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Indeed, this fact is plain if er > es = et for all r ∈ (s, t); otherwise, there exists r ∈ (s, t)
such that er = es = et, so that er is a local minimum and, as a result, neither s nor t
are times of a local minimum and one can find s′ < s and t′ > t arbitrarily close to s
and t such that (s′, t′) falls into the previous case. The latter property implies that the

chord
[

ω
sn
2n, ω

tn
2n

]

belongs to Pn (recall (2.1) and the discussion thereafter). As a result,

the segment [e2iπs, e2iπt] ⊆ P and the claim follows.

Now, in order to see that P ⊆ B, observe that, as all the Pn are laminations, P is

also a lamination. Then, as B is almost surely maximal for the inclusion relation ([9,

Proposition 2.1]), we necessarily have B = P . This completes the proof.

We now turn to noncrossing pair partitions. We can use the observation of [3] that

there exists a simple bijection between noncrossing partitions of Pn and noncrossing pair

partitions of P2n, such that the corresponding laminations are at Hausdorff distance less

than π/2n (see Figure 6).
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Figure 6: The noncrossing partition of Pn that corresponds to a noncrossing pair parti-

tion of P2n is obtained by identifying ω
2k−1
2n with ω

2k
2n for each 1 ≤ k ≤ n.

Alternatively, we will see that the encoding of Section 2 is well behaved with respect

to the property of being a noncrossing pair partition.

Proof of Theorem 1 for uniform noncrossing pair partitions. Let P be a noncrossing partition

of P2n. As in the introduction, we rotate the picture by an angle of −π/2n and see P
as a partition of

{

ω
j
4n, j odd

}

(plainly, this will bear no effects in the limit). We consider

the Kreweras complement K of P and let (ℓ0, ℓ1, . . . , ℓ4n) be its encoding Dyck path. By

definition, P is a noncrossing pair partition if and only if the equivalence classes given

by (2.1) for odd indices are all of size 2 (where n is replaced by 2n). Equivalently, for each

k ∈ {0, 1, . . . , 2n − 1}, we have |ℓ2k+2 − ℓ2k| = 2, so that the path (ℓ0/2, ℓ2/2, ℓ4/2, . . . ,


