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Abstract. We introduce the non-kissing complex of any gentle bound quiver. This
complex provides a powerful combinatorial model for support τ-tilting theory over
gentle algebras, and it generalizes and unifies the previously considered situations
of quivers defined from subsets of the grid or from dissections of a polygon (both
generalizing the classical associahedron). In this extended abstract, we report on lattice
theoretic and geometric properties of finite non-kissing complexes: we show that their
flip graphs are Hasse diagrams of congruence-uniform lattices, and that they can be
realized by convex polytopes.

Résumé. Nous introduisons le complexe platonique d’un carquois aimable. Ce
complexe offre un modèle combinatoire pour la théorie du τ-basculement à support
des algèbres aimables et il généralise et unifie les cas particuliers définis à partir de
sous-ensembles de la grille ou de dissections de polygones (contenant notamment le
cas de l’associaèdre classique). Dans ce résumé étendu, nous présentons des propriétés
combinatoires et géométriques des complexes platoniques finis: nous montrons que
leurs graphes de flips sont les diagrammes de Hasse de treillis congruence-uniformes,
et qu’ils peuvent être réalisés par des polytopes convexes.

1 Motivation: Non-kissing versus support τ-tilting

The non-kissing complex is a simplicial complex of pairwise non-kissing paths in a fixed
shape of a grid. It was introduced by T. K. Petersen, P. Pylyavskyy and D. Speyer
in [14] for a staircase shape, studied by F. Santos, C. Stump and V. Welker [17] for
rectangular shapes, and extended by T. McConville in [11] for arbitrary shapes. This
complex is known to be a simplicial sphere, and it was actually realized as a polytope
using successive edge stellations and suspensions in [11, Section 4]. Moreover, the dual
graph of the non-kissing complex has a natural orientation which equips its facets with
a lattice structure [11, Theorem 1.1, Sections 5–8]. Further lattice theoretic and geometric
aspects of this complex were recently developed by A. Garver and T. McConville in [7].
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The interest for non-kissing complexes is motivated by relevant instances arising from
particular shapes. As already observed in [11, Section 10], when the shape is a ribbon,
the non-kissing complex is an associahedron, and the non-kissing lattice is a type A
Cambrian lattice of N. Reading [15]. In particular, the straight ribbon corresponds to the
Tamari lattice, an object at the heart of a deep research area [12]. When the shape is a
rectangle (or even a staircase), the non-kissing complex was studied in [14, 17] as the
Grassmann associahedron, in connection to non-crossing subsets of [n].

Other instances of such complexes arise naturally from the representation theory
of associative algebras. The notion of support τ-tilting module over an algebra was
introduced by T. Adachi, O. Iyama and I. Reiten in [1], and has proved to be a successful
generalization of tilting and cluster-tilting theory. Over a given algebra, indecomposable
τ-rigid modules form a complex. For an account of the various algebraic interpretations
of this complex, we refer the reader to [3]. For example, in the case of the path algebra
of a straight line quiver, the support τ-tilting complex is, again, an associahedron.

Our original motivation was to provide common interpretations to these different
complexes. First, we realized any non-kissing complex as the support τ-tilting complex
of a well-chosen associative algebra. The algebras that occur are certain gentle algebras, a
special case of the well-studied string algebras of M. C. R. Butler and C. Ringel [4]. Con-
versely, starting from any gentle bound quiver Q̄, we defined its blossoming quiver Q̄`

and a non-kissing relation on the walks in Q̄` so that the following interpretation holds.

Theorem 1.1. For any gentle bound quiver Q̄ = (Q, I), the non-kissing complex of walks in the
blossoming quiver Q̄` is isomorphic to the support τ-tilting complex of the gentle algebra kQ/I.

In short, to any walk in Q̄` corresponds a representation of Q̄, and this corre-
spondence takes non-kissing walks to τ-compatible representations. This theorem pro-
vides a dictionary between the combinatorially-flavored non-kissing complex and the
algebraically-flavoured support τ-tilting complex, thus opening a bridge to go back and
forth between the two worlds. It allows us, for instance, to combinatorially define mu-
tation of support τ-tilting modules. This seems worthwhile, as the mutation of support
τ-tilting modules over an arbitrary algebra is generally difficult to carry out explicitly.

The precise statement and the proof of Theorem 1.1 can be found in the long version
of this paper [13], as well as further representation-theoretic aspects of the project. In this
extended abstract, we focus on combinatorial and geometric aspects. We first define in
Section 2 the non-kissing complex of a gentle bound quiver and show that this complex
is a pseudomanifold (meaning in particular that there is a well-defined notion of flips in
non-kissing facets). In Section 3, we show that the graph of increasing flips is the Hasse
diagram of a congruence-uniform lattice and describe its canonical join complex. Finally,
Section 4 is devoted to the geometry of finite non-kissing complexes: we construct their
g-vector fans and show that these fans are normal fans of convex polytopes. We refer
to [13] for detailed proofs and further properties of non-kissing complexes.
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2 Non-kissing complexes of gentle bound quivers

2.1 Blossoming quivers and non-kissing walks

We fix a gentle bound quiver Q̄ := (Q, I), where Q := (Q0, Q1, s, t) is a quiver with ver-
tices Q0, arrows Q1, and source and target maps s, t : Q1 → Q0, and I is a set of
quadratic relations αβ = 0 with α, β ∈ Q1 and t(α) = s(β) such that for any β ∈ Q1
there is at most one α ∈ Q1 such that t(α) = s(β) and αβ ∈ I (resp. αβ /∈ I) and at most
one γ ∈ Q1 such that t(β) = s(γ) and βγ ∈ I (resp. βγ /∈ I). See Figure 1. In all pictures,
a relation αβ = 0 is indicated with an arc connecting the target of α to the source of β.

A string in Q̄ is a word of the form ρ = αε1
1 αε2

2 · · · α
ε`
` , where

• αi ∈ Q1 and εi ∈ {−1, 1} for all i ∈ [`],
• t(αεi

i ) = s(αεi+1
i+1 ) for all i ∈ [`− 1], (by convention s(α−1) = t(α) and t(α−1) = s(α)),

• there is no αβ ∈ I such that αβ or β−1α−1 appears as a factor of ρ, and
• ρ is reduced, in the sense that no factor αα−1 or α−1α appears in ρ, for α ∈ Q1.

There is also an empty string εv for each vertex v ∈ Q0. Strings are considered undi-
rected, meaning that we implicitly identify ρ with ρ−1. Let S(Q̄) be the set of strings of Q̄.

The blossoming quiver of Q̄ = (Q, I) is the gentle bound quiver Q̄` = (Q`, I`) ob-
tained by adding arrows and relations at each vertex v ∈ Q0, so that v has precisely 2
incoming and 2 outgoing arrows and still fulfills the gentle conditions. See Figure 1.

A walk in Q̄ is a maximal string in Q̄`, i.e. connecting two vertices of Q`
0 r Q0. A

walk ω is bending if it has two opposite arrows and straight otherwise. For v ∈ Q0, the
peak walk vpeak (resp. the deep walk vdeep) is the walk with two outgoing (resp. incoming)
arrows at vertex v and one incoming and one outgoing arrow at all its other vertices. A
substring of ω = ωε1

1 . . . ω
ε`
` is a factor σ = ω

εm+1
m+1 . . . ω

εn−1
n−1 with 1 ≤ m < n ≤ `. We say

that σ is a top (resp. bottom) substring of ω if εm = −1 = −εn (resp. εm = 1 = −εn), mean-
ing that ω has two outgoing (resp. incoming) arrows at the endpoints of σ. Let Σbot(ω)
and Σtop(ω) be the sets of bottom and top substrings of ω respectively.

1 2

3 6

5

4

1 2

3 6

5

4

Figure 1: A gentle bound quiver Q̄ (left), its blossoming quiver Q̄` (middle), and some
walks in Q̄` (right). The dotted red and orange walks are non-kissing, but both are
kissing the plain blue walk. See Figure 4 for examples of non-kissing facets.
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Figure 2: A reduced non-kissing complex (left) and its flip graph (right).

Consider two walks ω, ω′ on Q̄. We say that ω kisses ω′ if Σtop(ω) ∩ Σbot(ω
′) 6= ∅,

i.e. if there exists a common substring σ of ω and ω′ such that ω has two outgo-
ing arrows incident to σ while ω′ has two incoming arrows incident to σ. See Fig-
ures 1 (right) & 3 (left). We authorize the case where σ is reduced to a vertex v, i.e. v is
a peak of ω and a deep of ω′. Note that ω can kiss ω′ several times, that ω and ω′ can
mutually kiss, and that ω can kiss itself. The non-kissing complex of Q̄ is the simplicial
complex Knk(Q̄) whose faces are the collections of walks which are not self-kissing and
pairwise non-kissing. Note that no straight walk can kiss another walk by definition,
so that they appear in all facets of Knk(Q̄). We thus consider the reduced non-kissing
complex Cnk(Q̄) to be the deletion of all straight walks from Knk(Q̄). See Figure 2 (left).

Our definition of non-kissing complex is largely inspired from and specializes to
simplicial complexes defined from subsets of the grid [14, 17, 11, 7] or from dissections
of polygons [2, 5, 8, 10]. To the best of our knowledge, we actually provide the first
connection between these two families, besides the observation that associahedra are
instances of both. In fact, the example of Figure 2 is also a special case of both families.

v w v w

Figure 3: Two kissing walks (left) and a flip (right).
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2.2 Distinguished arrows and flips

We now show that the non-kissing complex Cnk(Q̄) is a pseudomanifold, i.e. that it is pure
(all facets have the same dimension) and thin (there is a well-defined notion of flips).

A marked walk ω? is a walk ω = αε1
1 · · · α

ε`
` with a marked arrow α

εi
i . Consider two

distinct non-kissing walks µ?, ν? marked at an arrow αε ∈ Q`
1 . Let σ denote their max-

imal common substring containing that occurrence of α. Since µ? 6= ν?, their common
substring σ is strict, so that µ? and ν? split at least at one endpoint of σ. We define
the countercurrent order at α by µ? ≺α ν? when µ? enters and/or exits σ in the direction
of α, while ν? enters and/or exits σ in the opposite direction. For a face F of Knk(Q̄),
we call distinguished walk of F at an arrow α the ≺α-maximal walk dw(α, F), and we call
distinguished arrows of a walk ω ∈ F the arrows da(ω, F) := {α ∈ ω | dw(α, F) = ω}. The
following statement is inspired from [11, Theorem 3.2] and illustrated in Figure 4 (left).

Proposition 2.1. Each bending (resp. straight) walk of a facet F ∈ Knk(Q̄) contains precisely 2
(resp. 1) distinguished arrows pointing in opposite directions (resp. in the direction of the walk).

Corollary 2.2. The reduced non-kissing complex Cnk(Q̄) is pure of dimension |Q0|.
Define the distinguished string of a bending walk ω in a facet F ∈ Knk(Q̄) as the

substring ds(ω, F) of ω located between the two distinguished arrows of ω.

Proposition 2.3. Consider a facet F ∈ Knk(Q̄) and a bending walk ω ∈ F. Write ω = ρστ

where σ := ds(ω, F). Let {α, β} := da(ω, F), and α′ and β′ be the other two arrows of Q`
1

incident to the endpoints of σ and such that α′α ∈ I or αα′ ∈ I, and β′β ∈ I or ββ′ ∈ I.
Let µ := dw(α′, F r {ω}) and ν := dw(β′, F r {ω}). See Figures 3 (right) & 4. Then

(i) The string σ splits the walk µ into µ = ρ′στ and the walk ν into ν = ρστ′.
(ii) The walk ω′ := ρ′στ′ is kissing ω but no other walk of F. Moreover, ω′ is the only other

walk besides ω which is not kissing any other walk of F r {ω}.
We say that F4{ω, ω′} is obtained from F by flipping ω, and that the flip is supported by σ.

Corollary 2.4. The reduced non-kissing complex Cnk(Q̄) is a pseudomanifold without boundary.

Figure 4: Flipping the red walk ω to the orange walk ω′. The walks µ, ν involved in the
flip are the blue and green walks. Distinguished arrows are marked with triple arrows.
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3 Non-kissing lattices

The flip of Proposition 2.3 and Figures 3 & 4 exchanges two kissing walks ω, ω′. The flip
is increasing when their common substring is on top of ω and on the bottom of ω′. This
yields the increasing flip graph, where vertices are non-kissing facets and arcs are increas-
ing flips. See Figure 2 (right). The main result of this section is the following statement.

Theorem 3.1. If Cnk(Q̄) is finite, the increasing flip graph is the Hasse diagram of a congruence-
uniform lattice, that we call non-kissing lattice and denote by Lnk(Q̄).

Congruence-uniform lattices will be properly defined in Section 3.4. To achieve Theo-
rem 3.1, we use a technique developed by T. McConville for grid quivers [11]: we identify
the non-kissing lattice with a quotient of a lattice of biclosed sets of strings.

3.1 Biclosed sets of strings

A closure operator on a finite set S is a map S 7→ Scl on subsets of S such that ∅cl = ∅,
S ⊆ Scl, (Scl)cl = Scl and S ⊆ T =⇒ Scl ⊆ Tcl for any S, T ⊆ S . A subset S ⊆ S is
closed if Scl = S, coclosed if S r S is closed, and biclosed if it is both closed and coclosed.
Let Bic(S) be the inclusion poset of biclosed subsets of S . In [11, Theorem 5.5], T. Mc-
Conville gave simple sufficient conditions for Bic(S) to be a congruence uniform lattice.
In [13, Theorem 3.21], we extended this criterion in the situation when the singletons
of S are not biclosed so that we can apply it in our context of non-kissing complexes.

In a gentle bound quiver Q̄, we define the closure Scl of a set S of strings of Q̄ as the
set of all strings of the form σ1αε1

1 σ2αε2
2 . . . α

ε`−1
`−1 σ` where σi ∈ S, αi ∈ Q1 and εi ∈ {−1, 1}.

Let Bic(Q̄) be the inclusion poset on biclosed sets of strings of Q̄. For example, when Q̄ is
a path on n vertices with no relation, the strings are in bijection with pairs (i, j) ∈ (n+1

2 ),
the closure on strings translates to the concatenation (i, j) ◦ (k, `) = δj=k(i, `), biclosed
sets of strings are in bijection with inversion sets of permutations of [n+ 1], so that Bic(Q̄)
is isomorphic to the weak order on Sn+1. Figure 5 (left) illustrates the poset Bic(Q̄) for
another gentle bound quiver, with the empty set in the bottom and the set of all strings
of Q̄ on top. The criterion of [13, Theorem 3.21] yields the following result.

Theorem 3.2. When Q̄ has finitely many strings, the inclusion poset of biclosed sets Bic(Q̄) is
a congruence-uniform lattice.

3.2 Lattice congruence

A lattice congruence of a lattice (L,≤,∧,∨) is an equivalence relation ≡ on L compatible
with meets and joins: x ≡ x′ and y ≡ y′ implies x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′. It
defines a lattice quotient L/≡ on the congruence classes of ≡ where the order relation is
given by X ≤ Y if and only if there exists x ∈ X and y ∈ Y such that x ≤ y and the
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Figure 5: The inclusion lattice of biclosed sets Bic(Q̄) with congruence classes of ≡ in
blue (left), and the corresponding lattice of increasing flips on facets of Knk(Q̄) (right).

meet X ∧ Y (resp. the join X ∨ Y) of two congruence classes X and Y is the congruence
class of x ∧ y (resp. of x ∨ y) for arbitrary representatives x ∈ X and y ∈ Y. For a
finite lattice L, an equivalence relation ≡ on L is a lattice congruence if and only if its
congruence classes are intervals and the maps π↓ and π↑, sending an element x ∈ L to
the minimum and maximum of its congruence class respectively, are order preserving.

Following [11, Section 7], we associate to a biclosed set S ∈ Bic(Q̄) the sets
π↓(S) :=

{
σ ∈ S(Q̄)

∣∣ Σbot(σ) ⊆ S
}

and π↑(S) :=
{

σ ∈ S(Q̄)
∣∣ Σtop(σ) ∩ S 6= ∅

}
.

Here and throughout the paper, we denote by Σbot(σ) the set of bottom substrings for
a string σ = αε1

1 . . . α
ε`
` , i.e. the substrings αεm

m . . . αεn
n for 1 ≤ m ≤ n ≤ ` such that m = 1

or εm−1 = −1, and n = ` or εn+1 = 1 (and similarly for the set of top substrings Σtop(σ)).

Proposition 3.3. For any S ∈ Bic(Q̄), the sets π↓(S) and π↑(S) are biclosed. Moreover,
(i) π↓(S) ⊆ S ⊆ π↑(S) for any element S ∈ Bic(Q̄),

(ii) π↓ ◦ π↓ = π↓ ◦ π↑ = π↓ and π↑ ◦ π↑ = π↑ ◦ π↓ = π↑,
(iii) π↓ and π↑ are order preserving.
Therefore, the fibers of π↑ and π↓ coincide and are the classes of a lattice congruence≡ on Bic(Q̄).

For example, if Q̄ is an oriented path with no relation, ≡ is a Cambrian congruence of
the weak order [15]. The congruence classes of ≡ appear as blue rectangles in Figure 5.
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3.3 Non-kissing lattice

Coming back to our original problem, we now aim to show that the increasing flip graph
on non-kissing facets is isomorphic to the Hasse diagram of the quotient of the lattice
of biclosed set Bic(Q̄) of Section 3.1 by the lattice congruence of Section 3.2. The next
two propositions provide explicit maps between biclosed sets of strings and non-kissing
facets illustrated in Figure 6. It extends previous definitions of [11] for grid quivers.

Proposition 3.4. For S ∈ Bic(Q̄) and α ∈ Q`
1 , let ω(α, S) := α

ε−`
−` · · · α

ε−1
−1 · α · α

ε1
1 · · · α

εr
r be

the directed walk containing α defined by
• εi = −1 if the string αε1

1 · · · α
εi−1
i−1 belongs to S, and εi = 1 otherwise, for all i ∈ [r],

• ε−i = 1 if the string α
ε−i+1
−i+1 · · · α

ε−1
−1 belongs to S, and εi = −1 otherwise, for all i ∈ [`].

Then the set
{

ω(α, S)
∣∣ α ∈ Q`

1
}

contains 2|Q0| − |Q1| straight walks and |Q0| pairs of in-
verse directed bending walks, which are all pairwise non-kissing. We thus obtain a facet η(S)
of Knk(Q̄) by identifying these pairs of inverse directed bending walks.

Proposition 3.5. For any facet F ∈ Knk(Q̄), the set ζ(F) :=
( ⋃

ω∈F
Σbot(ω)

)cl
is biclosed.

When the quiver is an oriented path with no relation, the map η should be thought
of as the map from permutations to triangulations defined in [15]. Conversely, ζ maps
a triangulation to the minimal permutation in its fiber under η. For the straight quiver,
η plays the role of the binary search tree insertion while ζ selects the minimal linear
extension of a binary tree. Using these maps, we show that the increasing flip graph on
non-kissing facets is isomorphic to the Hasse diagram of the lattice quotient Bic(Q̄)/≡.

Theorem 3.6. The maps η : Bic(Q̄)→ Knk(Q̄) and ζ : Knk(Q̄)→ Bic(Q̄) satisfy:
• η
(
ζ(F)

)
= F for any facet F ∈ Knk(Q̄),

• ζ
(
η(S)

)
= π↓(S) for any biclosed set S ∈ Bic(Q̄),

• for any facet F′ ∈ Cnk(Q̄) and σ ∈ ζ(F′), there exists an increasing flip F→ F′ supported
by σ if and only if ζ(F′)r {σ} is biclosed.

Therefore, the facets of Knk(Q̄) are in bijection with the congruence classes of ≡ and the increas-
ing flip graph is the Hasse diagram of the lattice quotient Bic(Q̄)/≡.

−→
η

−→
ζ

S η(S) ζ(η(S)) = π↓(S)

Figure 6: The maps η (left) and ζ (right) between non-kissing facets and biclosed sets.
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3.4 Canonical join complex

In a lattice (L,≤,∧,∨), a join representation of x ∈ L is a subset J ⊆ L such that x =
∨

J.
This representation is irredundant if x 6= ∨

J′ for a strict subset J′ ( J. The irredundant
join representations of x ∈ L are ordered by containment of the lower ideals of their
elements, i.e. J ≤ J′ if and only if for any y ∈ J there exists y′ ∈ J′ such that y ≤ y′. When
this order has a minimal element, it is called the canonical join representation of x. All
elements of the canonical join representation x =

∨
J are then join-irreducible, i.e. cover a

single element. Canonical meet representations and meet-irreducibles are defined dually.
A lattice L is congruence-uniform if its join-irreducible elements are in bijection with

the join-irreducibles of its lattice of congruences, and similarly for meet-irreducibles.
Congruence-uniform lattices behave nicely with join representations and congruence
lattices. In particular, congruence-uniform lattices are semi-distributive, so that any
element admits a canonical join representation. The collection of sets J which define
canonical join representations in L is the canonical join complex of L.

To conclude our study of the non-kissing lattice Lnk(Q̄), we describe its canonical join
complex. We say that a string σ ∈ S(Q̄) is distinguishable if there is a facet F ∈ Knk(Q̄)
and a walk ω ∈ F such that σ = ds(ω, F). These strings are characterized as follows.

Proposition 3.7. A string σ ∈ S(Q̄) is distinguishable if and only if Σbot(σ) ∩ Σtop(σ) = {σ}.
One checks that Σbot(σ)

cl is biclosed so that we can define ji(σ) := η
(
Σbot(σ)

cl).
Proposition 3.8. The map ji : σ 7→ ji(σ) defines a bijection between the distinguishable strings
of Q̄ and the join-irreducible elements of the non-kissing lattice Lnk(Q̄).

Therefore, distinguishable strings are building blocks for canonical join representa-
tions in Lnk(Q̄). A descent of a facet F ∈ Knk(Q̄) is a string σ which is the distinguished
string of a walk ω of F and is a bottom substring of ω (so that the flip of ω in F is a
descent in the non-kissing lattice). We denote by des(F) the set of descents of F.

Proposition 3.9. The canonical join representation of F ∈ Lnk(Q̄) is given by F =
∨

σ∈des(F)
ji(σ).

To conclude, we characterize which subsets of strings correspond to canonical join
representations in the non-kissing lattice Lnk(Q̄). Following [7], we say that two strings
are non-friendly if Σtop(σ)∩Σbot(τ) = ∅ = Σbot(σ)∩Σtop(τ). We call non-friendly complex
the simplicial complex of sets of pairwise non-friendly distinguishable strings.

Theorem 3.10. The following assertions are equivalent for a set Σ of distinguishable strings of Q̄:
• Any two strings of Σ are non-friendly.
• {ji(σ) | σ ∈ Σ} is the canonical join-representation of a facet of Knk(Q̄).
• Σ is the descent set of a non-kissing facet F ∈ Knk(Q̄).

In other words, the canonical join complex of Lnk(Q̄) is isomorphic to the non-friendly complex.

For example, when the quiver is a straight path with no relation, the non-friendly
complex is isomorphic to the non-crossing partition complex.
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4 Gentle associahedra

In this section, we provide polyhedral realizations for finite non-kissing complexes, using
tools inspired from the finite type cluster algebras of S. Fomin and A. Zelevinsky [6].

4.1 g-vectors and c-vectors

Let mV := ∑i∈[m] evi ∈ RQ0 be the multiplicity vector of a multiset V = {v1, . . . , vm} of Q0.
For a string σ ∈ S(Q̄), let mσ :=mV(σ) where V(σ) is the multiset of vertices of σ.

For a walk ω on Q̄, we denote by peaks(ω) (resp. by deeps(ω)) the (multi)set of peaks
(resp. deeps) of ω. The g-vector of ω is the vector g(ω) :=mpeaks(ω) −mdeeps(ω) ∈ RQ0 .
For a set Ω of walks, g(Ω) := {g(ω) |ω ∈ Ω}. Note that g(ω) = 0 for a straight walk ω.

Consider a bending walk ω in a facet F ∈ Cnk(Q̄). By Proposition 2.1, ω has two dis-
tinguished arrows da(ω, F) around its distinguished string ds(ω, F). The c-vector of ω ∈ F
is the vector c(ω ∈ F) := ε(ω, F)mds(ω,F) ∈ RQ0 , where ε(ω, F) := 1 if ds(ω, F) ∈ Σtop(ω)
and ε(ω, F) := − 1 if ds(ω, F) ∈ Σbot(ω). Denote by c(F) := {c(ω ∈ F) | ω ∈ F}.
Proposition 4.1. For any non-kissing facet F ∈ Cnk(Q̄), the set of g-vectors g(F) and the set of
c-vectors c(F) form dual bases.

1 2
4

6

5

3

F

• • • • • •



1 0 0 −1 0 0 0
2 0 0 0 0 0 −1
3 1 0 0 1 0 0
4 0 0 0 −1 0 0
5 0 0 0 1 1 1
6 0 1 0 0 0 0

g(F)

• • • • • •



1 0 0 −1 0 0 0
2 0 0 0 0 1 −1
3 1 0 0 0 0 0
4 1 0 0 −1 1 0
5 0 0 0 0 1 0
6 0 1 0 0 0 0

c(F)

Figure 7: The g- and c-matrices of a facet F form dual bases.

4.2 g-vector fans and gentle associahedra

We now use g- and c-vectors to construct polyhedral realizations of finite non-kissing
complexes. Since the g-vectors of the walks ω, ω′, µ, ν involved in the flip of Figure 3 sat-
isfy the linear dependence g(ω) + g(ω′) = g(µ) + g(ν), we get the following statement.

Theorem 4.2. For a gentle bound quiver Q̄ with finite non-kissing complex Cnk(Q̄), the collec-
tion of cones Fg(Q̄) :=

{
R≥0g(F)

∣∣ F non-kissing face of Cnk(Q̄)
}

forms a complete simplicial
fan, that we call the g-vector fan of Q̄.

This fan is illustrated in Figure 8 (left). Note that it was constructed in [10] for dissec-
tion quivers and in [7] for grid quivers. Both constructions extend the type A Cambrian
fans of N. Reading and D. Speyer [16] obtained for path quivers with no relations.
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Figure 8: The g-vector fan F g(Q̄) (left) and the gentle associahedra (right).

We now aim at constructing a polytope whose normal fan is the g-vector fan of Q̄.
For two walks ω, ω′ on Q̄, denote by κ(ω, ω′) the number of distinct kisses of ω to ω′.
The kissing number of ω and ω′ is kn(ω, ω′) := κ(ω, ω′)+ κ(ω′, ω). When Cnk(Q̄) is finite,
we can define the kissing number of a walk ω on Q̄ as kn(ω) := ∑ω′ kn(ω, ω′).

Theorem 4.3. For a gentle bound quiver Q̄ with finite non-kissing complex Cnk(Q̄), the g-vector
fan Fg(Q̄) is the normal fan of the Q̄-associahedron Asso(Q̄) defined equivalently as:

(i) the convex hull of the points p(F) := ∑ω∈F kn(ω) c(ω ∈ F) for all facets F ∈ Cnk(Q̄), or
(ii) the intersection of the halfspaces H≤(ω) :=

{
x ∈ RQ0

∣∣ 〈 g(ω) | x 〉 ≤ kn(ω)
}

for all
walks ω on Q̄.

For path quivers with no relation, we recover the associahedra of C. Hohlweg and
C. Lange [9]. The latter are obtained by deleting inequalities in the facet description of
the classical permutahedron. This property is lost for arbitrary gentle quivers: on the
one hand, the Coxeter arrangement supporting the g-vector fan Fg(Q̄) is not necessarily
of finite type; on the other hand, the Q̄-associahedron is not always obtained by deleting
inequalities in the facet description of the Minkowski sum of all c-vectors. See [13] for a
detailed discussion. The Q̄-associahedron was constructed in [10] in the special case of
dissection quivers. An example of Asso(Q̄) is shown in Figure 8. For grid quivers, our
construction proves the polytopality conjecture for the g-vector fan stated in [7].

This realization of the non-kissing complex has the following relevant property re-
garding the non-kissing lattice studied in Section 3.

Proposition 4.4. When oriented in the linear direction (−1, . . . ,−1) ∈ RQ0 , the graph of the
Q̄-associahedron is (isomorphic to) the increasing flip graph.
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