an analogue of Theorem 4.2 applied to these.

Theorem 4.16. Suppose that α, β ∈ R((a + 1)nam) satisfy q(α) = q(β). By equivalence
under reversal, assume without loss of generality that p1(α) ≤ pn+1(α) and p1(β) ≤
pn+1(β). If α ≥s β, then

p1(α) · pn+1(α) ≥lex p1(β) · pn+1(β).

Example 4.17. Let

α = 33 4 333 4 333 4 333 4 33333 and β = 333 4 33 4 33333 4 333 4 333.

Then p(α) = 23335 and p(β) = 32533 and indeed q(α) = q(β) = 001301. Since

p1(α) · p5(α) = 25 <lex 33 = p1(β) · p5(β),

we immediately conclude that α �s β.
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5 Future Directions

Theorem 4.10 suggests that a larger ribbon inR((a+ 1)nam) has its rows of length (a+ 1)
more evenly spaced out. We extend our notion of equitability to refine this aspect of
balancedness. This perspective may be useful in tackling Conjecture 2.8.

Definition 5.1. A tuple ε = ε1 · · · εR of nonnegative integers is equitable if the εi take on
at most two distinct values {b, b + 1} where b ≥ 0. Writing an equitable ε as

ε = bp1(ε)(b + 1)bp2(ε)(b + 1) · · · (b + 1)bpn+1(ε),

where pi(ε) ≥ 0, we define p(ε) = p1(ε) · · · pn+1(ε). We may also write an equitable ε

as
ε = (b + 1) p̂1(ε)b(b + 1) p̂2(ε)b · · · b(b + 1) p̂m+1(ε),

where p̂i(ε) ≥ 0, we define p̂(ε) = p̂1(ε) · · · p̂m+1(ε).

Example 5.2. Let
ε = 33443343334.

Then p(ε) = 20230 and p̂(ε) = 00201001.

We now define a sequence of operations to perform on a composition α. The number
of operations that can be performed represents the degree of equitability of α.

Definition 5.3. Let α be an equitable ribbon. Define p(1)(α) = p(α). Then for k ≥ 2, if
p(k−1)(α) is equitable and has as few short ends as possible given λ(p(k−1)(α)), define

p(k)(α) = p̂(p(k−1)(α)).

Now α is k-equitable if p(k)(α) is defined. It is infinitely equitable if it is k-equitable for all
k. The degree of equitability eq(α) is the largest k for which α is k-equitable (or ∞ if α is
infinitely equitable).

Example 5.4. Let
α = 3333 4 33 4 33 4 33 4 333.

Then p(1)(α) = p(α) = 42223. This is not equitable so we stop here and eq(α) = 1.

Let
β = 333 4 33 4 33 4 333 4 333.

Then p(1)(β) = p(β) = 32233. This is equitable and has as few short ends as possible.
So we define p(2)(β) = p̂(32233) = 102. However, this is not equitable, so we stop here
and eq(β) = 2.
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Let
γ = 333 4 333 4 33 4 333 4 333 4 333 4 33 4 333 4 333.

Then p(1)(γ) = 332333233, p(2)(γ) = 232, but while this is equitable it does not have as
few short ends as possible, so eq(γ) = 2.

Let
δ = 333 4 333 4 33 4 333 4 333 4 33 4 333 4 333 4 333.

Then p(1)(δ) = 332332333, p(2)(δ) = 223, and p(3)(δ) = 001, as is every subsequent
p(k)(δ). Therefore δ is infinitely equitable.

The following result illustrates why we make this definition.

Theorem 5.5. The conjectured maximal element ofR((a+ 1)nam) is the unique infinitely
equitable element of R((a + 1)nam).

Therefore, we conclude with a stronger reformulation of the maximal element con-
jecture.

Conjecture 5.6. Let α, β ∈ R((a + 1)nam) and suppose that α ≥s β. Then

eq(α) ≥ eq(β).

The case where eq(β) = 1 is simply a restatement of Proposition 2.4. The case where
eq(β) = 2 follows from Theorems 4.10 and 4.16.
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