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Figure 8: Consequences on the encoding Dyck paths of inserting a vertex or slicing at

position k.

Proof of Proposition 3. Inserting a short chord and inserting a long chord at position k re-

spectively correspond on the unconstrained encoding Dyck path of Figure 7 to inserting

one up-step followed by one down-step right after time k and lifting up by one the part

of the path between time k and time l. We conclude as above.
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