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The totally nonnegative Grassmannian is a ball
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Abstract. We prove that three spaces of importance in topological combinatorics are
homeomorphic to closed balls: the totally nonnegative Grassmannian, the compactifi-
cation of the space of electrical networks, and the cyclically symmetric amplituhedron.

Résumé. Nous montrons que trois espaces d’importance en combinatoire topologique
sont homéomorphes à des boules fermées: la grassmannienne totalement non négative,
la compactification de l’espace des réseaux électriques et l’amplituèdre cycliquement
symétrique.
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1 Introduction

The prototypical example of a closed ball of interest in topological combinatorics is a
convex polytope. Over the past couple of decades, an analogy between convex poly-
topes, and certain spaces appearing in total positivity and in electrical resistor networks,
has been developed. One motivation for this analogy is that these latter spaces come
equipped with cell decompositions whose face posets share a number of common fea-
tures with the face posets of polytopes. A new motivation for this analogy comes from
recent developments in high-energy physics, where physical significance is ascribed to
certain differential forms on positive spaces which generalize convex polytopes. In this
paper we show in several fundamental cases that this analogy holds at the topological
level: the spaces themselves are closed balls.

The totally nonnegative Grassmannian. Let GrR(k, n) denote the real Grassmannian of
k-planes in Rn. Postnikov [25] introduced the totally nonnegative Grassmannian Gr≥0(k, n)
as the set of X ∈ GrR(k, n) whose Plücker coordinates are all nonnegative. The space
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Gr≥0(k, n) is not a polytope, but Postnikov conjectured that it is the ‘next best thing’,
namely a regular CW complex homeomorphic to a closed ball. He found a cell de-
composition of Gr≥0(k, n), where each cell is specified by requiring some subset of the
Plücker coordinates to be strictly positive, and requiring the rest to equal zero.

Over the past decade, much work has been done towards Postnikov’s conjecture. The
face poset of the cell decomposition (described in [25, 27]) was shown to be shellable by
Williams [32]. Postnikov, Speyer, and Williams [26] showed that the cell decomposition
is a CW complex, and Rietsch and Williams [28] showed that the CW complex is regular
up to homotopy (i.e. every cell closure is contractible). Our first main theorem is:

Theorem 1.1. The space Gr≥0(k, n) is homeomorphic to a k(n− k)-dimensional closed ball.

It remains an open problem to establish Postnikov’s conjecture, i.e. to address arbitrary
cell closures in the cell decomposition of Gr≥0(k, n). Each of Postnikov’s cells determines
a matroid known as a positroid, and Theorem 1.1 also reflects how positroids are related
via specialization (see [1] for a related discussion about oriented matroids).

Separately, Lusztig [23] defined and studied the totally nonnegative part (G/P)≥0 of
a partial flag variety of a split real reductive group G. In the case G/P = GrR(k, n),
Rietsch showed that Lusztig’s and Postnikov’s definitions of the totally nonnegative part
are the same (see e.g. [20, Remark 3.8] for a proof). Lusztig [22] showed that (G/P)≥0
is contractible, and our approach to Theorem 1.1 is similar to his. We will return to
(G/P)≥0 in a separate work [11].

Our proof of Theorem 1.1 is based on a cyclic shift vector field S on Gr≥0(k, n). It can
be thought of as an affine (or loop group) analogue of Lusztig’s flow, and is closely re-
lated to the whirl matrices of [21]. The flow defined by S contracts all of Gr≥0(k, n) to a
unique fixed point X0. We construct a homeomorphism from Gr≥0(k, n) to a closed ball
B ⊂ Gr≥0(k, n) centered at X0, by mapping each trajectory in Gr≥0(k, n) to its intersection
with B. A feature of our construction is that we do not rely on any cell decomposition
of the totally nonnegative Grassmannian.

The totally nonnegative part of the unipotent group. The interest in totally nonnegative
spaces from the viewpoint of combinatorial topology dates at least back to Fomin and
Shapiro [9]. Edelman [8] had shown that intervals in the poset formed by the symmetric
group Sn with Bruhat order are shellable, whence Björner’s results [6] imply that there
exists a regular CW complex homeomorphic to a ball whose face poset is isomorphic to
Sn. Fomin and Shapiro [9] suggested that such a CW complex could be found naturally
occurring in the theory of total positivity. Namely, let U ⊂ GLn(R) be the subgroup
of all upper-triangular unipotent matrices, and U≥0 its totally nonnegative part, where
all minors are nonnegative. Let V≥0 denote the subset of U≥0 of matrices whose super-
diagonal entries sum to 1. The intersection of V≥0 with the Bruhat stratification of U
induces a decomposition of V≥0 into cells, whose face poset is isomorphic to Sn (see
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Figure 1: Bruhat order on Sn is the face poset of V≥0. In the case n = 3 shown here, V≥0
is cut out by the nonnegativity of two minors: the 1× 1 minor y and the 2× 2 minor

x(1− x)− y. It has one 2-cell, two edges, and two vertices.

Figure 1). Fomin and Shapiro conjectured that V≥0 is a regular CW complex, which was
proved by Hersh [13]. Applying her result to the cell of top dimension implies that V≥0
is homeomorphic to an

(
(n

2)− 1
)
-dimensional closed ball. We discovered a new proof of

this special case. We emphasize that our techniques in their present form are not able
to address the other (lower-dimensional) cell closures in V≥0, which appear in Hersh’s
result. In addition, Fomin and Shapiro’s conjecture, as well as Hersh’s theorem, hold in
arbitrary Lie types, while we only consider type A.

The cyclically symmetric amplituhedron. A robust connection between the totally non-
negative Grassmannian and the physics of scattering amplitudes was developed in [5],
which led Arkani-Hamed and Trnka [4] to define topological spaces called amplituhedra.
A distinguishing feature that these topological spaces share (conjecturally) with convex
polytopes is the existence of a canonical differential form [2]. This brings the analogy
between totally nonnegative spaces and polytopes beyond the level of face posets.

Let k, m, n be nonnegative integers with k + m ≤ n, and Z be a (k + m) × n ma-
trix whose (k + m) × (k + m) minors are all positive. We regard Z as a linear map
Rn → Rk+m, which induces a map ZGr on GrR(k, n) taking the subspace X to the sub-
space {Z(v) : v ∈ X}. The (tree) amplituhedron An,k,m(Z) is the image of Gr≥0(k, n) in
Gr(k, k + m) under the map ZGr. When k = 1, the totally nonnegative Grassmannian
Gr≥0(1, n) is a simplex in RPn−1, and the amplituhedron An,1,m(Z) is a cyclic polytope in
RPm [30]. Understanding the topology of amplituhedra, and more generally of Grass-
mann polytopes [20] (obtained by relaxing the positivity condition on Z), was one of the
main motivations of our work.

We now take m to be even, and Z = Z0 such that the rows of Z0 span the unique ele-
ment of Gr≥0(k + m, n) invariant under Z/nZ-cyclic action (cf. [15]). We call An,k,m(Z0)
the cyclically symmetric amplituhedron. When k = 1 and m = 2, An,1,2(Z0) is a regular n-
gon in the plane. More generally, An,1,m(Z0) is a polytope whose vertices are n regularly
spaced points on the trigonometric moment curve in RPm.
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Theorem 1.2. The cyclically symmetric amplituhedron An,k,m(Z0) is homeomorphic to a km-
dimensional closed ball.

It is expected that every amplituhedron is homeomorphic to a closed ball. The topol-
ogy of amplituhedra and Grassmann polytopes is not well understood in general; see [16,
3] for recent work.

The compactification of the space of planar electrical networks. Let Γ be an electri-
cal network consisting only of resistors, modeled as an undirected graph whose edge
weights (conductances) are positive real numbers. The electrical properties of Γ are
encoded by the response matrix Λ(Γ) : Rn → Rn, sending a vector of voltages at n dis-
tinguished boundary vertices to the vector of currents induced at the same vertices. The
response matrix can be computed using (only) Kirchhoff’s law and Ohm’s law. Follow-
ing Curtis, Ingerman, and Morrow [7] and Colin de Verdière, Gitler, and Vertigan [31],
we consider the space of response matrices of planar electrical networks: those Γ embed-
ded into a disk, with boundary vertices on the boundary of the disk. In [18], the third
author defined a compactification En of this space. We may identify En with the intersec-
tion of Gr≥0(n− 1, 2n) (viewed as a subset of P(n

k)−1 under the Plücker embedding) and
a certain linear subspace H of P(n

k)−1, spanned by vectors corresponding to noncrossing
partitions of an n-element set. The subspace H is cyclically symmetric, which we exploit
to prove the following theorem.

Theorem 1.3. The space En is homeomorphic to an (n
2)-dimensional closed ball.

A cell decomposition of En was defined in [18], extending earlier work in [7, 31].
The face poset of this cell decomposition had been defined and studied by Kenyon [17,
Section 4.5.2]. Theorem 1.3 says that the closure of the unique cell of top dimension in
En is homeomorphic to a closed ball. In [19], the third author showed that the face poset
of the cell decomposition of En is Eulerian, and conjectured that it is shellable. Hersh
and Kenyon recently proved this conjecture [14]. Björner’s results [6] therefore imply
that this poset is the face poset of some regular CW complex homeomorphic to a ball.
We expect that En forms such a CW complex, so that the closure of every cell of En is
homeomorphic to a closed ball. Proving this remains an open problem.

Outline. In Sections 2 to 4, we sketch the proof of Theorem 1.1, that Gr≥0(k, n) is home-
omorphic to a closed ball. The proofs for V≥0, An,k,m(Z0), and En are similar; see [10] for
the details. In Section 5, we give examples in the case of Gr≥0(1, 3) and Gr≥0(2, 4).
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2 Global coordinates for Gr≥0(k, n)

Let GrC(k, n) be the complex Grassmannian of all k-dimensional subspaces of Cn. We
set [n] := {1, 2, . . . , n}, and let ([n]k ) denote the set of k-element subsets of [n]. For
X ∈ GrC(k, n), we denote by (∆I(X))

I∈([n]k )
∈ CP(n

k)−1 the Plücker coordinates of X: ∆I(X)

is the k× k minor of X (viewed as a k× n matrix modulo row operations) with column set
I. We call the subspace X ∈ GrC(k, n) real if X is closed under complex conjugation, or
equivalently, if all Plücker coordinates of X are real (up to a common scalar). We regard
the real Grassmannian GrR(k, n) as the subset of GrC(k, n) of real elements, endowed
with the usual Euclidean topology. Recall that Gr≥0(k, n) is the subset of GrR(k, n)
where all Plücker coordinates are nonnegative (up to a common scalar). We also define
the totally positive Grassmannian Gr>0(k, n) as the subset of Gr≥0(k, n) where all Plücker
coordinates are positive.

Let R := {ζ ∈ C : ζn = (−1)k−1}, and for ζ ∈ R let vζ := (1, ζ, ζ2, . . . , ζn−1) ∈ Cn. Let
R0 denote the set of k elements of R with greatest real part, and let X0 ∈ GrC(k, n) be the
span of vζ for ζ ∈ R0. Then X0 is totally positive: using Vandermonde’s determinantal
formula, we find that

∆I(X0) = ∏
i,j∈I, i<j

sin
(

j−i
n π

)
> 0 for all I ∈ ([n]k ). (2.1)

(This result is essentially due to Scott [29]; see [15] for more details.)
Now let M ' Ck(n−k) denote the space of complex k× (n− k) matrices A with rows

indexed by R0 and columns indexed by R \ R0. Define φ : M→ GrC(k, n) by

φ(A) := span(vζ + ∑ω∈R\R0
Aζ,ωvω : ζ ∈ R0). (2.2)

Note that φ(0) = X0. Also, φ is an embedding, and its image is the Schubert cell

φ(M) = {X ∈ GrC(k, n) : X ∩ span(vω : ω ∈ R \ R0) = 0}.

Proposition 2.1. The image φ(M) contains Gr≥0(k, n).

Proof. Let 〈·, ·〉 : Cn×Cn → C denote the inner product 〈v, w〉 := ∑n
j=1 vjwj, and for X ⊂

Cn let X⊥ := {v ∈ Cn : 〈v, w〉 = 0 for all w ∈ X} denote the subspace orthogonal to X.
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Note that {vζ : ζ ∈ R} is an orthogonal basis of Cn, so X⊥0 = span(vω : ω ∈ R \ R0) and
thus φ(M) = {X ∈ GrC(k, n) : X∩X⊥0 = 0}. We now show that given X ∈ Gr≥0(k, n), we
have X ∩X⊥0 = 0. Since X and X0 are both real, it suffices to show that X ∩X⊥0 ∩Rn = 0.
(Indeed, if v ∈ X ∩ X⊥0 is nonzero, then Re(v) = v+v

2 and Im(v) = v−v
2i are both in

X ∩ X⊥0 ∩Rn, and at least one of them is nonzero.) This follows from a general result of
Gantmakher and Krein [12, Theorems V.3 and V.6]: for any Y ∈ GrR(k, n), Y is totally
nonnegative if and only if all vectors in Y ∩Rn change sign at most k− 1 times, and Y is
totally positive if and only if all nonzero vectors in Y⊥ ∩Rn change sign at least k times.
(By definition, the number of sign changes of (v1, . . . , vn) ∈ Rn is the number of times
the sequence v1, . . . , vn changes sign, ignoring any zero entries.)

Note that for A ∈ M, the element φ(A) of GrC(k, n) is real if and only if Aζ,ω = Aζ,ω

for all ζ ∈ R0, ω ∈ R \ R0. Let MR ' Rk(n−k) denote the subset of M of matrices A
satisfying this property. Then Proposition 2.1 implies that φ|MR

: MR ↪→ GrR(k, n) is an
embedding whose image contains Gr≥0(k, n). See Section 5 for examples in the case of
GrR(1, 3) and GrR(2, 4).

3 The cyclic shift S

For g ∈ GLn(C), we let g act on GrC(k, n) by taking the subspace X to g · X := {g(v) :
v ∈ X}. We let 1 ∈ GLn(C) denote the identity, and for x ∈ gln(C) = End(Cn) we let
exp(x) := ∑∞

j=0
xj

j! ∈ GLn(C) denote the matrix exponential of x.

Define the cyclic shift S ∈ gln(C) by S(v1, . . . , vn) := (v2, . . . , vn, (−1)k−1v1). We
examine the action of exp(tS) on GrC(k, n).

Lemma 3.1. Let X ∈ Gr≥0(k, n). Then exp(tS) · X ∈ Gr>0(k, n) for all t > 0.

Proof. We will make use of the operator 1+ tS, which belongs to GLn(C) for |t| < 1. The
Plücker coordinates of (1 + tS) · X are

∆I((1 + tS) · X) = ∑
ε∈{0,1}k

tε1+···+εk ∆{i1+ε1,...,ik+εk}(X) for I = {i1, . . . , ik} ⊂ [n],

where i1 + ε1, . . . , ik + εk are taken modulo n. Therefore (1 + tS) · X ∈ Gr≥0(k, n) for

t ∈ [0, 1). Since exp(tS) = limj→∞

(
1 + tS

j

)j
, we get exp(tS) · X ∈ Gr≥0(k, n) for t ≥ 0.

Now we must show that X′ := exp(t0S) · X ∈ Gr>0(k, n) for any t0 > 0. Suppose
otherwise that X′ ∈ Gr≥0(k, n) \Gr>0(k, n). We will show that exp(tS) · X′ /∈ Gr≥0(k, n)
for all t < 0 sufficiently close to 0. (Since exp(tS) ·X′ = exp((t0 + t)S) ·X, this contradicts
the conclusion of the previous paragraph.) From exp(tS) = 1 + tS + O(t2), we obtain

∆I(exp(tS) · X′) = ∆I(X′) + t ∑
I′

∆I′(X′) + O(t2) for I ∈ ([n]k ),
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where the sum is over all I′ ∈ ([n]k ) obtained from I by increasing exactly one element
by 1 modulo n. If we can find such I and I′ with ∆I(X′) = 0 and ∆I′(X′) > 0, then
∆I(exp(tS) · X′) < 0 for all t < 0 sufficiently close to zero. In order to do this, we
introduce the directed graph D with vertex set ([n]k ), where J → J′ is an edge of D if and
only if we can obtain J′ from J by increasing exactly one element by 1 modulo n. Note
that for every pair of vertices K and K′ of D, there exists a directed path from K to K′:
• we can get from [k] to any {i1 < · · · < ik} by shifting k to ik, k− 1 to ik−1, etc.;
• similarly, we can get from any {i1 < · · · < ik} to {n− k + 1, n− k + 2, . . . , n};
• we can get from {n− k + 1, . . . , n} to [k] by shifting n to k, n− 1 to k− 1, etc.

Take K, K′ ∈ ([n]k ) with ∆K(X′) = 0 and ∆K′(X′) > 0, and consider a directed path from
K to K′. It goes through an edge I → I′ with ∆I(X′) = 0 and ∆I′(X′) > 0, as desired.

Let us see how exp(tS) acts on matrices A ∈ M. Note that S(vζ) = ζvζ for ζ ∈ R, so
exp(tS)(vζ) = etζvζ . Therefore exp(tS) acts on the basis of φ(A) in (2.2) by

exp(tS)(vζ + ∑ω∈R\R0
Aζ,ωvω) = etζ(vζ + ∑ω∈R\R0

et(ω−ζ)Aζ,ωvω)

for all ζ ∈ R0. Thus exp(tS) · φ(A) = φ(exp(tS) · A), where by definition

(exp(tS) · A)ζ,ω := et(ω−ζ)Aζ,ω. (3.1)

Note that the action of exp(tS) on M preserves MR.
Now let us show that for any t > 0, exp(tS) is a Lipschitz map on M, with respect to

the L2-norm ‖ · ‖ on M defined by ‖A‖2 := ∑ζ,ω |Aζ,ω|2.

Lemma 3.2. Define C := ecos( k−1
n π)−cos( k+1

n π) > 1. Then ‖ exp(tS) · A‖ ≤ C−t‖A‖ for all
A ∈ M and t ≥ 0. Equivalently, ‖ exp(tS) · A‖ ≥ C−t‖A‖ for all A ∈ M and t ≤ 0.

Proof. Consider a matrix A ∈ M. Then for any ζ ∈ R0, ω ∈ R \ R0, and t ≥ 0, we have

|(exp(tS) · A)ζ,ω| = |et(ω−ζ)Aζ,ω| = e−t Re(ζ−ω)|Aζ,ω| ≤ C−t|Aζ,ω|.

Here we used the fact that Re(ζ) ≥ cos
(

k−1
n π

)
and Re(ω) ≤ cos

(
k+1

n π
)

.

4 Trajectories of exp(tS) and the proof of Theorem 1.1

Let Π ⊂ MR be the preimage of Gr≥0(k, n) under φ, so that φ|Π gives a homeomorphism
Π → Gr≥0(k, n). Since Gr≥0(k, n) is a closed subspace of the projective space RP(n

k)−1,
it is compact. Hence Π is also compact. Also recall that φ(0) = X0 ∈ Gr>0(k, n), and
Gr>0(k, n) is open in GrR(k, n), so 0 ∈ int(Π).
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For r > 0, we denote by Br the closed ball in MR of radius r in the L2-norm centered
at 0. Consider the curve t 7→ exp(tS) · A starting at any point A ∈ MR \ {0}. By
Lemma 3.2, for any r > 0 this curve intersects the sphere ∂Br for a unique t, which we
denote by tr(A). We also claim that this curve t 7→ exp(tS) · A intersects the boundary
∂Π for a unique t, which we will denote by t∂(A). Indeed, let us consider the set
T := {t ∈ R : exp(tS) · A ∈ Π}. By Lemma 3.2, t ∈ T for t � 0, and T is bounded
from below. By Lemma 3.1, if t ∈ T then [t, ∞) ⊂ T, and moreover exp(t′S) · A ∈ int(Π)
for t′ > t. Also, T is closed since it is the preimage of Π under the continuous map
t 7→ exp(tS) · A. Therefore T is an interval of the form [t0, ∞) for some t0, and we set
t∂(x) := t0.

Lemma 4.1. The functions tr (for any r > 0) and t∂ are continuous on MR \ {0}.

Proof. Let us fix r > 0 and show that tr is continuous. It suffices to show that the
preimage of any open interval I ⊂ R is open. To this end, let A ∈ t−1

r (I). Take t1, t2 ∈ I
with t1 < tr(A) < t2. By Lemma 3.2, we have ‖ exp(t1S) · A‖ > r > ‖ exp(t2S) ·
A‖. Now note that the map γ1 : MR → MR, A′ 7→ exp(t1S) · A′ is continuous and
MR \ Br is open, so γ−1

1 (MR \ Br) is an open neighborhood of A. Similarly, defining
γ2 : MR → MR, A′ 7→ exp(t2S) · A′, we have that γ−1

2 (int(Br)) is an open neighborhood
of A. Therefore γ−1

1 (MR \ Br) ∩ γ−1
2 (int(Br)) is an open neighborhood of A, whose

image under tr is contained in (t1, t2) ⊆ I. Thus t−1
r (I) contains an open neighborhood

of A, for all A ∈ t−1
r (I).

The proof that t∂ is continuous is very similar, where we replace Br by Π. Then
exp(t1S) · A is contained in MR \Π (which is open), and exp(t2S) · A is contained int(Π)
(which is the preimage of Gr>0(k, n) under φ, and hence is open because Gr>0(k, n) is
open in GrR(k, n)).

Proof of Theorem 1.1. We show that Π is homeomorphic to a closed ball. Fix r > 0 such
that Br ⊂ Π, and define the maps α : Π→ Br, β : Br → Π by

α(A) := exp((tr(A)− t∂(A))S) · A, β(A) := exp((t∂(A)− tr(A))S) · A

for A 6= 0, and α(0) := 0, β(0) := 0. We claim that α and β are inverse homeomorphisms.
First let us show that α and β are inverse maps. Given A ∈ Π \ {0}, let A′ := α(A) ∈

Br. Then t∂(A′) = 2t∂(A)− tr(A) and tr(A′) = t∂(A), so

β(A′) = exp(((2t∂(A)− tr(A))− t∂(A))S) · (exp((tr(A)− t∂(A))S) · A) = A.

Therefore β ◦ α = idΠ. We can verify that α ◦ β = idBr by a similar argument.
Now α is continuous everywhere except possibly at 0 by Lemma 4.1. By Lemma 3.2,

we have α(Bs) ⊂ Bs for all s < r, so α is also continuous at 0. Thus α is a continuous
bijection from a compact space to a Hausdorff space, so it is a homeomorphism.



The totally nonnegative Grassmannian is a ball 9

Remark 4.2. It follows from results of Rietsch (see [15]) that the point X0 of the flow
exp(tS) is, rather surprisingly, also the unique totally nonnegative critical point of the
q = 1 specialization of the superpotential of the Grassmannian [24, Section 6]. However,
the superpotential is not defined on the boundary of Gr≥0(k, n). Its exact relation to the
cyclic shift flow is somewhat mysterious.

5 Examples: GrR(1, 3) and GrR(2, 4)

The case GrR(1, 3). The map φ : R2 ' MR → GrR(1, 3) = RP2 is

A =
[ e2πi/3 e−2πi/3

1 a + bi a− bi
] φ
7−−→ (1 + 2a : 1− a−

√
3b : 1− a +

√
3b) ∈ RP2.

Therefore Π ⊆ R2 is the equilateral triangle with vertices (a, b) = (1, 0), (−1
2 ,
√

3
2 ),

(−1
2 ,−

√
3

2 ). The trajectories of exp(tS) are shown in Figure 2. We remark that this

Figure 2: The trajectories of the cyclic flow S on Gr≥0(1, 3), regarded as an equilateral
triangle with vertices (1, 0), (−1

2 ,
√

3
2 ), (−1

2 ,−
√

3
2 ). The cyclic shift map itself acts by

rotating the triangle counterclockwise by 120◦.

figure is related to an old puzzle: if we place a dog at each vertex of the equilateral
triangle, and each runs towards the dog at the next (counterclockwise) vertex at constant
speed 1, how long does it take for the dogs to catch each other? The answer is time 2√

3
,

which we can see by fixing one of the dogs and viewing everything as taking place in
this dog’s frame of reference. The trajectories themselves are given in Figure 2.
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The case GrR(2, 4). The map φ : R4 ' MR → GrR(2, 4) is

A =


e3πi/4 e−3πi/4

eπi/4
a + bi√

2
c + di√

2

e−πi/4
c− di√

2
a− bi√

2

 φ
7−−→

∆{1,2} = 2 + a2 + b2 − c2 − d2 + 2
√

2(a− b− d),

∆{2,3} = 2 + a2 + b2 − c2 − d2 + 2
√

2(d− a− b),

∆{3,4} = 2 + a2 + b2 − c2 − d2 + 2
√

2(b− d− a),

∆{1,4} = 2 + a2 + b2 − c2 − d2 + 2
√

2(a + b + d),

∆{1,3} = 2
√

2−
√

2(a2 + b2 − c2 − d2) + 4c,

∆{2,4} = 2
√

2−
√

2(a2 + b2 − c2 − d2)− 4c.

(We have chosen the entries of A so that the sum of the squares of the absolute values of
its entries equals a2 + b2 + c2 + d2 = ‖(a, b, c, d)‖2.) The inverse map is given by

a = (∆{1,2} − ∆{2,3} − ∆{3,4} + ∆{1,4})/δ,

b = (−∆{1,2} − ∆{2,3} + ∆{3,4} + ∆{1,4})/δ, c =
√

2(∆{1,3} − ∆{2,4})/δ,

d = (−∆{1,2} + ∆{2,3} − ∆{3,4} + ∆{1,4})/δ,

where δ = ∆{1,3}+ ∆{2,4}+
1√
2
(∆{1,2}+ ∆{2,3}+ ∆{3,4}+ ∆{1,4}). The image φ(MR) is the

subset of GrR(2, 4) where δ 6= 0, which we see includes Gr≥0(2, 4), verifying Proposi-
tion 2.1 in this case.

Our results imply that Gr≥0(2, 4) is homeomorphic to the subset of R4 where the 6
polynomials ∆{i,j} (for 1 ≤ i < j ≤ 4) in a, b, c, d are nonnegative. The closures of cells in
the cell decomposition of Gr≥0(2, 4) are obtained by intersecting with the zero locus of
some subset of these 6 polynomials. The 0-dimensional cells (i.e. the points of Gr≥0(2, 4)
with only one nonzero Plücker coordinate) are
√

2(1,−1, 0,−1),
√

2(−1,−1, 0, 1),
√

2(−1, 1, 0,−1),
√

2(1, 1, 0, 1),
√

2(0, 0, 1, 0),
√

2(0, 0,−1, 0).

In general, using φ we can describe Gr≥0(k, n) as the subset of Rk(n−k) where some
(n

k) polynomials of degree at most k are nonnegative.
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