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Decorated Dyck paths and the Delta conjecture
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Abstract. We discuss the combinatorics of the decorated Dyck paths appearing in
the Delta conjecture framework in (Haglund et al 2015) and (Zabrocki 2016), by intro-
ducing two new statistics, bounce and bounce′. We then provide plethystic formulae
for their q, t-enumerators, by proving in this way a decorated version of Haglund’s
q, t-Schröder theorem, answering a question in (Haglund et al 2015). In particular we
provide both an algebraic and a combinatorial explanation of a symmetry conjecture
in (Haglund et al 2015) and (Zabrocki 2016).

This is an extended abstract of (D’Adderio, Vanden Wyngaerd 2017).
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1 Introduction

Motivated by the problem of proving the Schur positivity of the modified Macdonald
polynomials, Garsia and Haiman introduced the Sn-module of diagonal harmonics, and
they conjectured that its Frobenius characteristic is ∇en, where the operator ∇ is just a
special case of a whole family of so called delta operators ∆ f , where f is a symmetric
function.

In [10] a combinatorial formula for ∇en has been conjectured, in terms of labelled
Dyck paths (i.e. parking functions). This formula has been known as the shuffle conjecture,
and it has been recently proved by Carlsson and Mellit in [1], where they actually proved
a refinement of this formula, known as the compositional shuffle conjecture, proposed in
[9].

A generalization of the shuffle conjecture, known as the Delta conjecture, has been
proposed in [10], in terms of decorated labelled Dyck paths. Some special cases and
consequences of this conjecture have been proved: see [10] for a survey of these partial
results. We should mention here also the work in [13], where the conjecture at q = 1 is
proved, the work in [6], where the conjecture at q = 0 is proved, as they do not appear
in [10]. Finally, in [2], relying on results in the present paper, the “hjhn−j” case of the
Delta conjecture is proved. To this date, the general problem remains open.
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In [15], Zabrocki established one of the consequences of the Delta conjecture, the so
called 4-variable Catalan conjecture. In fact, this conjecture, stated in [10], makes other
predictions that have not been explained in [15]. One of them is the symmetry

〈∆h`∇en−`, sk+1,1n−`−k−1〉 = 〈∆hk
∇en−k, s`+1,1n−k−`−1〉 for n > k + `. (1.1)

In [10] and [14], the authors asked for a proof of the decorated version of the fa-
mous q, t-Schröder theorem of Haglund [7]. This is a combinatorial interpretation of the
formula

〈∆′ea+b−k−1
ea+b, eahb〉 (1.2)

as a sum of weights qdinv(D)tarea(D) of decorated Dyck paths, where dinv and area are
certain functions from the space of decorated Dyck paths to the natural numbers.

In the present article we provide a solution of the last two problems. In particular we
give both an algebraic and a combinatorial explanation of the symmetry in (1.1), and we
prove three combinatorial interpretations of (1.2).

In fact, we introduce two more statistics on decorated Dyck paths, bounce and pbounce,
which both extend Haglund’s bounce statistic on Dyck paths. We prove that the zeta
map of Haglund (also known as sweep map) switches the bistatistics (dinv, area) and
(area, bounce) and the numbers of decorated rises and decorated peaks. Also, we provide
a recursion for the q, t-enumerators of these two bistatistics, which matches a recursion
in [14].

We also prove a recursion for the q, t-enumerator of the bistatistic (area, pbounce), and
we define a bijection ψ on decorated Dyck paths that preserves the bistatistic (area, pbounce)
but switches the numbers of decorated rises and decorated peaks: this will eventually
explain combinatorially the symmetry in (1.1).

This is an extended abstract of [3]: we refer to it for some definitions and full proofs.

2 Basics of symmetric functions and Macdonald polyno-
mials

Given f ∈ K[x1, . . . , xn] for some field K and σ ∈ Sn, we set

σ · f (x1, . . . , xn) = f (xσ(1), . . . , xσ(n)).

We say that f is a symmetric function if for all σ ∈ Sn we have σ · f = f .
Let Λ be the ring of symmetric functions in x1, x2, . . . . As we are working with

Macdonald symmetric functions involving two parameters q and t, we will consider this
polynomial ring over the field Q(q, t). This ring has a grading Λ =

⊕
n≥0 Λ(n) where Λn

is the sub vector space of Λ consisting of symmetric functions of degree n. The standard
basis of symmetric functions, indexed by partitions are
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the complete homogeneous hn = ∑i1≤...≤in xi1 ...xin hλ = hλ1 ...hλn

the elementary en = ∑i1<...<in xi1 ...xin eλ = eλ1 ...eλn

the power symmetric pn = ∑i xn
i pλ = pλ1 ...pλn

The Schur sλ = ∑T∈SSYT(λ) xT.

In this last definition SSYT(λ) are the semi-standard Young tableaux of shape λ and for
such a tableau T we set xT = xt1

1 xt2
2 . . . if the number i appears ti times in T. We will use

implicitly the usual convention that e0 = h0 = 1 and ek = hk = 0 for k < 0.
We will make extensive use of the plethystic notation (see [11] for a nice exposition).

With this notation we will be able to add and subtract alphabets, which will be repre-
sented as sums of monomials X = x1 + x2 + x3 + · · · . Then, given a symmetric function
f , and thinking of it as an element of Λ, we denote by f [X] the expression f with pk
replaced by xk

1 + xk
2 + xk

3 + · · · , for all k.
The Kostka coefficients Kλ,µ the coefficients appearing in

hµ = ∑
λ

Kλ,µsλ.

For a partition µ ` n, we denote by

H̃µ := H̃µ[X] = H̃µ[X; q, t] = ∑
λ`n

K̃λµ(q, t)sλ (2.1)

the (modified) Macdonald polynomials, where

K̃λµ := K̃λµ(q, t) = Kλµ(q, 1/t)tn(µ) with n(µ) = ∑
i≥1

µi(i− 1) (2.2)

are the (modified) Kostka coefficients (see [8, Chapter 2] for more details).
The set {H̃µ[X; q, t]}µ is a basis of the ring of symmetric functions Λ with coefficients

in Q(q, t). This is a modification of the basis introduced by Macdonald [12], and they
are the Frobenius characteristic of the so called Garsia–Haiman modules (see [5]).

If we identify the partition µ with its Ferrers diagram, i.e. with the collection of cells
{(i, j) | 1 ≤ i ≤ µi, 1 ≤ j ≤ `(µ)}, then for each cell c ∈ µ we refer to the arm, leg, co-arm
and co-leg (denoted respectively as aµ(c), lµ(c), aµ(c)′, lµ(c)′) as the number of cells in µ

that are strictly to the right, above, to the left and below c in µ, respectively. We define
for every partition µ

Bµ := Bµ(q, t) = ∑
c∈µ

qa′µ(c)tl′µ(c) (2.3)

wµ := wµ(q, t) = ∏
c∈µ

(qaµ(c) − tlµ(c)+1)(tlµ(c) − qaµ(c)+1). (2.4)
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3 Combinatorics of decorated Dyck paths

3.1 Basic definitions

We will use the notation D(n) to denote the set of Dyck paths of size n, i.e. the set of
lattice paths starting from (0, 0) and ending at (n, n), using only north and east steps and
staying weakly above the diagonal x = y, also called the main diagonal. Each Dyck path
D ∈ D(n) can be described uniquely by a sequence w1(D)w2(D) · · ·wn(D) of n integers
called the area word of D, where wi(D) is the number of whole squares on the i-th row
between D and the main diagonal. A sequence w1w2 · · ·wn of n nonnegative integers is
an area word if and only if w1 = 0 and wi+1 ≤ wi + 1 for i = 1, ..., n− 1.

The rises of a Dyck path D are the indices

Rise(D) := {2 ≤ i ≤ n | ai(D) > ai−1(D)},

or the vertical steps that are directly preceded by another vertical step.
The peaks of a Dyck path D are the indices

Peak(D) := {1 ≤ i ≤ n | ai+1(D) ≤ ai(D)},

or the vertical steps that are followed by a horizontal step.
A decorated Dyck path is a Dyck path where certain peaks are decorated with a symbol

◦ (near the point joining the peak to the horizontal step following it) and certain rises are
decorated with a symbol ∗. By DD(n)◦a,∗b we denote the set of Dyck paths of size n with
a decorated peaks and b decorated rises. By DD(n)◦a,∗b we denote the set of Dyck paths
of size n with a decorated peaks and b decorated rises. See Figure 1 for an example.

∗
◦

◦

Figure 1: Example of an element in DD◦2,∗1(5)

If a fall is a horizontal step that is followed by a second horizontal step, then there is
a natural way of mapping rises into falls bijectively. Indeed the endpoint of a rise is a
point where D vertically crosses a certain diagonal parallel to the main diagonal; since
the path must end at the main diagonal it must cross the same diagonal horizontally
with a fall at least once: choose the first occurrence and this yields a bijective map (see
Figure 2). Therefore we can decorate rises or falls equivalently.
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∗

Figure 2: Correspondence between rises and falls

3.2 The statistics area, dinv, bounce and pbounce.

We introduce here four statistics on the set DD(n)◦a,∗b, all of which are generalisations
of the usual statistics on undecorated Dyck paths. The area and dinv statistics are the
“unlabelled” versions of the statistics defined on labelled decorated Dyck paths in [10]
(cf. also [15]). The bounce and pbounce are new.

Take D ∈ DD(n)◦a,∗b, and let w1(D)w2(D) · · ·wn(D) be its area word.
Let DRise(D) ⊆ Rise(D) be the set of indices such that i ∈ DRise(D) if the i-th vertical

step of D is a decorated rise. We define the area of D as

area(D) = ∑
i∈{1,...,n}\DRise(D)

wi(D). (3.1)

For a more visual definition, the area is the number of whole squares that lie between
the path and the main diagonal, except for the ones in the rows containing the vertical
steps following a decorated rise.

Equivalently, we could define the area of D as the number of whole squares that lie
between the path and the main diagonal, except the ones in the columns containing falls
corresponding to decorated rises. For example, the path in Figure 3 has area equal to 6
(grey in the picture).

Similarly let DPeak(D) ⊆ Peak(D) be the set of indices such that i ∈ DPeak(D) if the
i-th vertical step of D is a decorated peak. We define the dinv of D, denoted dinv(D), to
be the number of pairs (i, j) ∈ {1, ..., n} × {1, ..., n} with i < j such that either

1. wi(D) = wj(D) and i 6∈ DPeak(D)

or,
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Figure 3: D ∈ DD◦2,∗2(8), its bounce word (left) and its area word (right).

2. wi(D) = wj(D) + 1 and j 6∈ DPeak(D).

We refer to the first and second kind of pairs as primary and secondary dinv, respectively.
For example, the path in Figure 3 has dinv equal to 5: 4 primary and 1 secondary.

The definitions of our two bounce statistics both start from the usual definition of the
bounce of undecorated Dyck paths, but they are modified (in two different ways) by the
decorations on the peaks.

The bounce path of a decorated Dyck path D ∈ DD(n)◦a,∗b starts in (0, 0) and travels
north until it encounters the beginning of an east step of D, then it turns east until it hits
the main diagonal, then it turns north again, and so on. Thus it continues until it arrives
at (n, n). We label the vertical steps of the bounce path as follows: all the steps before
the first “bounce”, i.e. the first time that the bounce path changes direction from north
to east, are labelled with a 0; next the vertical steps are labelled with a 1, again until the
path “bounces”; then with a 2, and so on. The labels of the bounce path from bottom
to top create a sequence of integers b1(D)b2(D) · · · bn(D) which we call the bounce word.
We define the bounce of D as

bounce(D) := ∑
i∈{1,...,n}\DPeak(D)

bi(D). (3.2)

The path in Figure 3 has bounce equal to 5.
We now describe how to compute our pbounce statistic of a decorated Dyck path

D ∈ DD(n)◦a,∗b. Delete all the horizontal steps that directly follow decorated peaks.
When deleting the horizontal steps, move the rest of the path one square to the left,
together with part of the main diagonal so that the number of squares between the path
and the main diagonal on each row remains the same. In this way we end up with a path
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from (0, 0) to (n− a, n) and some line segments that form the new main diagonal. This is
what is called the corresponding leaning stack in [10]. See Figure 4 for an example.

Now we draw the pbounce path in this new object as described before: start from (0, 0),
bounce at the beginning of horizontal steps of the path and against the main diagonal.
Then label the vertical steps as before to get a pbounce word b′1(D)b′2(D) · · · b′n(D). The
pbounce of D is then defined as

pbounce(D) :=
n

∑
i=1

b′i(D). (3.3)

In the example D ∈ D(2,0)
11 of Figure 4 its pbounce word is 00111111122, so that its

pbounce is pbounce(D) = 11.

◦

◦

◦

◦

0
0
1
1
1
1
1
1
1
2
2

Figure 4: Construction of the pbounce path

Remark that a peak is a vertical step followed by a horizontal step, one could think of
these two steps together as a diagonal step. So DD(n)◦a,∗b can be interpreted as the set
of decorated Schröder paths with a diagonal steps and b decorated rises. The definitions
of bounce and dinv given in [8, Chapter 4] coincide with our definitions of pbounce and
dinv. When b = 0 the definition of the area in [8, Chapter 4] and our area also coincide.

Let us conclude this section by introducing and motivating some notation. For each
of the three statistics that depend on the decorations on the peaks, i.e. dinv, bounce and
pbounce, there is one specific peak that, when decorated, does not alter this statistic.
Often, when dealing with one of these statistics, it will be useful to consider not the
whole set of decorated Dyck paths, but rather the set of decorated Dyck paths where
this specific peak is not decorated. We will use the following notations:
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• DDd(n)◦a,∗b ⊆ DD(n)◦a,∗b is the subset where the rightmost highest peak, i.e. the peak
that lies the most to the right on the diagonal that is the farthest removed from the
main diagonal, is never decorated, denoted as such because decorating this peak
does not alter the dinv statistic;

• DDb(n)◦a,∗b ⊆ DD(n)◦a,∗b is the subset where the first peak, i.e. the peak in the
leftmost column, is never decorated, denoted as such because decorating this peak
does not alter the bounce statistic;

• DDp(n)◦a,∗b ⊆ DD(n)◦a,∗b is the subset where the last peak, i.e. the peak in the
highest row is never decorated, denoted as such because decorating this peak does
not alter the pbounce statistic.

3.3 Haglund’s ζ (sweep) map

Theorem 3.1. There exists a bijective map

ζ : DDd(n)◦a,∗b → DDb(n)◦b,∗a

such that for all D ∈ DDd(n)◦a,∗b

area(D) = bounce(ζ(D))

dinv(D) = area(ζ(D)).

The map is essentially a decorated version of Haglund’s ζ map on undecorated Dyck
paths (see [4] or [8, Theorem 3.15]).

3.4 The ψ map exchanging peaks and falls

Theorem 3.2. There exists a bijective map

ψ : DDp(n)◦a,∗b → DDp(n)◦b,∗a

such that for all D ∈ DDp(n)◦a,∗b

area(D) = area(ψ(D))

pbounce(D) = pbounce(ψ(D)).

Here we merely describe ψ. A detailed proof of its properties can be found in [3].
Let us first look at a simpler map, ψ0, that transforms one decorated fall into a dec-

orated peak. Call the endpoint of the decorated fall x. We travel southward from x
until we hit the main diagonal, and then travel west until we hit the endpoint of a north
step of the path. Call this point y. We delete the decorated east step and add an east
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x

y

∗ x

y
◦

Figure 5: The map ψ0

step right after the point y. Since y was the endpoint of a north step and we added an
east step after y, we have created a peak, which we now decorate. See Figure 5 for an
example.

Clearly, ψ0 is invertible. Note that ψ−1
0 does not yield the desired result when the

decoration is on the highest peak: the added horizontal step is the last of the path, so
not a fall. This explains why ψ is defined on ψ on DDp(n)◦a,∗b.

The general map ψ relies on ψ0 as follows: apply ψ0 to all the decorated falls and ψ−1
0

to all the decorated peaks, one by one. However, we must be careful, because the order
in which we transform the decorations matters, see Figure 6 for an example. We use the
following order:

1. transform all the decorated falls, from left to right. We end up with a path all of
whose decorations are on peaks.

2. Transform some of the decorated peaks, starting from the top row, down to the to
bottom row. Indeed, decorated peaks that came from decorated falls in step (1)
must not be transformed again.

4 Decorated q, t-Schröder

We provide three combinatorial interpretations of the formula 〈∆′ea+b−k−1
ea+b, eahb〉.

Theorem 4.1. For a, b, k ∈N∪ {0}, a ≥ 1, a + b ≥ k + 1, we have

〈∆′ea+b−k−1
ea+b, sb+1,1a−1〉 = DDdq,t(a + b)◦b,∗k = DDpq,t(a + b)◦b,∗k = DDbq,t(a + b)◦k,∗b.
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∗
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∗

◦

◦

◦

◦

◦

◦
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◦

◦

∗ ∗ ∗

Figure 6: The two steps in the definition of the map ψ

so that, for a + b ≥ k + 1, we have

〈∆′ea+b−k−1
ea+b, eahb〉 = ∑

D∈DD(a+b)◦b,∗k
qdinv(D)tarea(D)

= ∑
D∈DD(a+b)◦b,∗k

qarea(D)tbounce(D)

= ∑
D∈DD(a+b)◦b,∗k

qarea(D)tpbounce(D).

The proof of Theorem 4.1 relies on recursions that can be shown to be satisfied by
both the combinatorial objects and the symmetric functions. These recursions are crucial
also in the proof of the main results in [2], and, together with them, they provide a
complete solution of Problem 8.1 in [10].

For both the statements and the proofs of these recursions, we refer to [3]. Here we
would like to mention only that the most technical part of these results is the following
theorem, that generalizes a result of Haglund.

Theorem 4.2. For m, k ≥ 1 and ` ≥ 0, we have

∑
γ`m

H̃γ[X]

wγ
hk[(1− t)Bγ]e`[Bγ] = (4.1)
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=
`

∑
j=0

t`−j
k

∑
s=0

q(
s
2)

[
s + j

s

]
q

[
k + j− 1
s + j− 1

]
q

hs+j

[
X

1− q

]
h`−j

[
X
M

]
em−s−`

[
X
M

]
.

5 A symmetry result

In [10], the following symmetry is conjectured.

〈∆h`∇en−`, sk+1,1n−`−k−1〉 = 〈∆hk
∇en−k, s`+1,1n−k−`−1〉 for n > k + `. (5.1)

We provide both an algebraic and combinatorial proof of this. The combinatorial proof
relies on the ψ-map of Theorem 3.2, which in fact has the property that it preserves
the bistatistic (area, pbounce) (see [3] for proofs). The algebraic one uses the following
theorem.

Theorem 5.1. For all a, b, k ∈N, with a ≥ 1, b ≥ 1 and 1 ≤ k ≤ a, we have

〈∆′ea ∆′ea+b−k−1
ea+b, ha+b〉 = 〈∆hk

∆′ea−k
ea+b−k, ea+b−k〉. (5.2)

Theorem 5.2. For n > k + `, the following expression is symmetric in k and `:

〈∆hk
∆′en−k−`−1

en−k, en−k〉. (5.3)

Algebraic proof of Theorem 5.2. Using (5.2), with n = a + b and ` = b− 1, we have

〈∆hk
∆′en−k−`−1

en−k, en−k〉 = 〈∆′en−`−1
∆′en−k−1

en, hn〉, (5.4)

which is obviously symmetric in k and `.

Notice that the expressions in (5.1) and in Theorem 5.2 can easily be shown to be the
same.
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