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Abstract. In the 1995 paper entitled “Noncommutative symmetric functions,” Gelfand,
et. al. defined several noncommutative symmetric function analogues for well-known
symmetric function bases, including two distinct types of power sum bases. This pa-
per explores the combinatorial properties of their duals, two distinct quasisymmetric
power sum bases. In particular, we show that they refine the classical symmetric power
sum basis, and give transition matrices to other well-understood bases, as well as ex-
plicit formulas for products of quasisymmetric power sums.
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1 Introduction

The ring of symmetric functions Sym has two important generalizations: the ring QSym
of quasisymmetric functions, and the ring NSym of noncommutative symmetric func-
tions. Most well-known bases of Sym generalize nicely to bases of QSym and NSym.
Moreover, a duality between QSym and NSym as Hopf algebras interconnects their
structure in powerful ways, lifting the traditional Hall inner product on Sym [1, 3,
5, 6, 7, 10].

Here, we explore analogues to the symmetric power sum bases in QSym. With respect
to the pairing on Sym, the power sum basis is (up to a constant) self-dual, a relationship
expected to hold between analogues in QSym and NSym. Two types of noncommutative
power sum bases, Ψ and Φ, were already defined by Gelfand, et. al. [5]. The quasisym-
metric duals to the noncommutative power sums have briefly appeared (one type in [4]
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and the other in [11]) but very little has been said about their structure or their relation-
ship to other bases. The main objective of this work is to fill this gap in the field. To that
end, we define two types of quasisymmetric power sum bases as scaled duals to Ψ and
Φ. We give combinatorial interpretations of their coefficients, and use those to show that
they both refine the symmetric power sums (Theorems 3.6 and 3.10). We also give tran-
sition matrices to other well-understood bases, and explore algebraic properties, giving
explicit formulas for products of quasisymmetric power sums.

Acknowledgements

We are grateful to BIRS and the organizers of Algebraic Combinatorixx II for enabling
the genesis of this project, additional details of which are available in [2].

2 Preliminaries

We generally use lower case letters (e.g. e, m, h, s, and p) to indicate symmetric functions,
bold barred letters (e.g. e, h, and r) to indicate noncommutative symmetric functions, and
capital letters (e.g. M and F) to indicate quasisymmetric functions. When there is a single
clear analogue of a symmetric function basis, we use the same letter for the symmet-
ric functions and their analogue (following [10] rather than [5]). For the two different
analogues to the power sums, we echo [5] in using Ψ and Φ for the noncommutative
symmetric power sums, and then use Ψ and Φ as quasisymmetric analogues.

2.1 Quasisymmetric functions

The ring of quasisymmetric functions, denoted QSym, is defined as the set of formal power
series f ∈ CJx1, x2, . . .K of bounded degree, where the coefficient of xa1

1 xa2
2 · · · x

ak
k in f is

the same as the coefficient for xa1
i1

xa2
i2
· · · xak

ik
for any i1 < i2 < · · · < ik (see [10, 11, 12]).

There are a number of common bases for QSymn as a vector space over C. These bases
are indexed by (strong) integer compositions.

Recall α = (α1, α2, . . . , αk) � n is a composition of n if αi > 0 for each i and ∑i αi = n.
The size of a composition α is |α| = ∑ αi and the length is `(α) = k. We denote by α̃ the
partition obtained by placing the parts of α in weakly decreasing order.

For α, β � n, we say that β refines α (equivalently, α is a coarsening of β), written β 4 α

(following the convention of [10]), if there are i1 < · · · < ik−1 such that

α = (β1 + · · ·+ βi1 , βi1+1 + · · ·+ βi1+i2 , . . . , βi1+···+ik−1+1 + · · ·+ βi1+···+ik).

We denote by β(j) the composition made up of the parts of β (in order) that sum to αj.



Quasisymmetric Power Sums 3

The quasisymmetric monomial function indexed by α is

Mα = ∑
i1<···<ik

xα1
i1
· · · xαk

ik
, where k = `(α),

and the fundamental quasisymmetric function is

Fα = ∑
β4α

Mβ, so that Mα = ∑
β4α

(−1)`(β)−`(α)Fβ. (2.1)

2.2 Noncommutative symmetric functions

The ring of noncommutative symmetric functions, denoted NSym, is formally defined as
a free associative algebra C〈e1, e2, . . .〉, where the ei are regarded as noncommutative ele-
mentary functions and eα = eα1eα2 · · · eαk , for a composition α. Define the noncommutative
complete homogeneous symmetric functions as in [5, Section 4.1] by

hn = ∑
α�n

(−1)n−`(α)eα, and hα = hα1 · · · hαk = ∑
β4α

(−1)|α|−`(β)eβ. (2.2)

Via the pairing between QSym and NSym, we have 〈Mα, hβ〉 = δα,β.
In [5, Section 3] the noncommutative power sums of the first kind (or type) Ψα and the

second kind Φα are defined by considering two natural reformulations of logarithmic
differentiation on the generating functions of h and e in a manner analogous to the
commuting power sums. Each can be expressed in terms of the h basis [5, Section 4].
The first type is given by

Ψn = ∑
β�n

(−1)`(β)−1β`(β)hβ. (2.3)

Given compositions β 4 α, let lp(β) = β`(β) (last part) and lp(β, α) = ∏
`(α)
i=1 lp(β(i)). Then

Ψα = Ψα1 · · ·Ψαm = ∑
β4α

(−1)`(β)−`(α) lp(β, α)hβ. (2.4)

Letting `(β, α) = ∏
`(α)
j=1 `(β(j)), the noncommutative power sums of the second kind are

Φn = ∑
α�n

(−1)`(α)−1 n
`(α)

hα, and Φα = ∑
β4α

(−1)`(β)−`(α) ∏i αi

`(β, α)
hβ. (2.5)

3 Quasisymmetric power sum bases

We describe two quasisymmetric analogues of the power sums. The symmetric power
sums satisfy 〈pλ, pµ〉 = zλδλ,µ, where zλ is the number of permutations of cycle type λ.
Specifically, zλ = 1m1m1!2m2m2! · · · kmk mk!, where mi is the multiplicity of i in λ. For a
composition α, we set zα = zα̃.
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3.1 Type 1 quasisymmetric power sums

We define the type 1 quasisymmetric power sums to be the basis Ψ of QSym satisfying

〈Ψα, Ψβ〉 = zαδα,β.

Duality makes most of this definition straightforward; our choice of scalar makes Ψ a
refinement of the symmetric power sums as shown in Theorem 3.6. In [5, Section 4.5],
the authors give both the transition matrix from the h basis to the Ψ basis (above in (2.3)),
and its inverse. Using the latter and duality, we compute a quasisymmetric monomial
function expansion of Ψα. Given α 4 β, define

π(α) =
`(α)

∏
i=1

i

∑
j=1

αj and π(α, β) =
`(β)

∏
i=1

π(α(i)).

Then
hα = ∑

β4α

1
π(β, α)

Ψβ, so that ψα = ∑
β<α

1
π(α, β)

Mβ

has the property that 〈ψα, Ψβ〉 = δα,β. Then the type 1 quasisymmetric power sums
satisfy

Ψα = zαψα = zα ∑
β<α

1
π(α, β)

Mβ. (3.1)

For example Ψ(2,3,2) = (22 · 2! · 3)
(

1
2·3·2 M(2,3,2) +

1
2·5·2 M(5,2) +

1
2·3·5 M(2,5) +

1
2·5·7 M(7)

)
.

The remainder of this section is devoted to computing an explicit formula for Ψ and
a combinatorial proof of the refinement of the symmetric power sums. We consider
permutations of [n] = {1, 2, . . . , n} both in one-line notation and in cycle notation. We
work with two canonical forms for writing a permutation according to its cycle type.

Definition 3.1. A permutation in cycle notation is said to be in standard form if each
cycle is written with the largest element last and the cycles are listed in increasing order
according to their largest element. It is said to be in partition form if each cycle is written
with the largest element last, the cycles are listed in descending length order, and cycles
of equal length are listed in increasing order according to their largest element. Given a
fixed order of the cycles, the (ordered) cycle type is the composition α � n with αi equal to
the length of the ith cycle.

For example, the standard form of (26)(397)(54)(1)(8) is (1)(45)(26)(8)(739) (with cy-
cle type (1, 2, 2, 1, 3)) while the partition form is (739)(45)(26)(1)(8) (with cycle type
(3, 2, 2, 1, 1)).

Next, we define a set of permutations that is a key combinatorial ingredient in our
proofs. Let Sn be the set of permutations of [n]. Fix β � n and σ ∈ Sn, written in one-line
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permutation σ splitβ(σ) add () by α consistent?

571423689 57 || 14 || 23689 (5)(7) || (14) || (2)(368)(9) yes

571428369 57 || 14 || 28369 (5)(7) || (14) || (2)(836)(9) no

571493682 57︸︷︷︸
σ1

|| 14︸︷︷︸
σ2

|| 93682︸ ︷︷ ︸
σ3

(5)(7)︸ ︷︷ ︸
σ̄1

|| (14)︸︷︷︸
σ̄2

|| (9)(368)(2)︸ ︷︷ ︸
σ̄3

no

Table 1: Determining if σ ∈ Consα4β where β = (2, 2, 5) and α = (1, 1, 2, 1, 3, 1).

notation. Partition σ according to β (which we draw using ||), and consider the (disjoint)
words splitβ(σ) = [σ1, . . . , σ`], where ` = `(β). Let [splitβ(σ)]j = σj. See the second
column of Table 1 for examples.

Definition 3.2. Fix α 4 β compositions of n. Given σ ∈ Sn written in one-line notation,
let σj = [splitβ(σ)]j. Then, for each i = 1, . . . , `, add parentheses to σi according to

α(i), yielding disjoint permutations σ̄i (of subalphabets of [n]) of cycle type α(i). If the
resulting subpermutations σ̄i are all in standard form, we say σ is consistent with α 4 β.
In other words, we look at subsequences of σ (split according to β) separately to see if
each subsequence is in standard form upon adding parentheses according to α(j). Define

Consα4β = {σ ∈ Sn : σ is consistent with α 4 β}.

For α = (1, 1, 2, 1, 3, 1) and β = (2, 2, 5), Table 1 shows several examples of permutations
and the partitioning process. Note how β subtly influences consistency in the example
of the last row.

To compute coefficients in the quasisymmetric monomial function expansion of Ψα,
we fix α and let β range over all coarsenings of α. Notice that if σ is consistent with α 4 β

for some choice of β, then σ is consistent with α 4 γ for all α 4 γ 4 β. This implies
Consα4β ⊆ Consα4α for all α 4 β. The next lemma is used to establish a combinatorial
interpretation of the coefficients of Ψα.

Lemma 3.3. Let α, β � n. If α 4 β, we have |Consα4β| · π(α, β) = n!.

Proof. Consider the set Aα of size π(α, β) defined by

Aα =
`(β)⊗
i=1

`(α(i))⊗
j=1

Z/a(i)j Z

 , where a(i)j =
j

∑
r=1

α
(i)
r .

Define a map Sh : Consα4β × Aα → Sn with (σ, s) 7→ σs as follows (see also Example
3.4).
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Start with s = [s(i)j ]
`(β) `(α(i))
i=1 j=1 ∈ Aα and σ ∈ Consα4β. First partition σ into words

σ1, . . . , σ` according to β so that σi = [splitβ(σ)]i. Then for each i = 1, . . . , `(β), modify

σi by cycling the first a(i)j values right by s(i)j for j = 1, . . . , `(α(i)). Call the resulting word

σi
s. Let σs = σ1

s · · · σ`
s . (We omit the straightforward check that the process is invertible.

See [2] for details.)

Example 3.4. Let β = (5, 4) � 9, and let α = (2, 3, 2, 2) 4 β. Then α(1) = (2, 3), so that
a(1)1 = 2 and a(1)2 = 2 + 3 = 5; and α(2) = (2, 2), so that a(2)1 = 2 and a(2)2 = 2 + 2 = 4. Fix
σ = 267394518 ∈ Consα4β, and s = (s(1), s(2)) = ((1, 3), (0, 1)) ∈ Aα.
To determine σs, first partition σ according to β: σ1 = 26739 and σ2 = 4518.
Next, cycle σi according to α(i):

σ1 = 26739→ 26739→ 62739→ 62739→ 73962 = σ1
s ;

σ2 = 4518→ 4518→ 4518 → 4518→ 8451 = σ2
s .

Finally, combine to get σs = σ1
s σ2

s = 739628451.

We now give an explicit formula for Ψα. The proof (omitted for this abstract) is a
direct computation via careful use of Lemma 3.3 [2].

Theorem 3.5. Let mi is the multiplicity of i in α. Then

Ψ(α1,··· ,αk)
(x1, · · · , xm) =

∏n
i=1 mi!

n! ∑
σ∈Sn

∑
i∈Iσ

xα1
i1
· · · xαk

ik
,

where

Iσ = {1 ≤ i1 ≤ · · · ≤ ik ≤ m : if ij = ij+1 then max([splitα(σ)]j) < max([splitα(σ)]j+1)}.

We next turn our attention to a proof that the type 1 quasisymmetric power sums
refine the symmetric power sums in a natural way. For α, β � n, let Rαβ = |Oαβ|, where

Oαβ =

 ordered set partitions

(B1, · · · , B`(β)) of {1, · · · , `(α)}

∣∣∣∣∣∣ β j = ∑
i∈Bj

αi for 1 ≤ j ≤ `(β)

 ,

i.e., Rαβ is the number of ways to group the parts of α so that the parts in the jth
(unordered) group sum to β j. In particular, for a partition λ, from [12, p.297] we have

pλ = ∑
α|=n

RλαMα.

The following theorem can be established either by exploiting duality or through a
bijective proof. We sketch the bijective proof with details provided in full in [2].



Quasisymmetric Power Sums 7

Theorem 3.6. Let λ ` n. Then
pλ = ∑

α̃=λ

Ψα.

In particular, Ψα = zαψα = zα̃ψα is the unique rescaling of the ψ basis that refines the symmetric
power sums with unit coefficients.

Recall from (3.1) that, for a composition α, we have Ψα = ∑
β<α

zα

π(α, β)
Mβ. Summing

over α rearranging to λ and multiplying on both sides by n!/zλ, we see that to prove
Theorem 3.6 it is sufficient to establish the following for a fixed β.

Proposition 3.7. For λ ` n and β � n,

Rλβ
n!
zλ

= ∑
α4β
α̃=λ

n!
π(α, β)

.

Proof. Let λ ` n and β � n. Using Lemma 3.3, we only need show that

Rλβ
n!
zλ

= ∑
α4β
α̃=λ

|Consα4β|. (3.2)

For each refinement α 4 β, let Cα = {(α, σ) : σ ∈ Consα4β} and define C =
⋃

α4β
α̃=λ

Cα. Let

Sλ
n be the set of permutations of n of cycle type λ. We prove (3.2) by defining the map

Br : C → Oλβ × Sλ
n

as follows (see also Example 3.8). Start with (α, σ) ∈ C, with σ written in one-line nota-
tion. Add parentheses to σ according to α, and denote the corresponding permutation
(now in cycle notation) by σ̄. Next, sort the cycles of σ̄ into partition form (as in Defini-
tion 3.1), and let ci be the ith cycle in this ordering. Then with σ̄1, . . . , σ̄` as in Definition
3.2 (see Table 1), define B = (B1, . . . , Bk) by j ∈ Bi when cj belongs to σ̄i, i.e. σ̄i = ∏j∈Bi

cj.
Define Br(α, σ) = (B, σ̄). Since α rearranges to λ, σ̄ has (unordered) cycle type λ. And

since ∏j∈Bi
cj = σ̄i, we have ∑j∈Bi

λj = βi. Thus Br : (α, σ) 7→ (B, σ̄) is well-defined. (We
omit the straightforward check that this process is invertible. See [2] for details.)

Example 3.8. Let β = (5, 4), α = (2, 3, 2, 2) and σ = 267394518. To determine Br(α, σ),
first add parentheses to σ according to α: σ̄ = (26)(739)(45)(18).
Next, partition-sort the cycles of σ̄: σ̄ = (739)︸ ︷︷ ︸

c1

(45)︸︷︷︸
c2

(26)︸︷︷︸
c3

(18)︸︷︷︸
c4

.

Finally, compare to the β-partitioning: (26)(739)︸ ︷︷ ︸
σ̄1

|| (45)(18)︸ ︷︷ ︸
σ̄2

.

So B = ({1, 3}, {2, 4}), since σ̄1 = c1c3 and σ̄2 = c2c4.
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3.2 Type 2 quasisymmetric power sums

We define the type 2 quasisymmetric power sums to be the basis Φ of QSym satisfying

〈Φα, Φβ〉 = zαδα,β.

As in [5], define sp(γ) = `(γ)! ∏j γj and sp(β, α) = ∏i sp(β(i)). Then

hα = ∑
β4α

1
sp(β, α)

Φβ, so that φα = ∑
β<α

1
sp(α, β)

Mβ

has the property that 〈φα, Φβ〉 = δα,β. Then the type 2 quasisymmetric power sums1

satisfy

Φα = zαφα = zα ∑
β<α

1
sp(α, β)

Mβ.

For example Φ(2,3,2) =
22·2!·3
2·3·2

(
M(2,3,2) +

1
2 M(5,2) +

1
2 M(2,5) +

1
3! M(7)

)
.

We can obtain the following expansion for Φα in monomial functions, whose proof
(omitted here) is given by rewriting the coefficients and interpreting them in terms of
ordered set partitions. For α 4 β let OSP(α, β) denote the ordered set partitions of
{1, . . . , `(α)} with block size |Bi| = `(α(i)). If α 64 β, we set OSP(α, β) = ∅.

Theorem 3.9. Let α � n and let mi denote the number of parts of α of size i. Then

Φα =

(
`(α)

m1, m2, . . . , mk

)−1

∑
β<α

|OSP(α, β)|Mβ.

As with the type 1 case above, applying Theorem 3.9 gives the following.

Theorem 3.10. The type 2 quasisymmetric power sums refine the symmetric power sums by

pλ = ∑
α̃=λ

Φα.

The proof relies on the following identity, which we prove bijectively in [2].

Lemma 3.11. Let λ ` n and β � n. Let mi denote the number of parts of λ of size i. Then(
`(λ)

m1, m2, . . . , mk

)
Rλβ = ∑

α4β
α̃=λ

|OSP(α, β)|.

1 Note that a similar polynomial is defined in [11], but is not dual to Φ nor does it refine pλ.
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4 Relationships between bases

Type 1 and type 2 quasisymmetric power sums. To determine the relationship be-
tween the two different types of quasisymmetric power sums, we first use duality to
expand the monomial quasisymmetric functions in terms of the type 2 quasisymmetric
power sums. Thus, from (2.5) and duality we obtain

Mβ = ∑
α<β

(−1)`(β)−`(α) Πiαi

`(β, α)
Φα.

Combining this with the expansion of Ψα in terms of the quasisymmetric monomial
function (3.1), we obtain

Ψα = ∑
α4β4γ

(−1)`(β)−`(γ) zαΠiγi

π(α, β)`(β, γ)
Φγ.

Similarly,

Φα = ∑
α4β4γ

(−1)`(β)−`(γ) zα lp(β, γ)

sp(α, β)
Ψγ.

Quasisymmetric power sums and the fundamental functions. To describe the type 1
quasisymmetric power sums in terms of the fundamental quasisymmetric functions, we
first need to compute the sum of quasisymmetric monomial functions over an interval
in the refinement partial order. Using a natural bijection between compositions of n and
subsets of [n− 1] given by partial sums, we write

Set(α) = {α1, α1 + α2, . . . , α1 + · · ·+ αk−1} for α = (α1, . . . , αk) � n, and

comp(A) = (a1, a2 − a1, . . . , aj − aj−1, n− aj), for A = {a1, . . . , aj} ⊆ [n− 1]
with a1 < a2 < · · · < aj. Then let αc = comp((Set(α))c). Given a second composition
β, let α ∧ β (respectively α ∨ β ) denote the finest (respectively coarsest) composition γ

such that γ < α and γ < β (respectively γ 4 α and γ 4 β). Note that if α ∧ β = γ,
then Set(α) ∧ Set(β) = Set(γ) in the boolean lattice. For example, if α = (2, 3, 1) and
β = (1, 2, 2, 1), then αc = (1, 2, 1, 2), α ∧ β = (5, 1), and α ∨ β = (1, 1, 1, 2, 1). The next
lemma, which is a straightforward exercise in Möbius inversion, gives a relationship
between monomial and fundamental quasisymmetric functions.

Lemma 4.1. Let α, β � n with α 4 β. Then

∑
α4δ4β

Mδ = ∑
β∨αc4δ4β

(−1)`(β)−`(δ)Fδ.

Given a permutation σ and a composition α, let α̂(σ) denote the coarsest composition
β with β < α and σ ∈ Consα4β. For example, if α = (3, 2, 2) and σ = 1352467, then

α̂(σ) = (3, 4). In addition, we write σ ∈ Consα if we are considering β = α.
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Theorem 4.2. Let α � n. Then

Ψα =
zα

n! ∑
γ<α

|{σ ∈ Consα : α̂(σ) = γ}| ∑
η<αc

(−1)`(η)−1Fγ∨η. (4.1)

Proof. Let α � n. We use 1R to denote the characteristic function of a relationR. Combin-
ing the quasisymmetric monomial function expansion of Ψα given in (3.1), Lemma 3.3,
and Lemma 4.1, we have

Ψα =
zα

n! ∑
α4β

|Consα4β|Mβ =
zα

n! ∑
σ∈Consα

∑
α4δ4α̂(σ)

Mδ

=
zα

n! ∑
σ∈Consα

∑
αc∨α̂(σ)4δ4α̂(σ)

(−1)`(α̂(σ))−`(δ)Fδ

=
zα

n! ∑
δ�n

(−1)`(δ)Fδ ∑
σ∈Consα

(−1)`(α̂(σ))1
αc∨α̂(σ)4δ4α̂(σ)

=
zα

n! ∑
γ<α

|{σ ∈ Consα : α̂(σ) = γ}|∑
δ�n

(−1)`(γ)−`(δ)Fδ1αc∨γ4δ4γ,

with the last equality holding since the compositions α̂(σ) are coarsenings of α. Given
γ < α and δ � n, there exists η < αc such that δ = γ ∨ η if and only if δ < αc ∨ γ. So

Ψα =
zα

n! ∑
γ<α

|{σ ∈ Consα : α̂(σ) = γ}|(−1)`(γ) ∑
η<αc

(−1)`(γ∨η)Fγ∨η

=
zα

n! ∑
γ<α

|{σ ∈ Consα : α̂(σ) = γ}| ∑
η<αc

(−1)`(η)−1Fγ∨η.

Note that in (4.1) each composition occurs at most once in the indexing set for F.

Theorem 4.3. Let α � n. Then

Φα =

(
m1 + · · ·+ mn

m1, . . . , mn

)−1

∑
γ�n

 ∑
β<(γ∧α)

(−1)`(γ)−`(β)|OSP(α, β)|

 Fγ.

This is proved by direct substitution of monomial and fundamental expansions [2].

5 Products of quasisymmetric power sums

Unlike symmetric power sums, the quasisymmetric power sums are not multiplicative.
Comultiplication for the noncommutative symmetric power sums (type 1) (dual to mul-
tiplication in QSym) is given in [5] by ∆(Ψk) = 1⊕Ψk + Ψk ⊕ 1. Thus

∆(Ψα) = ∏
i

∆(Ψαi) = ∏
i
(1⊕Ψαi + Ψαi ⊕ 1) = ∑

γ,β
α∈γ�β

Ψγ ⊕Ψβ,
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where γ� β is the set of shuffles of γ = (γ1, · · · , γn) and β = (β1, · · · , βm). Let aj denote
the number of parts of size j in α and bj denote the number of parts of size j in β, and
α · β their concatenation. Define C(α, β) = ∏j (

aj+bj
aj

). It is straightforward to check that

C(α, β) = zα·β/(zαzβ).

Theorem 5.1. Let α and β be compositions. Then

ΨαΨβ =
1

C(α, β) ∑
γ∈α�β

Ψγ and ΦαΦβ =
1

C(α, β) ∑
γ∈α�β

Φγ.

Proof. (sketch of type 1 proof.) This can be proved easily using duality, or directly using
the quasisymmetric monomial function expansion of the quasisymmetric power sums.
For the latter, one can show that the coefficients in the quasisymmetric monomial func-
tion expansions of both sides of the product formulas in Theorem 5.1 are the same. In
particular, if α � m, β � n, and ξ is a fixed coarsening of a shuffle of α and β, we have(

m + n
m

)
∑

δ<α,η<β
ξ∈δ�η

m!
π(α, δ)

n!
π(β, η)

= ∑
γ∈α�β

γ4ξ

(m + n)!
π(γ, ξ)

,

where δ� η is the set of overlapping shuffles of δ and η, that is, shuffles where a part of δ

and a part of η can be added to form a single part.

6 Comments and future directions

Two immediate questions of interest are as follows. First, do the quasisymmetric power
sums play a role in the representation theory of the 0-Hecke algebra? Namely, the Frobe-
nius map sends class functions Cλ to pλ

zλ
in Sym, and maps irreducible characters to their

corresponding Schur functions. Krob and Thibon [9] define quasisymmetric and non-
commutative symmetric characteristic maps; one takes irreducible representations of the
0-Hecke algebra to the fundamental quasisymmetric basis, the other takes indecompos-
able representations of the same algebra to the ribbon basis. It would be interesting to
explore whether these maps can now be defined in terms of the corresponding power
sums, just as in the symmetric case.

Second, what is the product of a quasisymmetric power sum with a quasisymmetric
Schur function? For power sums indexed by a single part (as in Murnaghan–Nakayama
rules), Tewari [13] gives a noncommutative symmetric functions analogue and Tiefen-
bruck [14] a quasisymmetric analogue. But since the quasisymmetric power sums are
not multiplicative, this is only a partial solution.

It is also natural to consider the role of these power sums in plethysm. However,
while plethysm has been defined in QSym and NSym (see [8]), our functions do not
play the expected role (as Adams operators in the language of λ-rings) in this case.
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