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Root system chip-firing
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Abstract. Propp recently introduced a variant of chip-firing on the infinite path where
the chips are given distinct integer labels and conjectured that this process is confluent
from certain (but not all) initial configurations of chips. Hopkins, McConville, and
Propp proved Propp’s confluence conjecture. We recast this result in terms of root
systems: the labeled chip-firing game can be seen as a process which allows replacing
an integer vector λ by λ+ α whenever λ is orthogonal to α, for α a positive root of a root
system of Type A. We give conjectures about confluence for this process in the general
setting of an arbitrary root system. We show that the process is always confluent from
any initial point after modding out by the action of the Weyl group (an analog of
unlabeled chip-firing in arbitrary type). We also study some remarkable deformations
of this process which are confluent from any initial point. For these deformations, the
set of weights with given stabilization has an interesting geometric structure related
to permutohedra. This geometric structure leads us to define certain “Ehrhart-like”
polynomials that conjecturally have nonnegative integer coefficients.

Keywords: chip-firing, Abelian Sandpile Model, confluence, root systems, permutohe-
dra, Ehrhart polynomials

1 Introduction

This extended abstract summarizes our work on an extension of the chip-firing game to
“other Cartan-Killing types” [8, 9]. All proofs are contained in those papers.

Chip-firing, as introduced by Björner, Lovász, and Shor [5], is a certain (solitaire) game
played on a graph. The states of this game are configurations of chips on the vertices of
the graph. A vertex which has at least as many chips as neighbors is said to be unstable.
At any moment, we can fire an unstable vertex, which sends one chip from that vertex
to each of its neighbors. And we can keep firing chips in this way until we reach a stable
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configuration, where all vertices are stable. A fundamental result of Björner–Lovász–
Shor is that this process is confluent: either we keep firing forever, or we reach a unique
stable configuration that does not depend on which unstable vertices we chose to fire. As
it turns out, this chip-firing process is essentially the same as the Abelian Sandpile Model,
originally introduced by the physicists Bak, Tang, and Wiesenfeld [3] and subsequently
developed by Dhar [7].

Björner, Lovász, and Shor were motivated to define chip-firing on an arbitrary graph
by an earlier paper of Anderson et al. [1] which studied the special case of chip-firing on
a line, i.e., on an infinite path graph. Because we identify the vertices of this infinite path
graph with integers, we denote it by Z. Inspired by this initial setting, Jim Propp recently
introduced a version of labeled chip-firing on a line. The states of the labeled chip-firing
process are configurations of distinguishable chips with integer labels 1, 2, . . . , n on Z.
For example, with n = 4, the following is such a configuration:

−2 −1 0 1 2
1

2

3

4

The firing moves consist of choosing two chips that occupy the same vertex and moving
the chip with the lesser label one vertex to the right and the chip with the greater label
one vertex to the left. For example, if we chose to fire chips 1 and 3 in the previous
configuration that would lead to:

−2 −1 0 1 2
123

4

One can perform these firing moves until no two chips occupy the same spot. Propp
conjectured that if one starts with an even number of chips at the origin, then this process
is confluent and in particular the chips always end up in sorted order. For example, if
we continue firing the four chips above, we necessarily will end up at:

−2 −1 0 1 2
1234

It is easy to see that the labeled chip-firing process is not confluent if the initial number
of chips is odd (e.g., three), and thus confluence is a more subtle question for labeled
chip-firing than for classical chip-firing. Propp’s sorting conjecture was recently proved
by Hopkins, McConville, and Propp [10].
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The following reformulation of labeled chip-firing is crucial as a starting point for our
work. For any configuration of n labeled chips, if we define v := (v1, v2, . . . , vn) ∈ Zn by

vi := the position of the chip i ,

then, for 1 ≤ i < j ≤ n, we are allowed to fire chips i and j in this configuration
as long as v is orthogonal to ei − ej; and doing so replaces the vector v by v + (ei − ej).
(Here e1, . . . , en are the standard basis vectors of Zn.) We use v→ v + (ei − ej) to denote
this firing move and hence think of the labeled chip-firing process as a binary relation
defined on the lattice Zn.

But observe that the collection of vectors ei − ej for 1 ≤ i < j ≤ n is exactly the set
of positive roots Φ+ of the root system Φ of Type An−1. Therefore, we might wonder
what happens when we replace this collection of vectors by the positive roots Φ+ of an
arbitrary root system Φ (and replace the lattice Zn by the weight lattice of Φ). We call
this the central-firing process for Φ, because it allows firing when our vector lies on the
Coxeter arrangement of Φ, which is a central hyperplane arrangement.

We also study some remarkable deformations of the central-firing process, which we
call interval-firing processes. These interval-firing processes turn out to be confluent from
any initial weight. Moreover, for these interval-firing processes, the set of weights with a
given stabilization has an interesting geometric structure related to permutohedra. And,
what is more, we show that there exist certain Ehrhart-like polynomials that count the
number of weights with given stabilization as our deformation parameter varies.

2 Central-firing

Before formally defining the central-firing process, which as explained above generalizes
labeled chip-firing on a line to other types, we need to briefly review some notation
related to root systems and to binary relations.

For basics on root systems, consult [6]. Fix Φ, an irreducible crystallographic root
system in an r-dimensional Euclidean vector space V with standard inner product 〈·, ·〉.
For any root α ∈ Φ, we use α∨ := 2

〈α,α〉α to denote the corresponding coroot. We use W
to denote the Weyl group of Φ. We use Q := Z[Φ] to denote the root lattice of Φ,
and P := {v ∈ V : 〈v, α∨〉 ∈ Z for all α ∈ Φ} to denote the weight lattice of Φ. We fix a
choice of positive roots Φ+ and hence also a sequence of simple roots α1, . . . , αr and of
fundamental weights ω1, . . . , ωr.

For→ a (binary) relation on a finite set X, we say that x ∈ X is stable if there does not
exist any y ∈ X with x → y. We use ∗−→ to denote the reflexive transitive closure of →.
We say that → is confluent from x ∈ X if for all y1, y2 ∈ X such that x ∗−→ y1 and x ∗−→ y2,
there exists some y3 ∈ X for which y1

∗−→ y3 and y2
∗−→ y3. We say that→ is terminating if

there does not exist an infinite sequence x0 → x1 → x2 → · · · . If → is terminating and
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is confluent from x ∈ X, then there is a unique stable y ∈ X with x ∗−→ y and we call y
the stabilization of x. We say that→ is confluent if it is confluent from every x ∈ X.

Our goal is to study confluence and stabilizations for certain “chip-firing like” rela-
tions defined in terms of root systems. The first such relation is the central-firing process.

Definition 2.1. The central-firing process for Φ is the relation −→
0

defined on the weight

lattice by λ −→
0

λ + α for λ ∈ P and α ∈ Φ+ whenever λ is orthogonal to α.

As explained in the introduction, central-firing for Φ = An−1 is the same as labeled
chip-firing of n labeled chips on Z. In fact, for any classical type (i.e., An, Bn, Cn, or Dn),
central-firing can be described in terms of labeled chip configurations on Z.

It is not hard to show that −→
0

is always terminating. The question we focus on is:

Question 2.2. For any root system Φ and any weight λ ∈ P, when is the central-firing
process confluent from λ?

As discussed above, central-firing is confluent from some but not all initial weights. It
follows from the work of [10] that central-firing is confluent from the origin for Φ = An−1
when n ≡ 0 mod 2, and for Φ = Bn for all values of n. We experimentally observed
that central-firing is confluent from the origin for Φ = Cn when n ≡ 1, 2 mod 4 and
for Φ = Dn when n ≡ 3 mod 4. Hence we see that Question 2.2 is subtle, and we
have no conjectural answer in general. Nevertheless, we did observe some discernible
root-theoretic phenomena in investigating Question 2.2: e.g., to first order, it seems that
central-firing is confluent from a weight λ ∈ P when λ is not equivalent to the Weyl
vector ρ := ∑r

i=1 ωi modulo the root lattice Q. In [9] we put forth a complete conjectural
classification of confluence when λ is either zero or a fundamental weight.

In marked contrast to the subtly of Question 2.2, it turns out that if we mod out by the
action of the Weyl group, then central-firing becomes confluent from all initial weights.
Specifically, if→ is a relation on a set X and a group G acts on X, then→ descends to a
relation, which we also denote by →, on the orbits X/G: we have G.x → G.y if there is
some x′ ∈ G.x and y′ ∈ G.y with x′ → y′. With this notation, we have the following:

Theorem 2.3. The relation −→
0

on P/W is confluent (and terminating).

Modding out by the action of the Weyl group W = Sn for Φ = An−1 is the same as
forgetting the labels of the chips in the labeled chip-firing process. Thus Theorem 2.3
gives a generalization of unlabeled chip-firing on a line to any type. We note that recently
Benkart, Klivans, and Reiner [4] also studied a generalization of unlabeled chip-firing
to other types (Cartan matrix chip-firing), but in fact their generalization is different from
ours: e.g., for Type An−1 ours corresponds to chip-firing of n chips on the infinite path
graph, whereas theirs corresponds to chip-firing of any number of chips on an n-cycle.
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However, we can recover the Cartan matrix chip-firing of [4] by taking a certain k → ∞
limit of the interval-firing processes described in the next section.

For simply laced Φ we can describe central-firing modulo the Weyl group as a certain
numbers game on the Dynkin diagram of Φ, as we now explain.

Definition 2.4. Let Γ be a simply laced Dynkin diagram with vertex set [r] := {1, 2, . . . , r}.
Let γ : [r]→ Z≥0 be an assignment of nonnegative integers to the vertices of Γ. Consider
an application of the following sequence of steps to γ:

(1) choose a zero connected component X of γ, that is, a connected component of the
induced subgraph of Γ with vertex set {i ∈ [r] : γ(i) = 0};

(2) complete (in a unique way) X to an affine Dynkin diagram X̃ with vertex set X∪ {0};

(3) for every edge {0, i} of X̃, increase γ(i) by 1;

(4) for every vertex j /∈ X that is adjacent to a vertex i ∈ X, decrease γ(j) by 1.

We denote the resulting assignment of integers by γ′ and say that γ′ is obtained from γ

via a UCF (=“unlabeled central-firing”) move along X. We write γ −−→
UCF

γ′.

Example 2.5. Let us illustrate this definition by an example for a Dynkin diagram of
Type E7. Consider an assignment γ shown in Figure 1 (top). It has two zero connected
components: X1 of Type D5 and X2 of Type A1. Applying a UCF move to γ along X1
(resp., along X2) produces assignments γ′1 (resp., γ′2) shown in Figure 1 (middle-left),
resp., (middle-right). Note that γ′1 has a zero connected component of Type A5 that con-
tains X2, and similarly, γ′2 has a zero connected component of Type E6 that contains X1.
Applying another UCF move along the corresponding zero connected component of γ′1
(resp., of γ′2) actually produces the same result γ′′ shown in Figure 1 (bottom).

Theorem 2.6. Let Φ be a simply laced root system and Γ its Dynkin diagram. For each Dynkin
diagram assignment γ : [r] → Z≥0, define the corresponding weight λ(γ) := ∑r

i=1 γ(i)ωi.
Then we have that γ −−→

UCF
γ′ if and only if W.λ(γ) −→

0
W.λ(γ′).

3 Interval-firing: confluence

We now introduce some remarkable deformations of central-firing. Continue to fix Φ
as in the previous section. Recall that we have a firing move λ −→

0
λ + α for α ∈ Φ+

whenever λ is orthogonal to α; equivalently, λ −→
0

λ + α whenever 〈λ, α∨〉 = 0. The

deformations we study involve changing the set of inner products 〈λ, α∨〉 at which we
allow firing to be some larger interval.
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γ =
0 0 0 0 1 0

0

+1 −1

+2

−1

γ′1 =
0 1 0 0 0 0

0

= γ′20 0 0 0 0 2

0

+1

+1

−1
+1

−1

γ′′ =
0 0 0 0 0 1

1

Figure 1: Applying UCF moves to the Dynkin diagram of E7 (see Example 2.5). For
each move, the component X is shown in blue, the extra node 0 of X̃ is shown in red,
changes from step (3) are shown in red, and changes from step (4) are shown in blue.
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Definition 3.1. Fix a nonnegative integer k ∈ Z≥0. The symmetric interval-firing process
and the truncated interval-firing process are the relations −−−→

sym, k
and −−→

tr, k
on the weight

lattice defined by

λ −−−→
sym, k

λ + α whenever 〈λ, α∨〉+ 1 ∈ {−k,−k + 1, . . . , k};

λ −−→
tr, k

λ + α whenever 〈λ, α∨〉+ 1 ∈ {−k + 1,−k + 2, . . . , k},

for λ ∈ P and α ∈ Φ+.

The symmetric interval-firing process is so called because the symmetric closure of
this relation is W-invariant; the truncated interval-process is so called because the in-
terval defining it has length one less than that of the symmetric process. These two
processes should be seen as analogous to the (extended) Φ∨-Catalan and (extended)
Φ∨-Shi hyperplane arrangements [12, 2].

Figure 2 depicts the two interval-firing processes for Φ = A2 and k = 0, 1, 2. In this
figure we draw an arrow from λ to µ to denote a firing move λ→ µ, and we show only
a finite portion of the weight lattice near the origin. Let us mention that, in addition
to this “geometric picture,” in Type A we can also think of interval-firing in terms of
labeled chip configurations on Z via the same correspondence between configurations
of n chips and vectors in Zn discussed in the introduction (but with different firing
moves). For example, consider symmetric interval-firing with k = 0. This corresponds
to the labeled chip-firing process that allows the transposition of the chips i and j

with i < j whenever i is one position to the left of j . It is immediately apparent that
this process is confluent; for instance, the configuration of labeled chips

−3 −2 −1 0 1 2 3
1 2 3

4

5 6

7

−−−→
sym, 0

-stabilizes to

−3 −2 −1 0 1 2 3
1

2

34 5

6

7

The next case to consider is truncated interval-firing with k = 1. This corresponds to the
labeled chip-firing process that allows both the transposition moves from the symmetric
k = 0 case, and the usual labeled chip-firing moves from the central-firing case. The
reader can verify that for instance that the configuration

−2 −1 0 1 2
1

2

3

4
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k Truncated interval-firing Symmetric interval-firing

0

1

2

Figure 2: The interval-firing processes for Φ = A2 and k = 0, 1, 2.
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−−→
tr, 1

-stabilizes to

−2 −1 0 1 2
1234

Here it is less obvious that confluence holds. But in fact, in [8] we prove the following:

Theorem 3.2. For any k ∈ Z≥0, both the symmetric and truncated interval-firing processes are
confluent (and terminating).

The proof of Theorem 3.2 goes through the geometric picture. A key step in the proof
is a formula for traverse lengths of permutohedra, which we now briefly explain.

For λ ∈ P, we define the permutohedron Π(λ) by Π(λ) := ConvexHull W(λ), and we
use ΠQ(λ) := Π(λ) ∩ (Q + λ) to denote the (root) lattice points in Π(λ). For α ∈ Φ, an
α-string of length ` is a set {µ, µ− α, . . . , µ− `α} for some µ ∈ P. An α-traverse in Π(λ) is
a maximal (by containment) α-string contained in ΠQ(λ). The traverse length of Π(λ) in
direction α, denoted lλ(α), is defined to be the minimum length of an α-traverse in Π(λ).

The intuition is that a minimum length α-traverse in Π(λ) should be realized by
an edge of Π(λ). This intuition turns out almost to be correct, save for one class of
exceptions which we call “funny” weights.

Definition 3.3. If Φ is simply laced, then there are no funny weights. So suppose that Φ
is not simply laced. Then there is a unique long simple root αl and short simple root αs
with 〈αl, α∨s 〉 6= 0. We say the dominant weight λ = ∑r

i=1 ciωi ∈ P is funny if cs = 0,
cl ≥ 1, and ci ≥ cl for all i such that αi is long.

For a dominant weight λ = ∑r
i=1 ciωi ∈ P, define mλ(α) := min({ci : α ∈ W(αi)}).

Note that mλ(α) is the minimum length of an edge of Π(λ) in direction α. Then:

Theorem 3.4. For a dominant weight λ ∈ P, we have

lλ(α) =

{
mλ(α)− 1 if α is long and λ is funny,
mλ(α) otherwise.

The connection between traverse lengths and interval-firing is the following simple
lemma, which gives an alternate description of traverse length:

Lemma 3.5. For any λ ∈ P, we have lλ(α) = min({〈µ, α∨〉 : µ ∈ ΠQ(λ), µ + α 6∈ ΠQ(λ)}).

The proof of Theorem 3.2 then roughly follows the following plan: we use Lemma 3.5
to show that our interval-firing process gets “trapped” inside of certain permutohedra
whose traverse lengths we know, thanks to Theorem 3.4, are large; then we show that
there is only one stable point inside these permutohedra that the process could possibly
terminate at; hence this process (which is easily seen to be terminating) must in fact be
confluent.
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C0

−→
η

C0

ρ

Figure 3: A graphical depiction of the piecewise-linear map η.

4 Interval-firing: stabilizations

Having established that the two interval-firing processes are always confluent from all
initial weights, we might then want to compute, or at least in some sense study, stabi-
lizations for these processes.

In order to study stabilizations, the first thing we need is a way to consistently de-
scribe the stable points of these processes across all values of the deformation parame-
ter k. To do that, we define the piecewise-linear map η : P → P by η(λ) := λ + wλ(ρ),
where wλ ∈ W is the minimum length Weyl group element such that w−1

λ (λ) is domi-
nant. Figure 3 gives a graphical depiction of η: as we can see, this map “dilates” space by
translating the Weyl chambers radially outwards; a point not inside any chamber trav-
els in the same direction as the chamber closest to the fundamental chamber C0 among
those chambers whose closure the point lies in. The point of η is the following:

Lemma 4.1. For any k ∈ Z≥0, the stable points of the symmetric interval-firing process are

{ηk(λ) : λ ∈ P such that 〈λ, α∨〉 6= −1 for all α ∈ Φ+}

and the stable points of the truncated interval-firing process are {ηk(λ) : λ ∈ P}.

Thanks to Lemma 4.1, we can define the stabilization maps ssym
k , str

k : P→ P by

ssym
k (µ) = λ⇔ the −−−→

sym, k
-stabilization of µ is ηk(λ);

str
k (µ) = λ⇔ the −−→

tr, k
-stabilization of µ is ηk(λ).

One can observe already in Figure 2 that the set (ssym
k )−1(λ) of weights with sym-

metric interval-firing stabilization ηk(λ) seems to “dilate” as we scale k, and ditto for
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truncated interval-firing. Thus, in analogy with Ehrhart theory, we are motivated to
prove the existence of Ehrhart-like polynomials, polynomials Lsym

λ (k) and Ltr
λ (k) for which

#(ssym
k )−1(λ) = Lsym

λ (k);

#(str
k )
−1(λ) = Ltr

λ (k),

for all k ∈ Z≥0. Note that (except when λ is zero or a minuscule weight) the set of
weights with stabilization ηk(λ) is not in general the set of lattice points in a convex
polytope, or indeed any convex set. Nevertheless, in [8] we do prove the following:

Theorem 4.2. For all Φ and all λ ∈ P, the symmetric Ehrhart-like polynomial Lsym
λ (k) exists

and has integer coefficients.

Theorem 4.3. For simply laced Φ and all λ ∈ P, the truncated Ehrhart-like polynomial Ltr
λ (k)

exists and has integer coefficients.

Moreover, based on computational evidence, we put forward the following striking
positivity conjecture:

Conjecture 4.4. For all Φ and all λ ∈ P, both the symmetric and truncated Ehrhart-like poly-
nomials Lsym

λ (k) and Ltr
λ (k) exist and have nonnegative integer coefficients.

The “half” of Conjecture 4.4 concerning the symmetric polynomials has very recently
been proven by the second and fourth authors [11]. The truncated “half” remains open.

We establish Theorem 4.2 via some basic Ehrhart theory of zonotopes. We deduce
Theorem 4.3 from the following lemma relating symmetric and truncated stabilizations
(which requires the simply laced assumption for technical reasons):

Lemma 4.5. For any Φ, µ ∈ P, and k ∈ Z≥0, we have ssym
k (µ) = ssym

0 (str
k (µ)). For simply

laced Φ, µ ∈ P, and k ∈ Z≥0, we have str
k+1(µ) = str

1 (s
sym
k (µ)).

Lemma 4.5 has the following intriguing corollary. Suppose that Φ is simply laced. By
iteratively applying Lemma 4.5, we see that ssym

k (µ) = (ssym
1 )k(µ) for all k ≥ 1. But we

also know thanks to Theorem 4.2 that #(ssym
k )−1(λ) = Lsym

λ (k). Hence for all λ ∈ P and
all k ≥ 1, we have

#((ssym
1 )k)−1(λ) = Lsym

λ (k).

In other words, we have a map f : X → X from some discrete set to itself such that the
sizes #( f k)−1(x) of fibers of iterates of this map are given by polynomials (in k) for every
point x ∈ X. This is a very special property for a self-map of a discrete set to have.
Figure 4 depicts ssym

1 : P → P for Φ = A1, and records the relevant polynomials in this
one-dimensional example.
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. . . . . .1 1 0 k + 1 k + 2 1 1

0 ω1 α1
= 2ω1

Figure 4: The map ssym
1 : P→ P for Φ = A1. We write Lsym

λ (k) above each weight λ ∈ P.
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