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On a variant of Lien
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Abstract. We introduce a new Sn-module Lie(2)n which interpolates between the rep-
resentation Lien of the symmetric group Sn afforded by the free Lie algebra, and the
module Conjn of the conjugacy action of Sn on n-cycles. Using plethystic identities
from our previous work, we establish a decomposition of the regular representation
as a sum of exterior powers of the modules Lie(2)n . By contrast, the classical result of
Thrall decomposes the regular representation into a sum of symmetric powers of the
representation Lien. We show that nearly every known property of Lien in the literature
appears to have a counterpart for Lie(2)n , suggesting connections to the cohomology of
configuration spaces and other areas. The construction of Lie(2)n can be generalised to
a module LieS

n indexed by subsets S of distinct primes. This in turn yields new Schur-
positivity results for multiplicity-free sums of power sums, extending our previous
results.

Keywords: plethysm, Schur positivity, symmetric powers, exterior powers, power-sum
symmetric functions, configuration space, braid arrangement

1 Introduction

The original motivation for this paper was the investigation begun in [11] on the positiv-
ity of the row sums in the character table of Sn. In the language of symmetric functions,
one asks for what subsets T of partitions of n the sum of power sums ∑µ∈T pµ is the
Frobenius characteristic of a true representation of Sn, i.e. a symmetric function with
nonnegative integer coefficients in the basis of Schur functions. A method for generat-
ing such classes of subsets T was presented in [11]. Section 2 reviews the key theorems
of [11]. We describe some of our new Schur-positivity results in Section 3.

Our main focus here, however, is the unexpected discovery of a curious variant of
Lien, the representation of Sn on the multilinear component of the free Lie algebra with
n generators. The theorem of Poincaré–Birkhoff–Witt states that the universal envelop-
ing algebra of the free Lie algebra is the full tensor algebra. By Schur–Weyl duality, this
is equivalent to Thrall’s decomposition of the regular representation into a sum of sym-
metric powers of the representations Lien. By contrast, here we obtain a decomposition
of the regular representation as a sum of exterior powers of modules (see Theorem 4.1).
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The key ingredient is our variant of Lien, an Sn-module that we denote by Lie(2)n , which
turns out to possess remarkable properties similar to those of Lien. We show that Lie(2)n
admits a filtration analogous to the one arising from the derived series of the free Lie
algebra. Together with the plethystic identities derived in Section 2, they indicate the
possibility of an underlying algebra structure for Lie(2)n involving an acyclic complex.
The striking similarity of our results with the Whitney homology of the partition lattice
also suggests a cohomological context similar to the configuration space of the braid
arrangement. There is an interesting action on derangements arising from Lie(2)n as well;
we show that Lie(2)n gives rise to a new decomposition of the homology of the complex
of injective words studied by Reiner and Webb [6], one that is different from the Hodge
decomposition of Hanlon and Hersh [2]. These results are collected in Section 4.

2 Preliminaries

We follow [5] and [10] for notation regarding symmetric functions. In particular, hn,
en and pn denote respectively the complete homogeneous, elementary and power-sum
symmetric functions. If ch is the Frobenius characteristic map from the representation
ring of the symmetric group Sn to the ring of symmetric functions with real coefficients,
then hn = ch(1Sn) is the characteristic of the trivial representation, and en = ch(sgnSn

)
is the characteristic of the sign representation of Sn. If µ is a partition of n then define
pµ = ∏i pµi ; hµ and eµ are defined multiplicatively in analogous fashion. As in [5], the
Schur function sµ indexed by the partition µ is the Frobenius characteristic of the Sn-
irreducible indexed by µ. Finally, ω is the involution on the ring of symmetric functions
which takes hn to en, corresponding to tensoring with the sign representation.

If q and r are characteristics of representations of Sm and Sn respectively, they yield
a representation of the wreath product Sm[Sn] in a natural way, with the property
that when this representation is induced up to Smn, its Frobenius characteristic is the
plethysm q[r]. For more background about this operation, see [5].

Define

H(t) = ∑
i≥0

tihi, E(t) = ∑
i≥0

tiei; H = ∑
i≥0

hi, E = ∑
i≥0

ei. (2.1)

Now let {qi}i≥1 be a sequence of symmetric functions, each qi homogeneous of degree
i. Let Q = ∑i≥1 qi, Q(t) = ∑n≥1 tnqn. For each partition λ of n ≥ 1 with mi(λ) = mi
parts equal to i, let |λ| = n = ∑i imi be the size of λ, and `(λ) = ∑i mi(λ) = ∑i mi be the
length (total number of parts) of λ.

Define Hλ[Q] = ∏i:mi(λ)≥1 hmi [qi] and Eλ[Q] = ∏i:mi(λ)≥1 emi [qi].
For the empty partition (of zero) we define H∅[Q] = 1 = E∅[Q] = H±∅ [Q] = E±∅ [Q].
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Consider the generating functions H[Q](t) and E[Q](t). With the convention that Par,
the set of all partitions of nonnegative integers, includes the unique empty partition of
zero, by the preceding observations and standard properties of plethysm [5] we have

H[Q](t) = ∑
λ∈Par

t|λ|Hλ[Q], and E[Q](t) = ∑
λ∈Par

t|λ|Eλ[Q];

Also write Qalt(t) for the alternating sum ∑n≥1(−1)i−1tiqi = tq1 − t2q2 + t3q3 − . . . .
Let ψ(n) be any real-valued function defined on the positive integers. Define sym-

metric functions fn by

fn =
1
n ∑

d|n
ψ(d)p

n
d
d , so that ω( fn) =

1
n ∑

d|n
ψ(d)(−1)n− n

d p
n
d
d . (2.2)

Note that, when ψ(1) is a positive integer, this makes fn the Frobenius characteristic of
a possibly virtual Sn-module whose dimension is (n− 1)!ψ(1).

Also define the associated polynomial in one variable, t, by

fn(t) =
1
n ∑

d|n
ψ(d)t

n
d . (2.3)

The following theorem regarding the sequence of symmetric functions fn is a key
element in our work. For the purposes of this abstract we have taken v = 1 in the
original statement of [11, Theorem 3.2].

Theorem 2.1 ([11, Theorem 3.2]). Let F = ∑n≥1 fn, H = ∑n≥0 hn and E = ∑n≥0 en. We have
the following plethystic generating functions:

(Symmetric powers) H[F](t) = ∑
λ∈Par

t|λ|Hλ[F] = ∏
m≥1

(1− tm pm)
− fm(1) (2.4)

(Exterior powers) E[F](t) = ∑
λ∈Par

t|λ|Eλ[F] = ∏
m≥1

(1− tm pm)
fm(−1) (2.5)

(Alternating exterior powers) ∑λ∈Par t|λ|(−1)|λ|−`(λ)ω(Eλ[F])

= ∑
λ∈Par

t|λ|Hλ[ω(F)alt] = H[ω(F)alt](t) = ∏
m≥1

(1 + tm pm)
fm(1) (2.6)

(Alternating symmetric powers) ∑λ∈Par t|λ|(−1)|λ|−`(λ)ω(Hλ[F])

= ∑
λ∈Par

t|λ|Eλ[ω(F)alt] = E[ω(F)alt](t) = ∏
m≥1

(1 + tm pm)
− fm(−1) (2.7)

We also have, with F, H, and E as defined above, the following generating functions
for the symmetric and exterior powers on conjugacy classes of derangements.
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Theorem 2.2 ([11, Proposition 2.3, Corollary 2.4]). Assume that ψ(1) = 1 in the definition
(2.3) of fn, i.e. f1 = p1.

H[∑n≥2 fn](t) =
(
∑n≥0 tn(−1)nen

)
∏m≥1(1− tm pm)− fm(1)

E[∑n≥2 fn](t) =
(
∑n≥0 tn(−1)nhn

)
∏m≥1(1− tm pm) fm(−1)

3 A class of symmetric functions indexed by subsets of
primes

Define Lien to be fn with the choice ψ(d) = µ(d) where µ is the number-theoretic
Möbius function, and Conjn to be fn with the choice ψ(d) = φ(d) where φ is Euler’s
phi-function. It is well known that Lien is the Frobenius characteristic of the action of Sn
on the multilinear component of the free Lie algebra, and also of the induced represen-
tation exp(2iπ

n )
xSn

Cn
, where Cn is the cyclic group generated by an n-cycle in Sn (see [7] for

background and history.) Likewise Conjn is the Frobenius characteristic of the induced
representation 1

xSn
Cn

, i.e. the conjugacy action of Sn on the class of n-cycles.

Definition 3.1. Let S = {q1, . . . , qk, . . .} be a set of distinct primes. Every positive integer
n factors uniquely into n = Qn`n where Qn = ∏q∈S qaq(n) for nonnegative integers aq(n),
and (`n, q) = 1 for all q ∈ S. We associate to the set S two representations, defined via
their Frobenius characteristics, as follows. For each n ≥ 1 :

LS
n =

1
n ∑

d|n
ψ(d)p

n
d
d with ψ(d) = φ(Qd)µ(`d), and (3.1)

LS̄
n =

1
n ∑

d|n
ψ̄(d)p

n
d
d with ψ̄(d) = φ(`d)µ(Qd). (3.2)

Let P denote the set of all primes. Clearly L∅
n = Lien = LP̄n and L∅̄

n = Conjn = LPn .
More generally, we have:

Theorem 3.2. LS
n and LS̄

n are Schur-positive symmetric functions. If S = {q} where q is prime,
and k is the largest power of q which divides n, and Cn is the cyclic subgroup of Sn generated by
an n-cycle, then LS

n = Lie(q)n is the Frobenius characteristic of the induced representation

exp(2iπ
n · qk)

xSn
Cn

.

Let P(S) denote the set of positive integers whose prime divisors constitute a subset
of the set of primes S; note that 1 ∈ P(S). Thus P(S) = {n ≥ 1 : q|n and q prime =⇒ q ∈
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S}. Similarly let P(S̄) be the set of positive integers whose set of prime divisors is disjoint
from S; note that P(S̄) is precisely the set of integers that are relatively prime to every
prime in S : P(S̄) = {n ≥ 1 : q is a prime factor of n =⇒ q /∈ S}. Also P(S)∩ P(S̄) = {1}.

Using a technical calculation of the values LS
n(1) and LS̄

n(1), we now obtain, from
equations (2.4) and (2.6) of Theorem 2.1 applied to the sequences of symmetric functions
fn = LS

n and fn = LS̄
n :

Theorem 3.3. Let LS = ∑n≥1 LS
n, LS̄ = ∑n≥1 LS̄

n. Let DPar denote the subset of all partitions
Par consisting of partitions with distinct parts, and the empty partition. Then one has the
generating functions

H[LS](t) = ∏
n∈P(S)

(1− tn pn)
−1 = ∑

λ∈Par:λi∈P(S)
t|λ|pλ; (3.3)

H[ω(LS)alt](t) = ∏
n∈P(S)

(1 + tn pn) = ∑
λ∈DPar:λi∈P(S)

t|λ|pλ; (3.4)

H[LS̄](t) = ∏
n∈P(S̄)

(1− tn pn)
−1 = ∑

λ∈Par:λi∈P(S̄)
t|λ|pλ; (3.5)

H[ω(LS̄)alt](t) = ∏
n∈P(S̄)

(1 + tn pn) = ∑
λ∈DPar:λi∈P(S̄)

t|λ|pλ; (3.6)

When S = ∅, equations (3.3), (3.4) and (3.5) reduce to known formulas of Thrall [14],
Cadogan [1], and Solomon [9], respectively. See also [10].

(Thrall) H[∑
n≥1

Lien](t) = (1− tp1)
−1 ⇐⇒ ∑

λ`n
Hλ[Lie] = pn

1 , n ≥ 1. (3.7)

(Cadogan) H[∑
n≥1

(−1)n−1ω(Lien)](t) = 1 + tp1 ⇐⇒ ∑
λ`n

Hλ[ω(Lie)alt] = 0, n ≥ 1.

(3.8)

(Solomon) H[∑
n≥1

Conjn](t) = ∏
n≥1

(1− tn pn)
−1 ⇐⇒ ∑

λ`n
Hλ[Conj] = ∑

λ`n
pλ, n ≥ 1.

(3.9)
In similar fashion, by computing the values of LS

n(−1) and LS̄
n(−1) and invoking

equations (2.5) and (2.7) of Theorem 2.1, we obtain the exterior power analogue of The-
orem 3.3.

Theorem 3.4. Let S be a set of primes, and let LS
n, LS̄

n be as defined in Theorem 3.3. Then

E[LS(t)] =

{
∏n∈P(S)(1− tn pn)−1 ∏n even, n

2∈P(S)(1− tn pn), 2 /∈ S

∏n odd, n∈P(S)(1− tn pn)−1, 2 ∈ S.
(3.10)
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(Note n is necessarily odd in the first product of the case 2 /∈ S.)

ω(E[LS(t)]) = ∏
n∈P(S)

(1− tn pn)
−1 ∏

n even, n
2∈P(S)

(1 + tn pn), provided 2 /∈ S (3.11)

E[ω(LS)alt(t)] =

{
∏n∈P(S)(1 + tn pn)∏n even, n

2∈P(S)(1 + tn pn)−1, 2 /∈ S

∏n odd, n∈P(S)(1 + tn pn), 2 ∈ S.
(3.12)

E[LS̄(t)] =

{
∏n odd, n∈P(S̄)(1− tn pn)−1, 2 /∈ S

∏n∈P(S̄)(1− tn pn)−1 ∏n even, n
2∈P(S̄)(1− tn pn), 2 ∈ S.

(3.13)

(Note n is necessarily odd in the first product of the case 2 ∈ S, as is n
2 in the second product.)

ω(E[LS̄(t)]) = ∏
n∈P(S̄)

(1− tn pn)
−1 ∏

n even, n
2∈P(S̄)

(1 + tn pn), provided 2 ∈ S. (3.14)

E[ω(LS̄)alt(t)] =

{
∏n odd, n∈P(S̄)(1 + tn pn), 2 /∈ S

∏n∈P(S̄)(1 + tn pn)∏n even, n
2∈P(S̄)(1 + tn pn)−1, 2 ∈ S.

(3.15)

For any subset Tn of partitions of n, denote by PTn the sum of power-sum symmet-
ric functions ∑λ∈Tn pλ. Since LS

n and LS̄
n are Schur-positive, so are their symmetric and

exterior powers. Hence we deduce the following from the preceding two theorems.

Theorem 3.5. For a fixed set of primes S, the sums PTn are Schur-positive for the following
choices of Tn:

1. Tn = {λ ` n : λi ∈ P(S)};

2. If 2 ∈ S, Tn = {λ ` n : λi odd, λi ∈ P(S)};

3. If 2 /∈ S, Tn consists of all partitions λ of n such that the parts are (necessarily odd and) in
P(S), or the parts are twice an odd number in P(S), the even parts occurring at most once.

4 The case q = 2 : A comparison of Lien and Lie(2)n

In this section we will describe some remarkable properties of the Sn-module Lie(2)n .
Theorem 3.2 implies that Lie(2)2 = h2 and Lie(2)n = Lien if n is odd. We use Theorems
2.1 and 2.2, and plethystic computations with the identities of Theorems 3.3 and 3.4, to
show that the representation Lie(2)n has properties that curiously parallel those of Lien.
We write Lie for the sum of symmetric functions ∑n≥1 Lien and Lie(2) for the sum of

symmetric functions ∑n≥1 Lie(2)n .
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Theorem 4.1.
∑
λ`n

Hλ[Lie] = pn
1 ; ∑

λ`n
Eλ[Lie(2)] = pn

1 ; (4.1)

H[∑
n≥1

(−1)n−1ω(Lien)] = 1 + p1; E[∑
n≥1

(−1)n−1ω(Lie(2)n )] = 1 + p1 (4.2)

If n ≥ 2 : ∑
λ`n

(−1)n−`(λ)Eλ[Lie] = 0; ∑
λ`n

(−1)n−`(λ)Hλ[Lie(2)] = 0; (4.3)

If n ≥ 2 : ∑
λ`n

Eλ[Lie] = 2e2pn−2
1 ; ∑

λ`n
Hλ[Lie(2)] = ∑

λ`n,λi=2ai

pλ. (4.4)

We now discuss the implications of Theorem 4.1.
In (4.1) of the preceding theorem, the second equation gives a decomposition of the

regular representation of Sn as a sum of exterior powers of induced modules, whereas
the first equation is precisely Thrall’s theorem [14], restated in (3.7), that the regular
representation of Sn decomposes into a sum of symmetrised Lie modules.

In (4.2), the first equation contains the known result of Cadogan [1] (see (3.8)) giving
the plethystic inverse of the homogeneous symmetric functions ∑n≥1 hn, and the sec-
ond equation is a new result, giving the plethystic inverse of the elementary symmetric
functions ∑n≥1 en.

The equations in (4.3) and (4.4) are particularly significant. It is well known that the
degree n term in en−r[Lie] is the Frobenius characteristic of the rth Whitney homology
WHr(Πn) of the partition lattice Πn, tensored with the sign (see [12, Remark 1.8.1]), and
hence of the sign-twisted rth cohomology of the pure configuration space arising as the
complement of the braid arrangement. The rth Whitney homology also coincides as an
Sn-module with the rth cohomology of the pure braid group, see [3]. The first equation
in (4.3) therefore restates the acyclicity of Whitney homology for the partition lattice [12].
Writing WHodd(Πn) for ⊕n/2

k=0WH2k+1(Πn), and WHeven(Πn) for ⊕n/2
k=0WH2k(Πn), we have

the isomorphism of Sn-modules

WHodd(Πn) 'WHeven(Πn). (4.5)

Now consider (4.4). Denote by WH(Πn) the sum of all the graded pieces of the
Whitney homology of Πn. The first equation in (4.4) says (recall that we have tensored
with the sign representation) that WH(Πn) = 2h2pn−2

1 , a result originally due to Lehrer
[4, Proposition 5.6 (i)]. We may rewrite this in our notation as

ch WH(Πn) = ch (WHodd(Πn)⊕WHeven(Πn)) = 2h2pn−2
1 . (4.6)

(Note that it then follows that ch WH(Πn+1) = p1 · ch WH(Πn), n ≥ 2. )
By combining this with (4.5), we obtain

ch (WHodd(Πn)) = ch (WHeven(Πn)) = h2pn−2
1 , (4.7)
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yielding the decomposition of the regular representation which appears in the recent
paper [3] of Hyde and Lagarias:

ch WHodd(Πn) + ω(ch WHodd(Πn)) =
n−1

∑
r=0

ωr(ch WHr(Πn)) = pn
1 . (4.8)

We will now describe analogous results arising from the representations Lie(2)n . Define
a new module Vhr(n) whose Frobenius characteristic is the degree n term in hn−r[Lie(2)].
By Theorem 3.2, this is a true Sn-module. The second equation of (4.3) can now be
interpreted as an acyclicity statement:

Vhn(n)−Vhn−1(n) + Vhn−2(n)− . . . + (−1)rVhr(n) + . . . = 0,

and hence, in analogy with (4.5), letting Vhodd(n) = ⊕n/2
k=0Vh2k+1 and Vheven = ⊕n/2

k=0Vh2k :

Vhodd(n) ' Vheven(n). (4.9)

The second equation in (4.4) gives, similarly,

ch (Vhodd(n)⊕Vheven(n)) = ∑
λ`n;λi=2ai

pλ (4.10)

Hence, combining this with (4.9) we have established the following results, showing that
the modules Vhr(n) share the same features as the Whitney homology modules and
hence of the cohomology of the configuration space for the braid arrangement:

Theorem 4.2. The following symmetric functions are Schur-positive with integer coefficients:

ch (Vhodd(n)) = ch (Vheven(n)) =
1
2 ∑

λ`n;λi=2ai

pλ (4.11)

ch Vh(n) = ch (Vhodd(n)) + ch (Vheven(n)) = ∑
λ`n;λi=2ai

pλ (4.12)

ch Vhodd(n) + ω(ch Vhodd(n)) = ∑
λ`n;n−`(λ)even;λi=2ai

pλ (4.13)

Also, ch Vh(2n + 1) = p1 · ch Vh(2n).

We now have at least four decompositions of the regular representation, namely the
two in (4.1) and two from (4.8) (tensoring the latter with the sign representation gives
two), into sums of modules indexed by the conjugacy classes, each module obtained by
inducing a linear character from a centraliser of Sn. We write these out for S4.
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Example 4.3. The first two decompositions are from (4.1) of Theorem 4.1; the third is
from (4.8). In all cases, of course, the four pieces each have the same dimension, equal
to the size of the corresponding conjugacy class, namely, 1, 6, 11, 6. That these four de-
compositions are all distinct is clear, since each has a distinguishing feature. Both copies
of the irreducible for the partition (22) appear only in one piece for [PBW], while the
natural representation is a submodule of one piece only in the third.

PBW: h4[Lie] = (4); h3[Lie] = (3, 1) + (2, 12);

h2[Lie] = (3, 1) + 2(22) + (2, 12) + (14); h1[Lie] = Lie4 = (3, 1) + (2, 12).

Ext. Lie(2): e4[Lie(2)] = (14); e3[Lie(2)] = (3, 1) + (2, 12);

e2[Lie(2)] = 2(3, 1) + (22) + (2, 12); e1[Lie(2)] = Lie(2)4 = (4) + (22) + (2, 12).

Whitney: ω(WH0) = (14); WH1 = (4) + (3, 1) + (22);

ω(WH2) = (3, 1) + 2(2, 12) + (22); WH3 = Lie4 = (3, 1) + (2, 12).

There is yet another analogy between WHk(Πn) and the modules Vk(n) arising from
the identities of Theorem 4.1. In [12], it was shown that the Whitney homology of the
partition lattice (and more generally of any Cohen–Macaulay poset) has the following
important property:

Theorem 4.4 ([12, Proposition 1.9]). For 0 ≤ k ≤ n− 1, the truncated alternating sum

WHk(Πn)−WHk−1(Πn) + . . . + (−1)kWH0(Πn)

is a true Sn-module, and is isomorphic as an Sn-module to the unique nonvanishing homology of
the rank-selected subposet of Πn obtained by selecting the first k ranks. Equivalently, the degree
n term in the plethysm

(en−k − en−k+1 + . . . + (−1)ken)[Lie]

is Schur-positive. In particular, the kth Whitney homology decomposes into a sum of two Sn-
modules as follows:

ch WHk(Πn) = ω
(
en−k[Lie]|deg n

)
= βn([1, k]) + βn([1, k− 1]),

where βn([1, k]) denotes the Frobenius characteristic of this rank-selected homology (of the first k
ranks of Πn) as in [12, Proposition 1.9].

We conjecture that a similar decomposition exists for the Sn-modules Vhk(n). More
precisely, we have
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Conjecture 4.5 (Verified up to n = 7). Let Vhk(n) be the Sn-module whose Frobenius charac-
teristic is the degree n term in the plethysm hn−k[Lie(2)], for k = 0, 1, . . . , n− 1. Then for 0 ≤
k ≤ n− 1, the truncated alternating sum Vhk(n)− Vhk−1(n) + . . . + (−1)kVh0(n) = Uk(n)
is a true Sn-module, and hence one has the Sn-module decomposition

ch Vhk(n) = hn−k[Lie(2)]|deg n = ch Uk(n) + ch Uk−1(n).

(Here we define U−1(n) to be the zero module and U0(n) to be the trivial Sn-module.) Equiva-
lently, the degree n term in the plethysm

(hn−k − hn−k+1 + . . . + (−1)khn)[Lie(2)]

is Schur-positive for 0 ≤ k ≤ n− 1.

This conjecture is easily verified for 0 ≤ k ≤ 2; in that case there are simple formulas
for ch Vhk(n).

Recent work of Hyde and Lagarias [3] rediscovers the representations βn([1, k]) in a
cohomological setting. Our results suggest the existence of a similar topological con-
text in which the modules Vhk(n) and Uk(n) appear. If X is any topological space,
then the ordered configuration space PCon fn(X) of n distinct points in X is defined
to be the set {(x1, . . . , xn) : i 6= j =⇒ xi 6= xj}. The symmetric group Sn acts on
PCon fn(X) by permuting coordinates, and hence induces an action on the cohomol-
ogy Hk(PCon fn(X), Q), k ≥ 0. The following theorem of [13] recasts the “Lie” identities
of Theorem 4.1 in the context of X = Rd:

Theorem 4.6 ([13, Theorem 4.4]). The Frobenius characteristic of Hk(PCon fn(R2), Q) is given
by ω

(
en−k[Lie]|deg n

)
.

The Frobenius characteristic of H2k(PCon fn(R3), Q) is given by hn−k[Lie]|deg n.

Question 4.7. Is there a similar cohomological context for the “Lie(2)” identities of The-
orem 4.1?

We turn next to the action on fixed-point-free permutations. If F = ∑n≥1 fn is any
series of symmetric functions where fn is of homogeneous degree n, let F≥2 denote
the series F − f1 = ∑n≥2 fn. Reiner and Webb study the Cohen–Macaulay complex of
injective words, and compute the Sn-action on its top homology [6]. Using Theorem 2.2,
we show that the representations Lie(2)n make an appearance here as well:

Theorem 4.8. Let ∆k
n denote the degree n term in ek[Lie(2)≥2], and let ∆n = ∑k≥1 ∆k

n. Then ∆n
coincides with the homology representation on the complex of injective words.

Hanlon and Hersh have shown that this representation has a Hodge decomposition
[2]. Writing Dk

n for the degree n term in hk[Lie≥2], their result may be stated as follows:

∆n = ∑
k≥1

ω(Dk
n).
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Surprisingly, the decomposition of ∆n given by Theorem 4.8 is different from the Hodge
decomposition. The first nontrivial example appears below.

Example 4.9. For n = 4, we have ∆4 = p2
1h2 − p1h3 + h4 = (4) + (3, 1) + (22) + (2, 12).

Also ∆2
4 = e2[h2] = (3, 1), ∆1

4 = Lie(2)4 = (4) + (22) + (2, 12). The two Hodge pieces,
however, each consist of two irreducibles: ω(h2[Lie2]) = (22) + (4) and ω(h1[Lie4]) =
(3, 1) + (2, 12).

A classical result asserts that the free Lie algebra has the following filtration arising
from its derived series [7, Section 8.6.12]. Let κ = ∑n≥2 s(n−1,1). Then Lie≥2 = κ + κ[κ] +
κ[κ[κ]] + . . . .

Theorem 4.1 allows us to deduce a similar decomposition for Lie(2)n :

Theorem 4.10. Lie(2)≥2 = ω(κ) + ω(κ)[ω(κ)] + ω(κ)[ω(κ)[ω(κ)]] + . . .

We conclude with yet another feature of the Lie representation that reappears in
Lie(2)n . Recall that Lien−1 admits a lifting Wn which is a true Sn-module, the White-
house module, appearing in many different contexts [8], [10, Exercise 7.88 (d)], whose
Frobenius characteristic is given by ch Wn = p1Lien−1 − Lien.

One can ask if the same construction for Lie(2)n yields a true Sn-module. Clearly one
obtains a possibly virtual module which restricts to Lie(2)n−1 as an Sn−1-module. We have
the following conjecture, verified in Maple (with Stembridge’s SF package) up to n = 32 :

Conjecture 4.11. The symmetric function p1Lie(2)n−1 − Lie(2)n is Schur-positive if and only if n
is not a power of 2.

One direction of this conjecture is easy to verify. Let n = 2k ≥ 2. Then n − 1 is
odd, so Lie(2)n−1 = Lien. Also (by Theorem 3.2) Lie(2)n = Conjn is just the permutation
module afforded by the conjugacy action on the class of n-cycles of Sn. Consequently
it contains the trivial representation (exactly once). But Lien never contains the trivial
representation (n ≥ 2). Hence, when n is a power of 2, the trivial module appears with
negative multiplicity (−1) in p1Lie(2)n−1 − Lie(2)n .
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