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Abstract. We introduce growth diagrams arising from the geometry of the affine Grass-
mannian for GLm. These affine growth diagrams are in bijection with the c~λ many
components of the polygon space Poly(~λ) for ~λ a sequence of minuscule weights and
c~λ the Littlewood–Richardson coefficient. Unlike Fomin growth diagrams, they are in-
finite periodic on a staircase shape, and each vertex is labeled by a dominant weight
of GLm. Letting m go to infinity, a dominant weight can be viewed as a pair of par-
titions, and we recover the RSK correspondence and Fomin growth diagrams within
affine growth diagrams. The main combinatorial tool used in the proofs is the n-hive of
Knutson–Tao–Woodward. The local growth rule satisfied by the diagrams previously
appeared in van Leeuwen’s work on Littelmann paths, so our results can be viewed as
a geometric interpretation of this combinatorial rule.

Keywords: growth diagram, Robinson–Schensted–Knuth correspondence, Littlewood–
Richardson coefficient, Knutson–Tao–Woodward hive, promotion, evacuation

1 Introduction

The classical Robinson–Schensted correspondence is a bijection between permutations
and pairs of same-shape standard Young tableaux. It was first written down in [15]
by Robinson in an attempted proof of the Littlewood–Richardson rule. Schensted later
rediscovered the bijection in [17] with the aim of understanding the longest increasing
subsequences of a permutation, a point of view that was further generalized by Greene in
[6]. Then Fomin [2] realized the bijection in terms of growth diagrams where standard
Young tableaux are interpreted as saturated chains of partitions (see Figure 1). These
diagrams are square arrays of vertices, each labeled by a partition, where three of the
vertex labels of a unit square determine the label of the fourth, southeast vertex via
Fomin’s local rules.

The combinatorics of the RS correspondence was realized geometrically by Steinberg
[20], Hesselink [8], and Spaltenstein [18], using the variety of flags preserved by a fixed
nilpotent η, i.e. a Springer fiber. The components of this variety are indexed by standard
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Young tableaux of shape equal to the Jordan type of η. Recall that the relative position
of two flags is a permutation given by the Bruhat decomposition. For two generic flags
f and f ′ in components corresponding to tableaux T and S respectively, their relative
position is the permutation given by the RS correspondence. These results were clarified
and extended by van Leeuwen in [11]. In particular, each partition of Fomin’s growth
diagram is the Jordan type of η restricted to fi ∩ f ′j . Hence, van Leeuwen completed this
geometric interpretation of Fomin’s combinatorial rules.

In a separate work [10], van Leeuwen gave a combinatorial rule that realized the
symmetry of the tensor product of irreducible representations in terms of Littelmann
paths. Namely, for two irreducible representations Vλ, Vµ of a semisimple Lie algebra
g, the multiplicity cν

λ,µ in Vλ ⊗ Vµ =
⊕

ν cν
λ,µVν is equal to the number of λ-dominant

paths of weight ν− λ that are obtained by repeated application of the Littelmann path
operators on a fixed path of weight µ [12]. Likewise, cν

µ,λ is counted by an analogous set
of paths, but with the roles of λ and µ reversed. Since cν

λ,µ is equal to cν
µ,λ, it is natural to

ask for a bijection between these two sets of paths, and such a bijection is given in [10]
that gradually transforms a path via a local rule.

We show that this same combinatorial rule is related to the geometry of the affine
Grassmannian. Using this rule, we construct new growth diagrams on a staircase shape
that are in bijection with the components of the polygon space, the space of tuples
in the affine Grassmannian that satisfy certain distance conditions. Within these affine
growth diagrams we recover Fomin growth diagrams, as well as some classical bijections,
including the RSK correspondence.
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Figure 1: A Fomin growth diagram. Partitions α, β, γ of a unit square determine δ.

2 Geometry

2.1 Geometric Satake and the Polygon Space

Let G = GLm(C). Recall that the dominant weights of G are weakly decreasing se-
quences of m integers. The dual of a weight λ is given by negating and reversing the se-
quence, and is denoted λ∗. Let Vλ denote the irreducible representation corresponding to
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dominant λ. Although G is not semisimple, we will say that the minuscule weights are
the fundamental weights ωi = (1, . . . , 1, 0, . . . , 0) and the dual fundamental weights ω∗i =
(0, . . . , 0,−1, . . . ,−1) for 1 ≤ i ≤ m (where there are i many 1’s and −1’s respectively).
For a sequence of dominant weights~λ =

(
λ1, λ2, . . . , λn), let c~λ = dim(Vλ1 ⊗ · · · ⊗Vλn)G

be the Littlewood–Richardson coefficient, the dimension of the invariant space.
Let O = C[[t]] be the ring of power series and K = C((t)) the field of Laurent series.

Let Gr = G(K)/G(O) be the affine Grassmannian, an ind-variety over C. For each
dominant weight λ let Gr(λ) = G(O)tλ be the orbit of G(O) in Gr where tλ is the torus
fixed point for λ. These are all of the G(O)-orbits and are distinct. Then Gr = tGr(λ)
and Gr(λ) = ∪µ≤λGr(µ) where µ ≤ λ under the usual dominance order of weights. The
orbits of G(K) on Gr×Gr are in bijection with orbits of G(O) on Gr. For p, q ∈ Gr define
the distance to be d(p, q) = λ if (p, q) are in the same G(K) orbit as (t0, tλ). Note that
d(q, p) = λ∗. One reason for the importance of the affine Grassmannian is the following
theorem of Lusztig [13], Ginzburg [5], Beilinson–Drinfeld [1], and Mirković–Vilonen [14].
For general reductive groups one needs to take the Langlands dual GL, but in our case
GLL

m = GLm.

Theorem 2.1 (Geometric Satake). The tensor category of perverse sheaves on the affine Grass-
mannian Gr with respect to the above stratification is equivalent to the tensor category of repre-
sentations of G.

For a sequence of dominant weights~λ consider the twisted product of orbit closures,

Gr(λ1)×̃ · · · ×̃Gr(λn) :=
{
(g1, . . . , gn) | d(t0, g1) ≤ λ1, d(gi, gi+1) ≤ λi+1, 1 ≤ i ≤ n− 1

}
,

a sort of “path space” in Gr. Theorem 2.1 gives a way to construct the invariant space
(Vλ1 ⊗ · · · ⊗Vλn)G geometrically from the following convolution morphism.

m~λ : Gr(λ1)×̃Gr(λ2)×̃ · · · ×̃Gr(λn)→Gr

(g1, . . . , gn) 7→gn

Define the polygon space to be the projective variety Poly(~λ) = m−1
~λ

(t0). The geometric
Satake correspondence yields the following corollary.

Corollary 2.2. The invariant space is isomorphic to the top homology of Poly(~λ).

(Vλ1 ⊗ · · · ⊗Vλn)G ∼= Htop

(
Poly(~λ)

)
Haines showed in [7, Proposition 1.8] that for GLm, Poly(~λ) is equidimensional, so as

a corollary, the number of components of Poly(~λ) is equal to c~λ. We study the combina-
torics of indexing the components when the λi are minuscule. Note that in this case c~λ is
a rectangular Kostka number. For λ dominant minuscule, there are no dominant weights
less than λ, so Gr(λ) = Gr(λ) and the inequalities above become equalities. Hence,
Poly(~λ) is the variety of n-gons, where a point in Poly(~λ) is a tuple (g1, . . . , gn−1, gn = t0)
satisfying the ~λ distance conditions as in Figure 2.
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Figure 2: A point of Poly(~λ)
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Figure 3: The fan triangulation.

2.2 Indexing Components with Affine Growth Diagrams

Assume from now on that the λi in~λ are dominant minuscule. Fontaine, Kamnitzer, and
Kuperberg showed in [4] that the irreducible components of Poly(~λ) can be indexed by
minuscule paths for~λ, namely sequences of dominant weights ~µ = (µ0 = ∅, µ1, . . . , µn =
∅) such that µk − µk−1 = w · λk for some element w in the Weyl group.

Proposition 2.3 ([4]). Each component X of Poly(~λ) has an open dense set Xo such that for all
0 ≤ i ≤ n the distance d(t0, gi) = µi is constant on Xo. The distances~µ = (µ0, µ1, . . . , µn−1, µn)
form a minuscule path for~λ, and this is a bijection between components and minuscule paths.

Note that these distances are the ones along the edges of the fan triangulation of
Figure 3. Our first observation extends this result to any extroverted triangulation. An
extroverted triangulation is a triangulation of the n-gon such that each triangle contains
an external edge (see Figure 4). Fix an extroverted triangulation τ and order its interior
edges (e2, . . . , en−2) so that ei and ei+1 share a vertex. Choose e1 (respectively en−1) to
be one of the two external edges sharing a vertex with e2 (respectively en−2). Define
σ : [n] → [n] so that λσ(1) labels e1, λσ(n−1) labels en−1, and λσ(i) labels the edge that
completes the triangle with ei−1 and ei. Orient the edges so that either the tail of ei meets
the tail of ei−1, or their heads meets (see Figure 8). Let Eτ = (e1, . . . , en−1).

Proposition 2.4. Each component X of Poly(~λ) has an open dense set Xo
τ such that for every ei

in Eτ the distance µi along ei is constant on Xo
τ. This induces a bijection between the components

of Poly(~λ) and sequences of dominant weights, ~µ = (µ0 = ∅, µ1, . . . , µn−1, µn = ∅), such that
µk − µk−1 = w · λσ(k) for some w in the Weyl group.

For a fixed component X, taking the intersection of the open dense sets Xo
τ over all

of the extroverted triangulations τ gives an open dense set on which all the distances
d(gi, gj) are constant. Call these the generic distances for the component X. Consider a

Figure 4: The 12 extroverted, and 2 non-extroverted, triangulations of the hexagon
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Figure 5: Dominant weights α, β, γ determine δ via one application of the local rule.

quadrilateral with two external edge in the n-gon such that the corresponding generic
distances in Poly(~λ) are α, β, γ as in Figure 5 where n = 6. We give a local rule that
given these three generic distances, determines the fourth generic distance δ, thereby
performing a “quadrilateral flip”.

Theorem 2.5 (Local Growth Rule). For a generic point (g1, . . . , gn) in a component of Poly(~λ),
if the indicated distances of Figure 5 are given by α, β, γ, then δ = sort(α + β− γ).

Here weights are added component wise, so α + β = (α1 + β1, . . . , αn + βn). For
three dominant weights α, β, γ, the sequence α + β− γ need not be a weakly decreasing
sequence, hence the sort operation orders the sequence of integers to make it a dominant
weight.

As with Fomin growth diagrams, this rule allows us to construct growth diagrams
where α, β, γ label three vertices of a unit square and determine the fourth, southeast
vertex label δ according to the local rule in Theorem 2.5. We can organize the information
of the generic distances of a fixed component X of Poly(~λ) into a growth diagram in a
coherent manner. Consider an n-wide infinite staircase, such that each row contains
n− 1 unit squares. We will label the vertices of the diagram with the dominant weights
that are the generic distances d(gi, gj) of X. The diagram is organized so that a path
through the staircase from the left to the right diagonal, together with the weight labels
along the path, corresponds to an extroverted triangulation τ, together with the generic
distances of X along the edges Eτ. Begin by labelling the vertices along the left and right
diagonals with the zero weight, ∅. Label the super-diagonal with ~λ periodically (see
Figure 6).

Definition 2.6. An affine growth diagram of type ~λ is a labelling of the remaining
vertices by dominant weights such that the local rule is satisfied by every unit square.

Oriented extroverted triangulations correspond to paths through the staircase dia-
gram from the left diagonal to the right diagonal as follows. An oriented extroverted
triangulation can be specified by first choosing an external edge and orienting it clock-
wise (R) or counterclockwise (L). Then attach a doubly extroverted triangle to this edge
either to the right (R) or to the left (L), orienting the internal edge of this triangle ac-
cordingly. Continue shelling on triangles to the right (R) or to the left (L) until a second
doubly extroverted triangle is reached, completing the triangulation. In terms of paths
through the staircase diagram, an R corresponds to a horizontal step, while an L cor-
responds to a vertical step. For example, the fan triangulation for n = 6 is encoded as
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Figure 6: Empty affine growth dia-
gram of type ~λ = (λ1, . . . , λ6)
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Figure 7: An affine growth diagram
of type ~λ = (ω1, ω1, ω∗1 , ω∗1 , ω1, ω∗1)

(1R)(RRRR) (3R)(RRLL)

Figure 8: Extroverted triangulations correspond to paths through staircase diagram.

(1R)(RRRR), and corresponds to the first line of the staircase diagram. The choice of the
first external edge in the triangulation determines the row of the terminal vertex of the
first step through the staircase (see Figure 8).

Fix a sequence of minuscule weights ~λ = (λ1, . . . , λn) and fix a component X of
Poly(~λ). Let τ be an oriented extroverted triangulation with corresponding path pτ

through the staircase. Label the vertices along the path pτ with the corresponding
generic distances of X. Since, by Proposition 2.4, the component X is determined by
these generic distances along the interior edges of τ, repeated application of the local
rule fills in the entire diagram, thereby determining all of the generic distances. See Fig-
ure 7 where the affine growth diagram can be filled in by starting from the vertex labels
along one of the paths in Figure 8, or by starting from any other path from diagonal to
diagonal.

Theorem 2.7. Affine growth diagrams of type~λ are in bijection with the components of Poly(~λ).

In particular, if we start with a minuscule path, i.e. the generic distances of a compo-
nent along the fan triangulation, then this is the top line of the affine growth diagram.
The next line of the growth diagram represents the neighboring fan triangulation. In
other words, repeated application of the local rule to determine this second line rotates
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µ0 = ∅ µ1 = µ2 µ3 µ4 µ5 µ6 = ∅

ν0 = ∅ ν1 ν2 ν3 ν4 ν5 = ∗ ν6 = ∅

Figure 9: First row of a diagram.

∅ ∅

∅ ∅

X

Figure 10: Example of marking the first row.

the fan triangulation. The ith line represents the distances along the ith fan triangulation.
Rotating n times gets back to the initial fan triangulation, hence establishes the following
proposition, which is not combinatorially obvious from the local growth rule alone.

Proposition 2.8. Affine growth diagrams are n periodic.

3 Classical Bijections

Suppose that the λi are either ω1 or ω∗1 . In this case, there is a natural way to mark
affine growth diagrams. Consider again starting with a minuscule path, the top line of
an affine growth diagram, and determining the second line from repeated applications
of the local rule (see Figure 9). Suppose that λ1 = ω1, so that µ1 = ω1 as well. To
compute ν1, the local rule says to subtract one from the first row of µ2 and sort to get
ν1. This can happen in two ways. If µ2 had a box in the first row, then ν1 has one fewer
positive box than µ2. If µ2 did not have a box in the first row, then ν1 has one more
negative box than µ2. In other words, going from µ2 to ν1 either removes a positive box,
or adds a negative box. This relation between µi and νi−1 continues to hold for all i.
Since µ1 = (1, 0, . . . , 0), ν0 = ∅ and µ6 = ∅, ν5 = (0, . . . , 0,−1), the differences between
µi and νi−1 begin by being a removal of a positive box and finish by being an addition
of a negative box, with a switch occurring somewhere in the middle. This switch is
guaranteed to happen exactly once if m ≥ n/2. Mark the unit square across which this
switch occurs (see Figure 10).

Proposition 3.1. If for all i, λi = ω1 or ω∗1 , and m ≥ n/2, then any affine growth diagram of
type~λ has exactly one mark in every row and column, hence gives an affine permutation.

The group S̃n of affine permutations consists of bijections f : Z → Z such that
f (x + n) = f (x) + n. Such an f is uniquely determined by its values on [n], written as
[ f (1), · · · , f (n)], and called the window of f . From an affine permutation we obtain a
classical permutation by reducing the values [ f (1), · · · , f (n)] mod n. In this way, the
marked squares of an affine growth diagram give a classical permutation. For example,
the left diagram of Figure 12 has permutation 341265. This can be seen by moving the
right, blue triangle underneath the left, red triangle to get a permutation matrix.

Proposition 3.2. The permutation associated to an affine growth diagram is a fixed-point-free
involution.
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A subset of minuscule paths are the oscillating tableaux, i.e. those consisting of
weights that don’t have negative parts. An oscillating tableau of length n is a sequence
of partitions (µ0 = ∅, µ1, . . . , µn−1, µn = ∅) that differ by a box at each step. Starting
with a fixed-point-free involution written into an empty staircase diagram, we give a
procedure to determine the weight label at each vertex such that the result is an affine
growth diagram with first row an oscillating tableaux. This procedure induces a bijec-
tion, thereby rediscovering the following Stanley–Sundaram bijection [21].

Proposition 3.3 ([21]). For n even there is a bijection between fixed-point-free involutions of Sn
and length n oscillating tableaux.

Suppose n is even and let ~λ = (ω1, . . . , ω1, ω∗1 , . . . , ω∗1), a sequence of n/2 many ω1’s
followed by n/2 many ω∗1 ’s. In this case, all minuscule paths are oscillating tableaux
(µ0 = ∅, µ1, . . . , µn−1, µn = ∅) that consist of partitions that increase from ∅ to µn/2 and
then decrease back down to ∅. This is the same information as a pair of same-shape
standard Young tableaux. In this case, the markings of the corresponding affine growth
diagrams are contained in the squares indicated in Figure 11. They give a permutation
in Sn/2, and this is the (transpose) RS correspondence. Furthermore, we recover Fomin
growth diagrams.

Theorem 3.4. The positive parts of the weights of the left, red, indicated square of Figure 11 give
a Fomin growth diagram to the northwest, and the negative parts give a Fomin growth diagram
to the southeast. The analogous statement holds for the right, blue squares.

Hence, the RS bijection is contained in the Stanley–Sundaram bijection. In partic-
ular, starting with an oscillating tableau ~µ that encodes the pair of same-shape stan-
dard Young tableaux (P, Q), suppose that (P, Q) corresponds to the permutation σ =( 1 2 3 ··· k−1 k

σ1 σ2 σ3 ··· σk−1 σk

)
under the RS correspondence. Then under Stanley–Sundaram, ~µ cor-

responds to the fixed point-free-involution π =
( σ1 σ2 ··· σk−1 σk k+1 k+2 ··· 2k−1 2k

2k 2k−1 ··· k+2 k+1 σk σk−1 ··· σ2 σ1

)
.

3.1 Knuth Version

In the previous subsection the λi were assumed to be ω1 or ω∗1 . Dropping this assump-
tion, affine growth diagrams can now be marked with natural numbers, the number of
boxes that perform a “switch” across a unit square (see the right diagram of Figure 12).
The result is an n× n symmetric matrix such that for all i either ri = 0 or ci = 0, where
ri, respectively ci, denotes the sum of the entries of the ith row, respectively column, up
to and including the main diagonal entry.

In [16], Roby extended the Stanley–Sundaram bijection to semistandard oscillating
tableaux. A semistandard oscillating tableau of length n is a sequence of partitions
(∅, µ1, . . . , µn−1, ∅) such that for all i, µi and µi−1 differ by a vertical strip. As before,
write such a symmetric natural-number matrix into an empty affine growth diagram.
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Figure 11: The six affine growth diagrams of the RS correspondence.
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Figure 12: Standard and semistandard oscillating tableau examples.
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There is a procedure to determine the weight label at each vertex such that the result is
an affine growth diagram with the first row a semistandard oscillating tableau. Again,
this induces a bijection, thereby rediscovering the Stanley–Sundaram/Roby bijection.

Proposition 3.5. There is a bijection between natural-number symmetric matrices such that for
all i either ri = 0 or ci = 0 and semistandard oscillating tableaux. Furthermore, ci is the number
of boxes added in the ith step (going from µi−1 to µi), and ri is the number of boxes removed.

In the case when ~λ = (ωi1 , . . . , ωik , ω∗ik+1
, . . . , ω∗ik+l

), a minuscule path is a semistan-

dard oscillating tableau that grows for k steps to µk and then decreases for l steps back
to the empty partition. This is the same information as a pair of (row-strict) same-
shape semistandard Young tableaux with shape µk. Knuth [9] extended the Robinson–
Schensted correspondence to give a bijection between natural-number matrices and pairs
of same-shape semistandard Young tableaux. Roby [16] showed how to see the full RSK
correspondence in terms of Fomin growth diagrams. As before, the (transpose) RSK
bijection lives inside of the Stanley–Sundaram/Roby bijection.

Theorem 3.6. If~λ is as described in the previous paragraph, then the positive parts of the weights
of the k× l rectangle inside of an affine growth diagram is a Fomin–Roby growth diagram to the
northwest, and the negative parts give a Fomin–Roby growth diagram to the southeast.

4 Promotion and Evacuation

We can rephrase everything in terms of dominant SLm weights (see Figure 13). In this
case a minuscule path begins at the zero weight and grows to a rectangle. Fontaine and
Kamnitzer showed in [3] that, in this case, rotation of minuscule paths gives promotion
of rectangular tableaux. From different geometric considerations, such diagrams were
also considered by Speyer [19] in the special case that λi = ω1 for all i.

Let ∂ denote the promotion operation on tableaux computed via deflation, and ∂∗ the
inverse promotion operation computed via inflation, so that ∂ ◦ ∂∗ = id = ∂∗ ◦ ∂. Suppose
that tableau T labels line i of the affine growth diagram. Then line i + 1 is labeled by
∂(T) and line i− 1 by ∂∗(T). The n-periodicity of the affine growth diagram recovers the
n-periodicity of promotion on rectangular tableaux, ∂n(T) = T = (∂∗)n(T). Likewise,
traversing successive vertical lines to the left is given by promotion and to the right by
inverse promotion. Furthermore, the vertical line that begins where horizontal line i
ends is labeled by the Schützenberger evacuation tableau ev(T). The n + i horizontal
line is labeled by the dual evacuation procedure applied to ev(T), which recovers the
identity ev∗ ◦ ev(T) = ∂n(T), and the fact that ev∗ = ev in the rectangular case. We can
also recover the identity ev ◦ ∂ = ∂∗ ◦ ev. These results are summarized in Figure 13.
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ev(T)
↓

∂∗ ◦ ev(T) = ev ◦ ∂(T)
↓T →

∂(T)→

∂∗(T)→

ev∗ ◦ ev(T) = ∂6(T) = T →

∅

∅

∅

∅

∅

∅

∅

Figure 13: An SLm growth diagram with promotion and evacuation indicated.
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