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Abstract. Motivated by work of Coxeter (1957), we study a class of algebras associated
to Coxeter groups, which we term ‘generalized nil-Coxeter algebras’. We construct
the first finite-dimensional examples other than usual nil-Coxeter algebras; these form
a 2-parameter type A family that we term NCA(n, d). We explore the combinatorial
properties of these algebras, including the Coxeter word basis, length function, maxi-
mal words, and their connection to Khovanov’s categorification of the Weyl algebra.

Our broader motivation arises from complex reflection groups and the Broué–Malle–
Rouquier freeness conjecture (1998). With generic Hecke algebras over real and com-
plex groups in mind, we show that the first ‘non-usual’ finite-dimensional examples
NCA(n, d) are in fact the only ones, outside of the usual nil-Coxeter algebras. The
proofs use a diagrammatic calculus akin to crystal theory.

Keywords: Coxeter group, generalized nil-Coxeter algebra, length function, Frobenius
algebra, complex reflection group

1 Introduction and main results

We study a new class of finite-dimensional algebras arising out of Coxeter theory, with
connections to old work by Coxeter and new work on generic Hecke algebras, combi-
natorics, and categorification. We work throughout over a ground field k for ease of
exposition, although our results hold over any commutative unital ground ring.

We begin with background and notation. Real reflection groups W and their Iwahori–
Hecke algebras HW(q) are classical objects that have long been studied in algebraic com-
binatorics, representation theory, and mathematical physics. Recall that every Coxeter
group is specified by a Coxeter matrix M ∈ ZI×I , with finite index set I and entries
mii = 2 6 mij 6 ∞ ∀i 6= j. The corresponding Artin monoid B>0

M has generators
{Ti : i ∈ I}, and braid relations TiTjTi · · · = TjTiTj · · · with mij factors on each side
whenever mij < ∞. We will denote the corresponding Coxeter group by W(M).

Three prominent algebras associated to W(M) are its group algebra kW(M), its 0-
Hecke algebra, and its nil-Coxeter algebra NC(M) (also known in the literature as the nil
Hecke ring, nil Coxeter algebra, and nilCoxeter algebra). All three algebras are quotients
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of the monoid algebra kB>0
M by quadratic relations for the Ti, and are ‘generic Hecke

algebras’ [10, Chapter 7]. Among such algebras, the Ti satisfy homogeneous relations
only in the case of the nil-Coxeter algebra NC(M). Using this, one shows that

NC(M) := kB>0
M /(T2

i : i ∈ I)

is the monoid algebra of a monoid with |W(M)|+ 1 elements, say {Tw : w ∈ W(M)} t
{OW(M)} quotiented by the ‘absorbing’ central ideal kOW(M). Nil-Coxeter algebras were
introduced by Fomin and Stanley [8], and are related to flag varieties [13], symmetric
function theory [2], and categorification [12].

We now present a larger family of algebras, which constitute the main object of study.
Note that the algebras NC(M) are the associated graded versions of the group algebra
kW(M); indeed, taking the top-degree component of the non-homogeneous relations
T2

i = 1 yields the nil-Coxeter relations T2
i = 0. The following construction is motivated

by both real and complex reflection groups, and allows the nilpotence degree to vary.

Definition 1.1. Define a generalized Coxeter matrix to be a symmetric matrix M := (mij)i,j∈I
with I finite, mii < ∞ ∀i ∈ I, and 2 6 mij 6 ∞ ∀i 6= j. Now fix such a matrix M.

1. Given an integer tuple d = (di)i∈I with all di > 2, let M(d) denote the matrix where the
diagonal in M is replaced by the coordinates of d. Let M2 := M((2, . . . , 2)).

2. The generalized Coxeter group W(M) is the group generated by {si : i ∈ I} modulo the
braid relations sisjsi · · · = sjsisj · · · whenever mij < ∞, and the relations smii

i = 1 ∀i.

3. Define the corresponding generalized nil-Coxeter algebra to be:

NC(M) :=
k〈Ti, i ∈ I〉

(TiTjTi · · ·︸ ︷︷ ︸
mij times

= TjTiTj · · ·︸ ︷︷ ︸
mij times

, Tmii
i = 0, ∀i 6= j ∈ I)

=
kB>0

M2

(Tmii
i = 0 ∀i)

, (1.1)

where we omit the braid relation TiTjTi · · · = TjTiTj · · · if mij = ∞.

4. As an important special case, we denote by MAn the usual type A Coxeter matrix with
|I| = n, given by: mij = 3 if |i− j| = 1, and 2 otherwise.

Working with generalized nil-Coxeter algebras NC(M) yields a larger class of objects
than the corresponding groups W(M). For example, Marin [15] has shown that in rank 2
in type A, the algebra NC(MA2((3, n))) is not finite-dimensional for n > 3, in particular
for even n. However, the corresponding generalized Coxeter group W(MA2((3, n))) is
trivial for 3 - n, since in it the generators s1, s2 are conjugate, hence have equal orders.

In fact, this reasoning shows that for for all integers d1, . . . , dn > 2, we have

W(MAn(d)) = W(MAn((d, . . . , d))), where d = gcd(d1, . . . , dn).
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Now it is natural to ask for which integers n, d > 2 is the group W(MAn((d, . . . , d))) finite
– and what is its order. These questions were considered by Coxeter [5], and he proved
that W = W(MAn((d, . . . , d))) is finite if and only if 1

n + 1
d > 1

2 ; moreover, in this case W

has size
(

1
n + 1

d −
1
2

)1−n
· n!/nn−1. In his thesis [14], Koster extended Coxeter’s results

to classify all finite generalized Coxeter groups; apart from the finite ‘usual’ Coxeter
groups, one obtains precisely the Shephard groups.

In a parallel vein to these works, we explore for which matrices is the algebra NC(M)
finite-dimensional. In this we are also strongly motivated by the larger picture, which
involves complex reflection groups and the BMR freeness conjecture [3]. We elaborate on
these motivations presently; for now we remark that since complex reflections can have
order > 3, working with them provides a natural reason to define and study generalized
nil-Coxeter algebras.

Returning to real groups: recall that ‘usual’ nil-Coxeter algebras NC(M((2, . . . , 2)))
are finite-dimensional precisely for finite Coxeter groups, since for ‘usual’ Coxeter ma-
trices M2 := M((2, . . . , 2)) one has dim NC(M2) = |W(M2)|. To our knowledge there
are no other finite-dimensional examples NC(M) known to date.

Our first main result parallels Coxeter’s construction, and exhibits the first such ‘non-
usual’ family of finite-dimensional algebras NC(M) in type A:

Theorem 1.2. For integers n > 1 and d > 2, define the k-algebra

NCA(n, d) := NC(MAn((2, . . . , 2, d))). (1.2)

Thus, NCA(n, d) has generators T1, . . . , Tn, with relations:

TiTi+1Ti = Ti+1TiTi+1, ∀ 0 < i < n; (1.3)
TiTj = TjTi, ∀ |i− j| > 1; (1.4)

T2
1 = · · · = T2

n−1= Td
n = 0. (1.5)

Then NCA(n, d) has a Coxeter word basis of n!(1 + n(d− 1)) generators

{Tw : w ∈ Sn} t {TwTk
nTn−1Tn−2 · · · Tm+1Tm : w ∈ Sn, k ∈ [1, d− 1], m ∈ [1, n]}.

In particular, the subalgebra Rl generated by T1, . . . , Tl is isomorphic to the type A nil-Coxeter
algebra NC(MAl((2, . . . , 2))), for all 0 < l < n.

Remark 1.3. We adopt the following notation in the sequel without further reference: let

w◦ ∈ Sn+1, w′◦ ∈ Sn denote the respective longest elements, (1.6)

where the symmetric group Sl+1 corresponds to the basis of the algebra Rl for l = n− 1, n.

In a later section, we will discuss additional properties of the algebras NCA(n, d),
including identifying the ‘maximal’ words, and exploring the Frobenius property.
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Classification of finite-dimensional nil-Coxeter algebras

Our next main result classifies the matrices M for which the generalized nil-Coxeter alge-
bra NC(M) is finite-dimensional. In combinatorics and in algebra, classifying Coxeter-
type objects of finite size, dimension, or type is a problem of significant classical as
well as modern interest. Such settings include real and complex reflection groups [4, 6,
17] and associated Hecke algebras; finite type quivers, simple Lie algebras, the McKay–
Slodowy correspondence, and Kleinian singularities (as well as the above results by Cox-
eter and Koster). The recent classification of finite-dimensional pointed Hopf algebras
[1] reveals connections to small quantum groups. Even more recently, the classification
of finite-dimensional Nichols algebras has been well-received (see [9] and the references
therein); some ingredients used in proving those results show up in the present work as
well.

We now classify the generalized Coxeter matrices M for which NC(M) is finite-
dimensional. Remarkably, outside of the usual nil-Coxeter algebras, our first family of
examples NCA(n, d) turns out to be the only one:

Theorem 1.4. Suppose W is a Coxeter group with connected Dynkin diagram. Fix an integer
vector d with di > 2 ∀i, i.e., a generalized Coxeter matrix M(d). The following are equivalent:

1. The generalized nil-Coxeter algebra NC(M(d)) is finite-dimensional.

2. Either W is a finite Coxeter group and di = 2 ∀i, or W is of type An and d = (2, . . . , 2, d)
or (d, 2, . . . , 2) for some d > 2.

Remark 1.5. The above results are characteristic-free; in fact they hold over arbitrary ground
rings k, in which case Theorem 1.2 yields a k-basis of the free k-module NCA(n, d); and Theorem
1.4 classifies the finitely generated k-algebras NC(M). In sketching the proofs of these results
below, we will continue to assume k is a field; for the general case over a ring k, for full details,
and for further ramifications, we refer the reader to [11], of which this note is an extended abstract.

Before proceeding further, we mention another strong motivation for Theorem 1.4,
arising from generic Hecke algebras over complex reflection groups. As mentioned above,
the varying nilpotence degree of the Ti is natural in the setting of complex reflection
groups W. A prominent area of research has been the study of the associated generic
Hecke algebras HW and the Broué–Malle–Rouquier freeness conjecture [3]. The conjec-
ture says that HW is a free R-module of rank |W|, where R is the ground ring. See also
its recent resolution in characteristic zero [7], and the references therein.

In studying these topics, Marin [15] remarks that the lack of nil-Coxeter algebras of
dimension |W| is a striking difference between complex and real reflection groups W.
This was verified in some cases in loc. cit.; and it motivated us to define generalized
nil-Coxeter algebras over all complex reflection groups. We do so in [11], and then
completely classify the finite-dimensional algebras over all such groups. Remarkably,
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Theorem 1.4 extends to all complex W as well, and the only finite-dimensional families
are real (usual) nil-Coxeter algebras, and the family NCA(n, d). In particular, this shows
the above statement of Marin.

Remark 1.6. Our result holds even more generally: following the classification of finite complex
reflection groups in the celebrated work [17], Popov classified in [16] the infinite discrete groups
generated by unitary reflections. In [11] we extend Theorem 1.4 to also cover all of these groups;
once again, we show there are no finite-dimensional nil-Coxeter analogues.

The equidimensionality (or not) of HW and its nil-Coxeter analogue amounts to
whether the former – a filtered algebra – is a flat deformation of the latter, which is
Z>0-graded. The study of flat deformations goes back to classical work of Gerstenhaber,
and also by Braverman–Gaitsgory, Drinfeld, Etingof–Ginzburg, and the recent program
by Shepler and Witherspoon; see [18, 11] for more on this. In this formalism, Theo-
rem 1.4 – or its extension to complex groups – says that over complex reflection groups,
generic Hecke algebras are not flat deformations of their nil-Coxeter analogues. This is
in stark contrast to the real case, where dim NC(M) = |W(M)|.

2 A finite-dimensional generalized nil-Coxeter algebra

We now outline the proof of Theorem 1.2, using a diagrammatic calculus as well as braid
monoid computations. Note that NCA(1, d) = k[T1]/(Td

1 ), while NCA(n, 2) is the usual
type A nil-Coxeter algebra, for which the theorem is well-known (see e.g. [10]). Thus, in
this section we will assume d > 3 and n > 2.

We begin by showing that the set from Theorem 1.2 spans NCA(n, d). As a first step:

Lemma 2.1. A word in the generators Ti either vanishes in NCA(n, d), or can be equated with
a word in which all occurrences of Tn are successive.

Proof. Suppose a word T has a sub-word of the form Ta
nTi1 · · · Tik Tb

n for some a, b > 0,
with 0 < ij < n ∀j. Using the relations, we may assume the above representation of T is
such that k is minimal. Thus i1 = ik = n− 1, i2 = ik−1 = n− 2, and so on (else we may
push some Tij outside of the sub-string). Hence the sub-string is of the form

Tn−1Tn−2 · · · Tm+1TmTm+1 · · · Tn−2Tn−1, for some 1 6 m 6 n− 1.

Now one shows by descending induction on m 6 n− 1 that in the Artin monoid B>0
MAn

,

Tn−1 · · · Tm · · · Tn−1 = TmTm+1 · · · Tn−2Tn−1Tn−2 · · · Tm+1Tm.

Hence,

Ta
n · (Tn−1 · · · Tm · · · Tn−1) · Tb

n = Ta
n · (Tm · · · Tn−2Tn−1Tn−2 · · · Tm) · Tb

n (2.1)

= (Tm · · · Tn−2)Ta−1
n (TnTn−1Tn)Tb−1

n (Tn−2 · · · Tm)

= (Tm · · · Tn−2)Ta−1
n (Tn−1TnTn−1)Tb−1

n (Tn−2 · · · Tm).
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If a, b 6 1 then the lemma follows. If instead b > 1 then this expression contains as a
substring Tn−1(TnTn−1Tn) = T2

n−1TnTn−1 = 0, so we are done. Similarly if a > 1.

Now the subalgebra Rn−1 generated by T1, . . . , Tn−1 satisfies the relations of the usual
nil-Coxeter algebra NCA(n− 1, 2), so the words {Tw : w ∈ Sn} span it. By (2.1), every
nonzero word not in Rn−1 is of the form TwTk

nTw′ ; writing Tw′ as a sub-string of minimal
length, by above we may rewrite the word such that Tw′ = Tn−1 · · · Tm. Hence,

NCA(n, d) = Rn−1 +
d−1

∑
k=1

n

∑
m=1

Rn−1 · Tk
n · (Tn−1 · · · Tm).

Since dim Rn−1 6 n!, the upper bound on dim NCA(n, d) follows.
The proof of the converse – i.e., linear independence of the claimed word basis –

repeatedly uses some results about the permutation group Sn and its nil-Coxeter algebra:

Lemma 2.2. Suppose W = Sn, with simple reflections s1, . . . , sn−1 labelled as usual. Let Sn−1
be generated by s1, . . . , sn−2; then for all w ∈ Sn \ Sn−1, w has a reduced expression as w =
w′sn−1 · · · sm′ , where w′ ∈ Sn−1 and m′ ∈ [1, n− 1] are unique. Given such an element w ∈ Sn,
we have in the usual nil-Coxeter algebra NC(MAn((2, . . . , 2))):

Tn · Tw · Tn · · · Tm =

{
Tw′Tn−1 · · · Tm−1 · Tn · · · Tm′ , if m′ < m,
0 otherwise.

(2.2)

Now we introduce a diagrammatic calculus reminiscent of crystal theory from com-
binatorics and quantum groups. For simplicity, we begin by presenting the n = 2 case.
Let M be a k-vector space, with basis given by the nodes in Figure 1.

2d′1

12d′1

221

1221

21

1

12

2

122

22

12d′

2d′

· · ·

· · ·

· · ·

· · ·

∅

w◦

1

2 2

1

2

2

1

1

2

2

1

2

1

2 2

1

Figure 1: Regular representation for NCA(2, d), with d′ = d− 1

In this figure, the node 221 should be thought of as applying T2
2 T1 to the generating

basis vector/node ∅; similarly for all other nodes. The arrows show the action of T1, T2
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on the basis vectors (i.e., nodes), and the lack of an arrow labeled i with source v ∈ M
means Tiv = 0. Now verify by inspection that the relations in NCA(2, d) are satisfied in
Endk(M ), whence M is a cyclic NCA(2, d)-module generated by the vector ∅ – in fact,
the regular representation. This gives the desired result for NCA(2, d).

For general n > 2, the strategy is similar but with more involved notation. For
w ∈ Sn, let Tw denote the (well-defined) word in T1, . . . , Tn−1 ∈ NCA(n, d). Now define
a vector space M with basis given by (2.3) and NCA(n, d)-action as in Figure 2 below:

B := {B(w, k, m) : w ∈ Sn, k ∈ [1, d− 1], m ∈ [1, n]} t {B(w) : w ∈ Sn}. (2.3)

11m

w′1m

12m

w′2m

1d′m

w′d′m

· · ·

· · ·

V1 V2,m Vd′,m

n n n

n n n

Figure 2: Regular representation for NCA(n, d), with d′ = d− 1

Note that dimk M = n!(1 + n(d− 1)); that the basis vectors in (2.3) are to be thought
of as akin to TwTk

nTn−1 · · · Tm and Tw respectively; and the nodes (wkm), (w) precisely
denote the basis vectors B(w, k, m), B(w) respectively.

Now let V1 denote the span of the vectors {B(w) : w ∈ Sn−1} t {B(w, 1, m) : w ∈
Sn−1, m ∈ [1, n]}. These vectors are in bijection with the word basis of the usual nil-
Coxeter algebra NCA(n, 2). Similarly for k ∈ [1, d− 1] and m ∈ [1, n], define Vk,m to be
the span of the vectors B(w, k, m), w ∈ Sn.

Define the NCA(n, d)-action on M as follows. First for the action of T1, . . . , Tn−1, write
V1,n+1 := span{B(w) : w ∈ Sn}; and equip each space V(k, m) for k ∈ [1, d− 1], m ∈ [1, n]
and also V(1, n + 1) with the structure of the regular representation of Rn−1. Next, if
w ∈ Sn−1, then we define

Tn · B(w, k, m) := 1(k 6 d− 2)B(w, k + 1, m), Tn · B(w) := B(w, 1, n).

Now suppose w ∈ Sn \ Sn−1. Using Lemma 2.2, write w = w′sn−1 · · · sm; then m 6 n− 1.
Define Tn · B(w, k, m) := 0 if k > 1; also set Tn · B(w) := B(w′, 1, m′); finally,

Tn · B(w, 1, m) :=

{
B(w′sn−1 · · · sm−1, 1, m′), if m′ < m,
0 otherwise.

(2.4)

Then some involved computations using the identities mentioned above show that
the proposed action indeed equips M with the structure of a cyclic NCA(n, d)-module,
generated by B(1). This allows us to complete the proof of Theorem 1.2.
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3 Further properties

We now discuss several additional properties of the algebras NCA(n, d). For proofs of
results in this section, we refer the reader to [11]. The first set of properties shows how
these algebras resemble usual nil-Coxeter algebras.

Theorem 3.1 (see [11]). Fix integers n > 1 and d > 2.

1. The algebra NCA(n, d) has a length function that restricts to the usual length function
`An−1 on Rn−1 ' NCAn−1((2, . . . , 2)) (from Theorem 1.2), and

`(TwTk
nTn−1 · · · Tm) = `An−1(w) + k + n−m, (3.1)

for all w ∈ Sn, k ∈ [1, d− 1], and m ∈ [1, n].

2. There is a unique longest word Tw′◦T
d−1
n Tn−1 · · · T1 of length

ln,d := `An−1(w
′
◦) + d + n− 2.

3. The algebra NCA(n, d) is local, with unique maximal (augmentation) ideal m generated by
T1, . . . , Tn. The ideal m is nilpotent with m1+ln,d = 0.

Thus there is a variant of the Coxeter word length, as well as a unique longest word
and nilpotent augmentation ideal. As an immediate consequence, one can compute the
Hilbert polynomial of the graded algebra NCA(n, d):

Corollary 3.2. If T1, . . . , Tn all have degree 1, then NCA(n, d) has Hilbert–Poincaré series

[n]q! (1 + [n]q [d− 1]q), where [n]q :=
qn − 1
q− 1

, [n]q! :=
n

∏
j=1

[j]q.

Here, we also use the standard result that the usual nil-Coxeter algebra NCA(n, 2)
has Hilbert–Poincaré series [n]q! (see e.g. [10, Sections 3.12, 3.15]).

Having discussed similarities with usual nil-Coxeter algebras, we next present certain
differences in structure. For any generalized Coxeter matrix M, define x ∈ NC(M) to be
left-primitive if Tix = 0 ∀i ∈ I. Similarly define right-primitive elements; and an element
that is both is said to be primitive. We denote these subspaces of NC(M) by

PrimL(NC(M)), PrimR(NC(M)), Prim(NC(M)).

Proposition 3.3 (see [11]). Every generalized nil-Coxeter algebra NC(M) is equipped with an
anti-involution θ that fixes each generator Ti. Now θ is an isomorphism : PrimL(NC(M))←→
PrimR(NC(M)). Moreover, the following hold.
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1. If NC(M) = NCA(1, d), then

PrimL(NC(M)) = PrimR(NC(M)) = Prim(NC(M)) = k · Td−1
1 .

2. If NC(M) = NCA(n, d) with n > 2 and d > 2, then:

(a) PrimL(NC(M)) is spanned by Tw◦ := Tw′◦TnTn−1 · · · T1 and the n(d− 2) words

{Tw′◦T
k
nTn−1 · · · Tm : k ∈ [2, d− 1], m ∈ [1, n]}.

(b) Prim(NC(M)) is spanned by the words Tw′◦T
k
nTn−1 · · · T1, where 1 6 k 6 d− 1.

In all cases, the map θ fixes both Prim(NC(M)) as well as the lengths of all nonzero words.

(Thus there are multiple primitive words for d > 2.) Using Proposition 3.3, we address
another difference with usual nil-Coxeter algebras: the latter are always Frobenius [12].
It is natural to ask when the finite-dimensional algebras NCA(n, d) share this property.

Proposition 3.4. The algebra NCA(n, d) is Frobenius if and only if n = 1 or d = 2.

In fact this happens if and only if the group algebra kW(MAn(d)) is a flat deformation
of NCA(n, d).

Proof. If W(M) is a finite Coxeter group, [12, Section 2.2] shows that NC(M) is Frobe-
nius. Next, one easily verifies NCA(1, d) = k[T1]/(Td

1 ) is Frobenius, via the symmetric
bilinear form given by: σ(Ti

1, T j
1) = 1(i + j = d − 1). Now suppose for some n, d that

NCA(n, d) is Frobenius, with nondegenerate invariant bilinear form σ. For each prim-
itive p 6= 0, there exists ap such that 0 6= σ(p, ap) = σ(pap, 1). Thus, we can take
ap = 1, ∀p. Since the functional σ(−, 1) : Prim(NCA(n, d)) → k is nonsingular, we
obtain dimk Prim(NCA(n, d)) = 1. Applying Proposition 3.3, we get n = 1 or d = 2.

Finally, recall the famous result by Khovanov [12] that the Weyl algebra Wn :=
Z〈x, ∂〉/(∂x = 1+ x∂) can be represented by functors on bimodule categories over usual
nil-Coxeter algebras. (Here we use that the nil-Coxeter algebra An := NCA(n, 2) is a
bimodule over An−1.) We now explain how NCA(n, d) fits into Khovanov’s framework
for d > 2, noting that for d = 2 it was proved in [12]:

Proposition 3.5 (see [11]). For n > 1 and d > 2, there is an isomorphism of An−1-bimodules:

NCA(n, d) ' An−1 ⊕
d−1⊕
k=1

(
An−1 ⊗An−2 An−1

)
.

For d > 2, in the notation of [12] this result implies that over An−1-bimodules, the
algebra NCA(n, d) corresponds to 1 + (d− 1)x∂. Thus, Proposition 3.5 strengthens The-
orems 1.2 and 3.1, which discussed a left An−1-module structure on NCA(n, d) (namely,
NCA(n, d) is free of rank 1 + n(d− 1)).
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4 All finite-dimensional generalized nil-Coxeter algebras

We conclude by proving Theorem 1.4. Clearly (2) =⇒ (1) by Theorem 1.2 and [10,
Chapter 7]. Now suppose (1) holds and d 6= (2, . . . , 2). We again use the diagrammatic
calculus above, now for the diagrams in Figure 3.

A

B1 B2 Bm′ Bm

B′mB′m′B′2B′1

C

α

α

β1 · · · βm′

γ

γ

βm′
· · ·

β1

+

Fig. 3.1 (m′ = m− 1)

A B

C

t

s

u

+

Fig. 3.2

A

B1 B2 Bm′ Bm

B′mB′m′B′2B′1

D C

α

α

β1 · · · βm′

γ

δ

δ

γ

βm′
· · ·

β1

+

Fig. 3.3 (m′ = m− 1)

A

B1 B2 Bm′ Bm

B′mB′m′B′2B′1
α

α

β1 · · · βm′

γ

βm′
· · ·

β1

+

Fig. 3.4 (m′ = m− 1)

Figure 3: Modules for the infinite-dimensional generalized nil-Coxeter algebras

We consider the possible cases, showing in each case that the algebra NC(M) is
infinite-dimensional, until we are left with only NCA(n, d). First suppose there exist
two nodes α, γ ∈ I with mαα, mγγ > 3. Since the Dynkin diagram of I is connected by
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assumption, there exist β1, . . . , βm−1 ∈ I such that

α ←→ β1 ←→ · · · ←→ βm−1 ←→ γ

are all connected in I, i.e., a path. Now define an NC(M)-module M with basis

Ar, B1r, . . . , Bmr, Cr, B′1r, . . . , B′mr, r > 1,

and where every Ti kills all basis vectors, except for the actions described in Figure 3.1,
namely Tα(Ar) := B1r, Tβ1(B′2r) := B′1r, and so on for all r > 1. The ‘+’ indicates that
Tα(B′1r) := Ar+1 ∀r > 1. One verifies that the Ti satisfy the NC(M)-relations on every
basis vector, whence on M . Now as M is cyclic and infinite-dimensional, so is NC(M).

The strategy is similar for the remainder of the proof. Henceforth we fix the unique
node α ∈ I such that mαα > 3. If α is connected in I to γ with mαγ > 4, then we work with
Figure 3.2, setting (s, t, u)  (α, α, γ), and define M := spank{Ar, Br, Cr : r > 1}. Now
check that M is an infinite-dimensional cyclic NC(M)-module. Next, if α is adjacent to
two nodes γ, δ ∈ I, work with Figure 3.3 for m = 1. This shows α must be extremal.

Note that if NC(M) is finite-dimensional then so is its quotient NC(M((2, . . . , 2))),
which is a nil-Coxeter algebra. Hence W(M((2, . . . , 2))) is a finite Coxeter group, and
these are known [4, 6]. We now sketch how to eliminate all cases not of type A, whence
from above, NC(M) ∼= NCA(n, d), where we set n := |I|.

The dihedral types G2, H2, I do not hold from above. Suppose I is of type B, C, H:

α ←→ β1 ←→ · · · ←→ βm−1 ←→ γ,

with mαα > 3, mγγ = 2, mβm−1γ > 4. Then work with Figure 3.4. Note this also rules out
the F4 case, since NC(MF4) � NC(MB3) or NC(MC3) by killing the extremal generator
Tδ with mδδ = 2, and we showed that the latter two algebras are infinite-dimensional.

Next suppose I is of type D. If α is a (extremal) node on the ‘long arm’, work with
Figure 3.3 with m = n− 2, with the other extremal nodes γ, δ. Else if α is extremal on a
short arm, we work as above with the quotient algebra NC(MD4) of Dynkin type D4, by
killing all Tj with node j on the long arm having degree 6 2. Working with Figure 3.3
for m = 2, it follows that NC(MD4), and hence NC(M), is infinite-dimensional.

Finally, in all remaining cases, the Coxeter graph of I is of type E. Akin to above, these
cases are ruled out by quotienting to reduce to type D. This concludes the proof.
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