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Abstract. Semistable subcategories were introduced in the context of Mumford’s GIT
and interpreted by King in terms of representation theory of finite dimensional alge-
bras. Ingalls and Thomas later showed that for finite dimensional algebras of Dynkin
and affine type, the poset of semistable subcategories is isomorphic to the correspond-
ing lattice of noncrossing partitions. We show that semistable subcategories defined
by tiling algebras, introduced by Simões and Parsons, are in bijection with noncrossing
tree partitions, introduced by the second author and McConville. Our work recovers
that of Ingalls and Thomas in Dynkin type A.

Résumé. Les sous-catégories semi-stables ont été introduites dans le contexte du GIT
de Mumford et interprétées par King en termes de théorie des représentations des
algèbres de dimension finie. Ingalls et Thomas ont montré plus tard que pour les
algèbres de dimension finie de type Dynkin et affines, l’ensemble ordonné des sous-
catégories semi-stables est isomorphe au treillis des partitions non-croisées correspon-
dant. Nous montrons que les sous-catégories semi-stables définies par des algèbres de
pavage, introduites par Simões et Parsons, sont en bijection avec des partitions arbores-
centes non-croisées, introduites par le second auteur et McConville. Nous retrouvons
des résultats d’Ingalls et Thomas pour Dynkin de type A.
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1 Introduction

Mumford’s geometric invariant theory (GIT) provides a technique for taking the quotient
of an algebraic variety by certain types of group actions in such a way that the resulting
quotient is again an algebraic variety. Given a variety V and a reductive algebraic group
G acting linearly on V, one replaces V by its “semistable points” and then forms the GIT
quotient V//G, which is an algebraic variety.

In [6], King interpreted this notion of semistable points in terms of representation
theory of algebras as follows. Let Λ = kQ/I be the path algebra of a quiver Q (i.e.,
a directed graph) modulo an admissible ideal I and k is an algebraically closed field.
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Recall that the path algebra kQ consists of formal k-linear combinations of paths in Q,
and its multiplication is given by composition of paths. For such algebras, any Λ-module
M may be regarded as a representation of Q (i.e., an assignment of a finite dimensional
k-vector space Mi to each vertex of Q and a k-linear map to each arrow of Q). A
representation M of Q naturally defines a dimension vector, denoted by dim(M) :=
(dimk Mi)

n
i=1 ∈ Zn

≥0, where n will henceforth denote the number of vertices of Q.
Now let V = mod(Λ, d), the variety of finitely generated Λ-modules with dimension

vector d = (d1, . . . , dn), and let G = ∏n
i=1 GLdi(k) act by base change at each vertex of

Q. In [6], King showed that the semistable points of V, which from now on we call
semistable representations (resp., stable representations), are the representations M
where there exists a linear map θ ∈ Hom(Zn, Z) satisfying
• θ(dim(M)) = 0, and
• for any subrepresentation N ⊂ M, one has θ(dim(N)) ≤ 0 (resp., θ(dim(N)) < 0).

We refer to such linear maps θ ∈ Hom(Zn, Z) as stability conditions on mod(Λ), the
category of finitely generated Λ-modules. Any choice of stability condition θ defines a
subcategory θss of mod(Λ) consisting of the θ-semistable representations. We refer to
θss as a semistable subcategory. Note that two different stability conditions may define
the same semistable subcategory.

We study the poset of all semistable subcategories of mod(Λ) ordered by inclusion,
denoted Λss. There are close connections between the theory of semistable subcategories
and the combinatorics of Coxeter groups. If Λ = kQ where Q is an orientation of a
simply-laced Dynkin or extended Dynkin diagram, it follows from [5, Theorem 1.1] that
Λss is isomorphic to the poset of noncrossing partitions associated with Q.

Other important examples of algebras Λ include cluster-tilted algebras [1], which
appear in the context of cluster algebras, and also preprojective algebras. In the latter
case, in [10] it is shown that Λss is isomorphic to the shard intersection order of the
Coxeter arrangement associated with Q (see [9] for more on the shard intersection order).

The purpose of this work is to combinatorially classify the semistable subcategories
for the class of tiling algebras, introduced in [2] to study endomorphism algebras of
maximal rigid objects in some negative Calabi–Yau categories. Following [3], these alge-
bras, denoted ΛT, are defined by the data of a tree T embedded in the disk D2 whose
interior vertices have degree at least 3 (see Figure 1). Examples of tiling algebras are
given by the cluster-tilted algebras of cluster type A; the trees defining these algebras
are those whose interior vertices are of degree 3.

The tree T defines a simplicial complex of noncrossing arcs on T called the noncross-
ing complex, denoted by ∆NC(T) (see Section 2). Each facet of ∆NC(T) consists of red
arcs, green arcs, and boundary arcs. In [7], it is shown that if δ is a green or red arc in a
facet of ∆NC(T), it gives rise to a g-vector, denoted g(δ) ∈ Zn. Additionally, in [3], it is
shown that the facets of ∆NC(T) are in bijection with wide subcategories of mod(ΛT).
With these facts in mind, we arrive at our main theorem.
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Figure 1: We show a tree T in (a) and the quiver QT it defines in (b). The associated
tiling algebra is ΛT = kQT/II where IT = 〈α2α1, α3α2, α1α3, α5α4, α6α5, α4α6, α8α7〉.

Theorem 1.1. LetW ⊂ mod(ΛT) be a wide subcategory, and let FW be the corresponding facet
of ∆NC(T) and F gr

W the set of green arcs. Then the Kreweras stability condition defined as

θFW : Zn −→ Z

dim(M) 7−→ ∑δ∈F gr
W
〈g(δ), dim(M)〉,

where M ∈ mod(ΛT) and 〈−,−〉 is the standard Euclidean inner product, satisfies θss
FW = W .

Conversely, any semistable subcategory of mod(ΛT) is a wide subcategory of ΛT.

The paper is organized as follows. In Section 2, we review the noncrossing complex
of arcs on a tree. In Section 3, we associate g- and c-vectors to each facet of this complex,
which are essential to our construction of semistable subcategories. In Section 4, we
define the tiling algebras that we will study. In Section 5, we define noncrossing tree
partitions, which will classify the semistable subcategories of mod(ΛT). We also sketch
an important step in the proof of Theorem 1.1. Lastly, in Section 6, we propose a natural
extension of our work to general gentle algebras.

2 Noncrossing complex

A tree T = (VT, ET) is a finite connected acyclic graph. Any tree may be embedded in
the disk D2 in such a way that a vertex is on the boundary if and only if it is a leaf. We
will assume that any tree is accompanied by such an embedding in D2. We say two trees
T and T′ are equivalent if there is an ambient isotopy between the spaces D2\T and
D2\T′. We consider trees up to equivalence. Additionally, we assume that the interior
vertices of any tree T (i.e., the nonleaf vertices of T) have degree at least 3.

We say the closure of a connected component of D2\T is a face of T. A corner (v, F)
of T is a pair consisting of an interior vertex v of T and a face F of T that contains v.
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Figure 2: Both facets of this noncrossing complex contain 5 arcs. The boundary arcs
are shown in gold. The marked corners of arcs are indicated by black dots. The faces
are F1, F2, F3, F4.

An acyclic path supported by a tree T is a sequence (v0, v1, ..., vt) of pairwise distinct
vertices of T such that vi and vj are adjacent if and only if |i − j| = 1. We will refer
to v0 and vt as the endpoints of the acyclic path. Since T is acyclic, any acyclic path is
determined by its endpoints, and we can therefore write (v0, v1, ..., vt) = [v0, vt].

An arc δ = (v0, v1, ..., vt) is an acyclic path such that its endpoints are leaves and any
two edges (vi−1, vi) and (vi, vi+1) are incident to a common face. We say δ contains a
corner (v, F) if v = vi for some i = 0, 1, . . . , t and (vi−1, vi) and (vi, vi+1) are incident
to F. We also note that δ divides D2 into two regions composed of disjoint subsets of
faces of T. We let Reg(δ, F) denote the region defined by δ which contains F. We say
that two arcs δ and δ′ are crossing if given any regions Rδ and Rδ′ defined by δ and δ′,
respectively, then Rδ 6⊂ Rδ′ or Rδ′ 6⊂ Rδ. Otherwise, we say δ and δ′ are noncrossing.

Define the noncrossing complex of T, denoted ∆NC(T), to be the abstract simplicial
complex of noncrossing arcs of T. By [4, Corollary 3.6], this is a pure complex (i.e., any
two facets have the same cardinality). We will primarily work with the facets of ∆NC(T).

Let F be any facet of ∆NC(T). The arcs of F containing a corner (v, F) are linearly
ordered: two arcs δ, γ ∈ F containing (v, F) satisfy δ ≤(v,F) γ if and only if Reg(δ, F) ⊂
Reg(γ, F). That such arcs are linearly ordered follows from the fact that they are pairwise
noncrossing. We say that an arc δ of F is marked at corner (v, F) if δ contains (v, F) and
it is the maximal such arc with respect to ≤(v,F). In [4, Proposition 3.5], it is shown that
every δ ∈ F is marked at either one or two corners. In the latter case, the two corners at
which δ is marked belong to different regions defined by δ. We refer to the arcs marked
at a single corner as boundary arcs, and we denote the set of boundary arcs of F by F ∂.
We show an example of the noncrossing complex in Figure 2.

The arcs of F that are not boundary arcs come with extra data of a color as follows. A
flag is a triple (v, e, F) of a vertex v incident to an edge e, which is incident to the face F.
We say a flag is green if by orienting e away from v, face F is to the left of e. Otherwise,
we say (v, e, F) is red. Let (v, F) and (u, G) be the two corners in which δ ∈ F is marked,
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and let e and e′ be edges of T contained in [v, u] where the former is incident to v and
the latter is incident to u. Both (v, e, F) and (u, e′, G) have to be of the same color, as F
and G belong to different regions determined by δ. We say δ is a green arc if it is marked
at corners belonging to green flags, otherwise we say it is a red arc. Define F gr (resp.,
F red) to be the set of green (resp., red) arcs of F . Observe that F = F red tF gr tF ∂. We
show examples of red and green arcs in Figures 2 and 7.

3 Facets and their c- and g-vectors

In this section, we show how to associate a family of vectors in Zn to each facet of
the noncrossing complex where n denotes the number of edges of T connecting two
interior vertices of T. We let Int(ET) denote the set of such edges of T and {he}e∈Int(ET)

the canonical basis of Z|Int(ET)| ∼= Zn. The definitions we present in this section are
reformulations of the definitions presented in [7].

Now, fix a facet F ∈ ∆NC(T) and a red or green arc γ = (v0, v1 . . . , vt) ∈ F . By
choosing an orientation of γ, we define g(γ) := ∑e∈Int(ET) ge

γhe ∈ Zn where for each
e = (vi, vi+1) ∈ Int(ET) we set

ge
γ :=


1 if γ turns left at vi and right at vi+1,
−1 if γ turns right at vi and left at vi+1,
0 if γ does not change direction from vi

to vi+1 or if e is not an edge in γ,

and we refer to g(γ) as the g-vector of γ (see Figure 3). Observe that g(γ) is independent
of the choice of orientation of γ. We define the zigzag of γ to be the set Zγ = Z+

γ t Z−γ ⊂
Int(ET) of edges e of T such that ge

γ 6= 0, where Z+
γ (resp., Z−γ ) is the set of edges such

that ge
γ = 1 (resp., ge

γ = −1). We also let G(F ) := {g(γ)}γ∈F redtF gr .

γ

geγ = 1

γ

geγ = −1

γ

geγ = 0

e e e

Figure 3: Different values for ge
γ

Next, we let sγ,F = [v, u] denote the acyclic path where (u, F) and (v, G) are the
corners at which γ is marked in F . We define the c-vector of γ with respect to F to be
cF (γ) := ∑e∈sγ,F he ∈ Zn (resp., cF (γ) := −∑e∈sγ,F he ∈ Zn) if γ is green (resp., red).
Note that the c-vector of γ depends on the choice of facet F containing γ, whereas the
g-vector g(γ) is intrinsic to γ. We also let C(F ) := {cF (γ)}γ∈F redtF gr . As the following
proposition shows, the c- and g-vectors defined by a given facet are dual bases of Rn.
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Figure 4: The tree and facet F of ∆NC(T) from Example 3.2.

Proposition 3.1. [7, Proposition 20] For any γ, δ ∈ F we have 〈g(δ), cF (γ)〉 ∈ {0, 1} and
equals 1 if and only if γ = δ.

Example 3.2. Consider the tree in Figure 4 where Int(ET) = {e1, e2}. The g- and c- vectors
associated to the facet in this figure are as follows:

g(γ) = (−1, 0) cF (γ) = (−1,−1)
g(δ) = (−1, 1) cF (δ) = (0, 1).

We end this section with a lemma that we interpret representation theoretically in the
next section. For sγ,F = (v0, . . . , vt), let Csγ,F denote the set of acyclic paths (vi, . . . , vj)
such that
• if i > 0 then s turns right at vi, and
• if j < l then s turns left at vj.

One has that Csγ,F \{sγ,F} is non-empty if and only if sγ,F contains at least two edges.

Lemma 3.3. Let F be a facet of ∆NC(T) with at least one green arc, and let γ ∈ F red be a red
arc such that sγ,F contains at least two edges of T. Then there exists a green arc µ ∈ F gr such
that |Z−µ ∩ {edges of t}| = |Z+

µ ∩ {edges of t}|+ 1 for any t ∈ Csγ,F \{sγ,F}. Moreover, for any
green arc µ, |Z−µ ∩ {edges of t}| ≥ |Z+

µ ∩ {edges of t}|.

4 Tiling algebras

We now recall how a tree gives rise to a finite dimensional algebra. Given a tree T, let
QT be the quiver whose vertex set is Int(ET) and where e, e′ ∈ Int(ET) are connected by
an arrow in QT if they meet in a corner of T. In this case, e α→ e′ if and only if e′ is
counter-clockwise from e. We define IT ⊂ kQT to be the ideal generated by the relations
αβ where α : e2 → e3 defines the corner (v, F) and β : e1 → e2 defines the corner (v, G).

We define the tiling algebra of T to be ΛT := kQT/IT where k is an algebraically
closed field. We invite the reader to check that dimkΛT = 3 (resp., 25) when T is the tree
from Figure 4 (resp., Figure 1).
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segment s = [5, 8] string w(s) string module M(w(s))

Figure 5: A segment s = [5, 8], the string w(s) that it defines, and the corresponding
string module M(w(s)).

The category of finitely generated left modules over ΛT is equivalent to category of
finite dimensional representations of QT over k that are compatible with the relations
from IT (i.e., a representation V = ((Vi)i∈QT0

, (ϕα)α∈QT1
) of QT where ϕα ϕβ = 0 for

all αβ ∈ IT).1 We also know that the indecomposable ΛT-modules are string modules,
denoted M(w), which was first observed in [2, Proposition 3.2]. A string w = w1

α1←→
w2

α2←→ · · · αk−1←→ wk is an irredundant walk in QT where for any i ∈ {1, . . . , k − 1} if
αiαi+1 6= 0 in kQT, then αiαi+1 6∈ IT. In other words, a string is an irredundant walk
in QT that obeys the relations in IT. In the setting of tiling algebras, all strings are
supported on connected acyclic subgraphs of QT, but this is not the case in general. The
string module M(w) is the representation of QT obtained by assigning the vector space
k to each vertex in the string w and identity morphisms to each arrow in w.2

Using these facts, we obtain that the indecomposable ΛT-modules are parameterized
by segments of T (i.e., acyclic paths s = (v0, v1, ..., vt) whose endpoints are interior
vertices of T and any two edges (vi−1, vi) and (vi, vi+1) are incident to a common face)
[3, Corollary 4.3]. We show an example of this bijection in Figure 5. Using this bijection,
one obtains the following lemma.

Lemma 4.1. Given a facet F of ∆NC(T) and γ ∈ F , the set map Csγ,F → mod(ΛT) defined by
t 7→ M(w(t)) induces a bijection from Csγ,F to the indecomposable submodules of M(w(sγ,F )).

It follows from this and Lemma 3.3 that for fixed facet F , any red arc γ ∈ F sat-
isfies θF (M(w(sγ,F ))) = 0 and θF (M(w(t))) < 0 for any indecomposable submodule
M(w(t)) of M(w(sγ,F )). That is, M(w(sγ,F )) is a θF -stable object. On the other hand,

1For a general finite dimensional k-algebra Λ = kQ/I where I is an admissible ideal, one can also
equivalently describe modules over Λ as representations of Q compatible with I.

2For simplicity, we have given the definition of M(w) only in the generality of tiling algebras.
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any green arc γ ∈ F satisfies θF (M(w(sγ,F ))) = 1, which means that no indecomposable
module coming from a green arc is θF -semistable.

5 Noncrossing tree partitions

Now let V◦ denote the set of interior vertices of T, choose an ε so that the balls of radius
ε around each vertex in V◦ do not intersect each other and are contained in D2. For each
corner (v, F), fix a point z(v, F) in the interior of F and such that d(z(v, F), v) = ε. Let
(v, e, F) and (u, e′, G) be two green (resp., red) flags, a green (resp., red) admissible curve
for [v, u] is a simple curve σ : [0, 1] → D2\V for which σ(0) = z(v, F), σ(1) = z(u, G)
and σ([0, 1]) crosses an edge h of T only if h is an edge in [v, u].3 Two segments are non-
crossing if they admit admissible curves that do not intersect each other, otherwise they
are crossing. A segment is green (resp., red) if it is represented by a green (resp., red)
admissible curve. For B ⊆ V◦, let Segr(B) be the set of inclusion-minimal red segments
whose endpoints lie in B. A noncrossing tree partition B = {B1, B2, ..., B`} is a set par-
tition of V◦ such that any two segments of Segr(B) = ∪l

i=1Segr(Bi) are noncrossing and
each block of B is segment-connected (i.e., for any two vertices in Bi there exists a se-
quence of segments in Segr(Bi) that joins them). Let NCP(T) be the poset of noncrossing
tree partitions of T ordered by refinement.

Returning to tiling algebras, a full, additive subcategory W ⊂ mod(ΛT) is a wide
subcategory if it is abelian and for any short exact sequence 0→ X → Z → Y → 0 with
X, Y ∈ W , one has that Z ∈ W . Let wide(ΛT) denote the poset of wide subcategories
of mod(ΛT) ordered by inclusion. The intersection of two wide subcategories is a wide
subcategory, and the zero subcategory (resp., mod(ΛT)) is the bottom (resp., top) element
in wide(ΛT). As ΛT is representation-finite, the poset wide(ΛT) is a lattice. In [3,
Theorem 7.1], the second author and McConville obtained a poset isomorphism between
the lattice of noncrossing tree partitions and the lattice of wide subcategories given by

φ : NCP(T) −→ wide(ΛT)

B 7−→ add
(
⊕w(s)M(w(s)) | s ∈ Seg(B)

)
where Seg(B) ⊂ Seg(T) is the smallest set containing Seg(B) such that s = (v0, v1, . . . , vk),
t = (vk, vk+1 . . . , v`) ∈ Seg(B) and s ◦ t := (v0, v1 . . . , vk, vk+1, . . . , v`) ∈ Seg(T) implies
s ◦ t ∈ Seg(B). Here add(M) where M ∈ mod(ΛT) is defined as the smallest full, addi-
tive subcategory of mod(ΛT) that contains M and is closed under direct summands. We
show in Figure 6 an example of this isomorphism.

Now fix a facet F ∈ ∆NC(T). For each δ ∈ F\F ∂, let σ be an admissible curve for
sδ,F = [v, u] where v and u are the two vertices corresponding to the corners (v, F) and

3Up to coloring-preserving isotopy relative to z(v, F) and z(u, G), there is a unique green (resp., red)
admissible curve for [v, u].



Semistable subcategories for tiling algebras 9

φ

0

add(k 0← 0) add(k 1← k) add(0
0← k)

mod(ΛT )

Figure 6: The lattice of wide subcategories of mod(ΛT) and its corresponding lattice of
noncrossing tree partitions, which we show realized as sets of red admissible curves.

(u, G) where δ is marked so that σ has the same color as δ. We define ψr(F ) (resp.,
ψg(F )) to be the set partition associated to set of red (resp., green) admissible curves
only (see Figure 7). The map ψr is a bijection between the facets of ∆NC(T) and NCP(T).
In fact, it induces a bijection Kr : NCP(T) → NCP(T) defined by Kr(ψr(F )) := ψg(F ).
We refer to Kr(B) with B ∈ NCP(T) as the Kreweras complement of B. We remark that
using the map φ, we can regard the Kreweras complementation map as a cyclic action
on wide subcategories of mod(ΛT).

In [4, Theorem 5.11], it is shown that given a facet F , the union of the sets Sr =
{Red curves associated to F} and Sg = {Green curves associated to F} define a new
tree TF , that we call the red-green tree, whose vertex set is Vo and whose edge set is
Sr t Sg. The red-green tree TF allows us to evaluate θF on any indecomposable module.

Lemma 5.1. For any facet F , the set {dim(M(w(sγ,F ))) | γ ∈ F} is obtained by taking
absolute values of the entries of all c-vectors in C(F ). Thus, this set is a basis of Z|Int(ET)|. 4

With Lemma 5.1 in mind, we show how to express the dimension vector of any inde-
composable ΛT-module as a linear combination of elements of {dim(M(w(sγ,F )))| γ ∈
F}. Let s = [v, u] be a segment in T and ς = (σ1, ..., σ`) the shortest sequence of admis-
sible curves in TF joining u and v where σi and σj with i < j share an endpoint only if
j = i + 1. By abuse of notation, we identify admissible curves with the segments associ-
ated to them. Writing s = (v0, v1, . . . , vk) with v = v0 and u = vk, let (v0, vi1 , . . . , vir) with
u = vir denote the vertices in s that are endpoints of the curves in ς.

Next, consider the subsequence (σ1, . . . , σi1) of ς where σi1 is the first admissible curve
in ς that has vi1 as an endpoint, and suppose σi = [e, g] and σi+1 = [ f , g] are two admissi-

4We can rephrase this lemma by saying that this set generates the Grothendieck group of mod(ΛT).



10 Monica Garcia and Alexander Garver

1

2

3

4

5
6 7

8

9

10

1

2

3

4

5 6 7
8

9

10

Figure 7: We show the red-green tree corresponding to a facet of ∆NC(T). We do not
show the boundary arcs of this facet. Here ψr(F ) = {{1, 3, 4}, {2, 8}, {5, 6, 7, 9}, {10}}
and Kr(ψr(F )) = ψg(F ) = {{1}, {2, 4}, {3}, {5, 8}, {6}, {7, 10}, {9}}.

ble curves in this sequence with a common subsegment. As shown in [3, Section 5], they
must be different colors and agree along the shorter of the two segments. Without loss
of generality suppose that [ f , g] is the shorter one. Construct a new admissible curve
σ′ for the segment [e, f ]. The color of σ′ is that of the admissible curve with longest
associated segment. Note that dim(M(w(σ′))) = dim(M(w(σi)))− dim(M(w(σi+1))).
Replace (σ1, . . . , σi1) with the sequence of admissible curves (σ1, ..., σi−1, σ′, σi+2, ..., σi1)
that also joins u with v.

Alternatively, suppose σi and σi+1 are two admissible curves of the same color. Re-
place (σ1, . . . , σi1) with the sequence (σ1, ..., σi−1, σ′′, σi+2, ..., σi1) where σ′′ is the admis-
sible curve with the same color as σi and whose segment satisfies dim(M(w(σ′′))) =
dim(M(w(σi))) + dim(M(w(σi+1))).

We repeatedly apply these operations to obtain a sequence consisting of a single
admissible curve σ′1 connecting v0 and vi1 . Now apply the same process to the remaining
sequences (σij , . . . , σij+1) to obtain admissible curves σ′j+1 connecting vij and vij+1 .

Definition 5.2. We define the simple red-green path of s in TF to be the resulting sequence
ςF (s) = (σ′1, ..., σ′r) of red and green admissible curves where σ′j is an admissible curve for
[vij−1 , vij ]. An example of this construction is shown in Figure 8.

Proposition 5.3. Let F be a facet and let s ∈ Seg(T). Then θF (M(w(σ′))) ≤ 0 (resp.,
θF (M(w(σ′))) > 0) for any red (resp., green) admissible curve σ′ in ςF (s).

We can now show that if θF (M(w(s))) = 0 and s 6= sγ,F for any arc γ ∈ F , then its
simple red-green path must contain at least two curves of different color. In addition,
we can show that any segment t = [vij−1 , vij ] ◦ · · · ◦ [vik−1 , vik ] associated to a maximal
subsequence of ςF (s) of consecutive green admissible curves (σ′j , ..., σ′k) has t ∈ Cs. That
is, M(w(t)) is a submodule of M(w(s)). By Proposition 5.3, M(w(s)) is not a semistable
representation since θF (M(w(t))) = ∑l

i=1 θF (M(w(σ′i ))) > 0. This proves Theorem 1.1.
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Figure 8: The simple red-green path for the segment s = [c, e] is (σ′1, σ′2).
Here dim(M(w(s))) = dim(M(w(σ′1))) + dim(M(w(σ′2))) = [dim(M(w(σ2))) −
dim(M(w(σ1)))] + [dim(M(w(σ4)))− dim(M(w(σ3)))].

Remark 5.4. If T is a tree all of whose interior vertices have degree 3 and has no subconfiguration
of the form shown in Figure 9, then QT is a type A Dynkin quiver. Theorem 1.1 therefore recovers
Ingalls’ and Thomas’ bijection in [5, Theorem 1] between wide subcategories and semistable
subcategories in type A.

Remark 5.5. The assertion in Theorem 1.1 that all wide subcategories of mod(ΛT) are semistable
can be deduced from [11, Theorem 1.2]. Our work differs from that of Yurikusa in that we
have found a canonical choice of stability condition realizing a wide subcategory as a semistable
subcategory.

From Theorem 1.1 and [3, Theorem 6.23] it follows that the poset of semistable sub-
categories of mod(ΛT) is isomorphic to the lattice of noncrossing tree partitions of T as
the following corollary shows. In particular, we obtain a combinatorial classification of
the semistable subcategories of mod(ΛT).

Corollary 5.6. For any tree T, the map φ : NCP(T)→ Λss
T is an isomorphism of posets.

Figure 9: The forbidden subconfigurations from Remark 5.4.

6 Additional questions

A crucial step in proving Theorem 1.1 was the use of the combinatorics of the red-green
tree TF to evaluate θF on any indecomposable ΛT-module. A second crucial step in
the proof was the fact that for any facet F of the noncrossing complex, the g-vectors
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in G(F ) and the c-vectors in C(F ) are dual bases with respect to 〈−,−〉. This fact
has already been established for general gentle algebras of which tiling algebras are
examples (see [8, Proposition 4.16]). There the role of the noncrossing complex is played
by the blossoming complex. However, we are not aware of a notion of the red-green
tree associated to a facet of this complex. We propose the following problem.

Problem 6.1. Find a combinatorial description of the Kreweras complement Kr : wide(Λ) →
wide(Λ) where Λ is a gentle algebra, and use this to determine when the Kreweras stability
condition θFW satisfies θss

FW =W for all facets FW of the blossoming complex.
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