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Abstract. Macdonald cumulants are symmetric functions that generalize Macdonald
polynomials. We prove a combinatorial formula for them which extends the celebrated
formula of Haglund for Macdonald polynomials. We also provide several applications
of our formula – it gives a new, constructive proof of a strong factorization property
of Macdonald polynomials and it proves that Macdonald cumulants are q, t–positive
in the monomial and in the fundamental quasisymmetric bases. Furthermore, we use
our formula to prove the recent higher-order Macdonald positivity conjecture for the
coefficients of the Schur polynomials indexed by hooks. Our combinatorial formula
links Macdonald cumulants to G–parking functions of Postnikov and Shapiro.
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1 Macdonald cumulants

The main character in this paper is a certain symmetric function κ(λ1, . . . , λr)(x; q, t)
indexed by a finite set of partitions {λ1, . . . , λr} and two additional parameters q, t. This
function is called Macdonald cumulant and this extended abstract describes the main
ideas presented in the sequence of papers [5, 3, 2] which initiated study of Macdonald
cumulants.

1.1 Motivation

The initial motivation for studying cumulants κ(λ1, . . . , λr) comes from our attempts
[5] on proving the b-conjecture – one of the major open problems in the theory of Jack
symmetric functions posed by Goulden and Jackson [8]. The b-conjecture states that
the coefficients of a certain multivariate generating function ψ(x, y, z; β) involving Jack
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symmetric functions can be interpreted as weighted generating functions of graphs em-
bedded into surfaces. Except some special cases [11, 4] not much is known and the
b-conjecture is still wide open. However, in our recent paper [5] the author and Féray
were able to rewrite the function ψ(x, y, z; β) as a linear combination of cumulants of
Jack symmetric functions, which are specializations of κ(λ1, . . . , λr). In view of this re-
sult, understanding of the structure of Macdonald cumulants is of great interest as a
potential tool for solving the b-conjecture.

Let A be a commutative ring with two different multiplicative structures · and ⊕
which define two (different) algebra structures on A. Then, for any X1, . . . , Xr ∈ A one
can define a conditional cumulant κ(X1, . . . , Xr) ∈ A by the following generating series

κ(X1, . . . , Xr) := [t1 · · · tr] log Eet1X1+···trXr , (1.1)

where E : (A,⊕)→ (A, ·) is the identity map. This cumulant has the following interpre-
tation: it measures the discrepancy between those two algebraic structures. Definition
(1.1) can be transformed into an equivalent but more combinatorial definition:

κ(X1, . . . , Xr) = ∑
π∈P([r])

(−1)#π−1(#π − 1)! ∏
B∈π

uB, (1.2)

where uB := E (
⊕

b∈B Xb) =
⊕

b∈B Xb and we sum over set-partitions of [r] := {1, 2, . . . , r},
that is all possible sets π of nonempty subsets of [r] such that every element i ∈ [r] be-
longs to precisely one element of π; here #π denotes the number of elements of π.

We go back to the symmetric functions now. A classical problem in the symmetric
functions theory is to understand the structure constants aλ

µ,ν of a given linear basis {sµ}µ:

sµ · sν = ∑
λ

aλ
µ,ν sλ.

The celebrated basis of Macdonald polynomials
{

H̃µ(x; q, t)
}

µ
(here, we use “trans-

formed form” of Macdonald polynomials sometimes called “modified form”; see [10]
for more details) is an interesting example. It was shown by Macdonald [12] (and it
is straightforward from Haglund’s formula (2.1)) that one has the following structure
constants in the specialization q = 1:

H̃µ(x; 1, t) · H̃ν(x; 1, t) = H̃µ⊕ν(x; 1, t),

where for partitions λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ) we define a new partition
λ⊕ µ := (λ1 + µ1, λ2 + µ2, . . . ) by adding coordinates of partitions λ and µ. Since Mac-
donald polynomials {H̃µ}µ form a linear basis of the algebra Λ of symmetric functions
over Q(q, t), we can define a new multiplicative structure (Λ,⊕) by setting H̃µ ⊕ H̃ν :=
H̃µ⊕ν and extending it by linearity. Therefore (Λ,⊕) can be interpreted as an approx-
imation of the algebra (Λ, ·) of interest, as q → 1 and it is natural to study cumu-
lants of the form κ( f1, . . . , fr), where f1, . . . , fr ∈ Λ, which describe this approxima-
tion on the “higher–order” level and may bring a better understanding of the structure
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constants for Macdonald polynomials. By multilinearity of cumulants it is enough to
study κ(H̃λ1 , . . . , H̃λr) and it was first conjectured in [5], and then proved in [3], that this
“higher–order” level approximation, is indeed of an expected order:

Theorem 1.1 ([3]). For any partitions λ1, . . . , λr one has

κ(H̃λ1 , . . . , H̃λr) ∈ Z[q, t]{(q− 1)r−1mµ}µ.

It is therefore natural to introduce the Macdonald cumulant κ(λ1, . . . , λr)(x; q, t) as

κ(λ1, . . . , λr)(x; q, t) :=
κ(H̃λ1(x; q, t), . . . , H̃λr(x; q, t))

(q− 1)r−1 . (1.3)

We finish this section by mentioning one more natural motivation for studying Mac-
donald cumulants. One of the most typical application of cumulants is to show that a
certain family of random variables is asymptotically Gaussian. The main technique is to
show that conditional cumulants of “observables” have a certain small cumulant property
exactly of the same form as in Theorem 1.1; see [14, 6]. It is therefore natural to ask
for a probabilistic interpretation of Theorem 1.1, which leads to some kind of a central
limit theorem. The most natural framework to investigate this problem seems to be re-
lated with Macdonald processes introduced by Borodin and Corwin [1] and we leave
this problem for the future research.

1.2 Schur–positivity problem

Our personal favorite reason for studying cumulants κ(λ1, . . . , λr) is their beautiful and
mysterious combinatorial structure. We recall that monomial symmetric functions have
integer coefficients in the Schur basis expansion, thus one can reformulate Theorem 1.1
as follows: for any partitions λ1, . . . , λr one has the following expansion

κ(λ1, . . . , λr) ∈ Z[q, t]{sµ}µ.

Remarkably, extensive computer simulations suggest that Macdonald cumulants are, in
fact, Schur–positive, which we conjectured in our recent paper [3]:

Conjecture 1.2 (Higher–order Macdonald positivity conjecture [3]). Let λ1, . . . , λr be par-
titions. Then, for any partition µ, the multivariate q, t-Kostka number K̃(q,t)

µ;λ1,...,λr defined by
the following expansion

κ(λ1, . . . , λr) := ∑
µ

K̃(q,t)
µ;λ1,...,λr sµ

is a polynomial in q, t with nonnegative integer coefficients.
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Note that the special case r = 1 of Conjecture 1.2 corresponds to the Macdonald
positivity ex-conjecture [12] which says that the coefficients K̃λ,µ(q, t) in the following
expansion:

H̃µ(x; q, t) = ∑
λ

K̃λ,µ(q, t) sλ(x)

are polynomials in q, t with nonnegative integer coefficients. It took more than ten years
to Haiman to prove it [10] by connecting their conjectural representation theoretic in-
terpretation with the problem from algebraic geometry and solving it. This result is
considered as a great breakthrough in the symmetric functions theory and it initiated
very active research in the remarkable algebraic combinatorics of the Macdonald poly-
nomials. Thus, our conjecture generalizes Macdonald positivity ex-conjecture from the
cumulant of order 1 to cumulants of higher order.

The main result of this paper is an explicit combinatorial formula for Macdonald
cumulants κ(λ1, . . . , λr) and its applications. Moreover, it will be shortly clear that our
formula connects Macdonald cumulants with some seemingly unrelated topics from
algebraic combinatorics. We believe that these links enrich the world of combinatorics of
Macdonald polynomials and give one more motivation for studying the new interesting
family of the symmetric functions {κ(λ1, λ2, . . . )}λ1,λ2,....

2 G–parking functions and fillings of the Young diagrams

Before we describe our formula, let us briefly recall the celebrated combinatorial formula
for Macdonald polynomials, which coincides with our formula for a trivial cumulant
κ(λ) = H̃λr(x; q, t) and which was a great source of inspiration for our work.

Theorem 2.1 ([9]). Let λ be a partition. Then

H̃λ(x; q, t) = ∑
σ:λ→N+

qinv(σ) tmaj(σ) xσ, (2.1)

where we sum over all possible fillings of λ by nonnegative integers, and where xσ := ∏�∈λ xσ(�).

With each filling σ : λ → N+ one can associate certain statistics inv(σ) and maj(σ)
which play crucial role in (2.1) and we are going to describe them in the following.

2.1 Fillings of Young diagrams and their statistics

For any partition λ ` n let σ : λ → N+ be a filling of the boxes of the diagram λ

by positive integers. A descent of σ is a pair of entries σ(�) > σ(�′) such that � lies
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1 2 10 11 2 4 6 12 14 11 13
2 4 3 1 8 10 7 8 9 9
6 7 4 10 9 9 13 13
1 1 1 11 4 4 4
9 3 4 9

Figure 1: Inversion pairs in the above filling σ are indicated by grey lines, while the
set of descents is highlighted in light gray.

immediately above �′. Let `λ(�) denotes the number of boxes in λ lying in the same
column as � strictly above it. The major index maj(σ) of a filling σ is defined as:

maj(σ) := ∑
�∈Des(σ)

(`λ(�) + 1), (2.2)

where Des(σ) := {� ∈ λ : σ(�) > σ(�′) is a descent} is a set of descents.
We also define the set of inversion pairs (�1,�2), where �1 is a box lying in the same

row as �2 to its left, �3 is a box lying directly below �1 and such that �1,�2,�3 are
counterclockwise increasing. That is, one of the following conditions holds true: σ(�1) ≤
σ(�3) < σ(�2), or σ(�3) < σ(�2) < σ(�1), or σ(�2) < σ(�1) ≤ σ(�3). Here, the
convention is that for �1,�2 lying in the first row σ(�3) < min�∈λ σ(�). The set of
inversion pairs of σ is denoted by InvP(σ). Figure 1 presents an example of above
defined objects. We set

inv(σ) := # InvP(σ). (2.3)

Finally, the reading order is the linear ordering of the entries of λ given by reading
them row by row, top to bottom, and left to right within each row. With any filling σ we
associate its reading word wσ by reading its entries in the reading order.

2.2 G-parking functions and the abelian sandpile model

Let G = (V, E) be a rooted, connected multigraph (multiple edges and loops are allowed)
with the set of vertices V = [r], where r ≥ 1 is a positive integer and we denote the root
of G by v ∈ [r]. For any i ∈ U ⊂ [r] \ {v} we define the outdegree outdegU(i) of a vertex
i as the number of edges in G linking i with some vertex j /∈ U. We call a function
f : [r] \ {v} → N a G-parking function if for any nonempty subset U ⊂ [r] \ {v} there
exists i ∈ U such that f (i) < outdegU(i).

When G = Kr is the complete graph on [r], then the set of G-parking functions is
precisely the set of parking functions.
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Postnikov and Shapiro noticed that G-parking functions are directly related to recur-
rent configurations in the abelian sandpile model for G, which is a model where we are trying
to distribute chips among vertices of our graph. A function u : [r] \ {v} →N giving the
number of chips placed in vertices of G different from the root is called a configuration.
We say that a vertex i ∈ [r] \ {v} is unstable if u(i) ≥ deg(i) – if this is a case, this vertex
can topple by sending chips to adjacent vertices one along each incident edge. We say
that a configuration is stable if all the vertices i ∈ [r] \ {v} except the root are stable. For
the root we set u(v) = −∑i∈[r]\{v} u(i), and the root can always topple. Finally, we say
that a configuration u is recurrent if there exists a nontrivial configuration u′ 6= 0 such
that u can be obtained from u + u′ by a sequence of topplings. Postnikov and Shapiro
noticed that a configuration u is recurrent if and only if f : [r] \ {v} → N defined by
f (i) := deg(i) − u(i) − 1 is a G-parking function. We define a weight of a G-parking
function f :

wt( f ) := #E− r− ∑
i∈[r]\{v}

f (i),

and we associate a q-generating function of G-parking functions IG(q) := ∑ f qwt( f ).
Merino López proved [13] that IG(q) = TutteG(1, q), where TutteG(t, q) is a Tutte

polynomial of G = (V, E), that is

TG(x, y) = ∑
H⊂G

(x− 1)c(H)−1 (y− 1)#E(H)−#V+c(H), (2.4)

where we sum over all (possibly disconnected) sub-multigraphs of G, c(H) denotes the
number of connected components of H, and E(H) is the set of edges of H. Therefore in
the special case of the complete graph IG(q) is the inversion polynomial (the generating
function of rooted trees with respect to the number of their inversions) and in general
we call it G–inversion polynomial.

For technical reasons, we extend the definition of IG(q) to the set of all finite multi-
graphs by setting IG(q) = 0 when G is not connected.

2.3 Combinatorial formula for Macdonald cumulants

We are ready to formulate our main result.

Theorem 2.2. Let λ1, . . . , λr be partitions. Then, the following formula holds true:

κ(λ1, . . . , λr) = ∑
σ:λ[r]→N+

IGσ
λ1,...,λr

(q) tmaj(σ) xσ. (2.5)

The summation index in (2.5) runs over all the fillings σ of a Young diagram λ[r]

by positive integers, where λB :=
⊕

b∈B λb and Gσ
λ1,...,λr is a certain multigraph and its

construction is presented in the following section.
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2.4 Consequences of the formula

Since our combinatorial formula for Macdonald cumulants is a generalization of (2.1), it
has similar implications. Let us briefly summarize them, before we go into details of a
description of Gσ

λ1,...,λr .
Our main result extends Theorem 1.1 twofold. Firstly, our formula shows that the

coefficients of Macdonald cumulants in the monomial expansion are positive integers
which is a stronger statement. Secondly, the original proof of Theorem 1.1 relies on some
abstract arguments and complicated induction – in particular it does not tell anything
about the combinatorial structure of Macdonald cumulants, contrary to our formula
which provides an explicit combinatorial interpretation in terms of G–parking functions.

Moreover, we deduce from our formula an explicit expansion of Macdonald cumu-
lants in the fundamental quasisymmetric functions, which turns out to be q, t–positive.

Finally, our main result implies that Conjecture 1.2 holds true in the special case of
hooks.

We describe these applications in Section 4.

3 Coloring of the Young diagram λ[r] and multigraphs

3.1 Coloring of the Young diagram λ[r]

Let λ1, . . . , λr be partitions, and let π ∈ P([r]) be a set partition. For each B ∈ π, we
are going to color the columns of λB by numbers b ∈ B as follows: we observe that the
Young diagram λB can be constructed by sorting the columns of the diagrams λb1 , . . . ,
λbt in decreasing order, where B = {b1, . . . , bt} and b1 < · · · < bt. When several columns
have the same length, we use the total order of B, that is we put first the columns of λb1 ,
then those of λb2 and so on. We say that a column of λB is colored by b ∈ B if this column
is identified with the column of λb in the above construction. Similarly, we say that a
box � ∈ λB is colored by b ∈ B if it lies in the column colored by b; see Figure 2a (at the
moment, please disregard entries). This gives a way to identify boxes of λ[r] with the
boxes of {λB : B ∈ π}. To be more precise a box � ∈ λB which lies in the i-th column
colored by b in λB (not necessarily in the i-th column of λB) and in the j-th row of λB is
identified with the box �̃ of λ[r] which lies in the i-th column colored by b in λ[r] and in
the j-th row of λ[r].

This identification leads to a one-to-one correspondence between all the fillings σ of
λ[r] with entries from a given set A and between the sets of fillings {σB : λB → A | B ∈
π}, and for a given set of fillings {σb : λb → A | b ∈ B} the corresponding filling
σ : λB → A is denoted by σB, see Figure 2a.

Let σ : λ[r] → N+ be a filling. We are ready to construct the multigraph Gσ
λ1,...,λr :=

(V, E). For each inversion pair in σ, we draw an edge linking its boxes, and we color its
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1 2 10 11 2 4 6 12 14 11 13
2 4 3 1 8 10 7 8 9 9
6 7 4 10 9 9 13 13
1 1 1 11 4 4 4
9 3 4 9

(a) (b) (c)

Figure 2: Figure 2a shows the colored filling σ from Figure 1 with λ1 = (42, 32, 2), λ2 =

(32, 22, 1), λ3 = (4, 32, 2, 1). Figure 2b shows the edges representing inversion pairs in
σ and colors of their endpoints. Figure 2c presents the multigraph Gσ

λ1,λ2,λ3 for σ, and
λ1, λ2, λ3 from Figure 2a obtained from the edges from Figure 2b by identifying the
vertices of the same color.

endpoints by the colors of these boxes from the colored diagram λ[r]; then we identify
all the endpoints of the same color – see Figures 2b and 2c for a construction of Gσ

λ1,...,λr

for r = 3 and σ, λ1, λ2, λ3 as in Figure 2a. More formally, Gσ
λ1,...,λr := (V, E) is defined by

the following data:

1. the set of vertices V is equal to [r];

2. the number ei,j(G) of edges connecting vertices i and j (i and j are not necessarily
distinct) is equal to the number of inversion pairs in σ colored by {i, j}.

3.2 Idea of the proof of Theorem 2.2

The first important step towards the proof is the following lemma.

Lemma 3.1. Let G = (V, E) be a multigraph. Then

IG(q) = (q− 1)1−#V ∑
π∈P(V)

(−1)#π−1(#π − 1)! ∏
B∈π

q#E|B , (3.1)

where E|B ⊂ E consists of the edges with both endpoints lying in the set B ⊂ V.

Proof. Let G be a multigraph (possibly disconnected), and we define the generating
functions ncG(q) = ∑H⊂G q#E(H), where we sum over all (possibly disconnected) sub-
multigraphs of G and cG(q) = ∑H⊂G q#E(H), where we sum over all connected sub-
multigraphs of G. Then, clearly

ncG(q) = ∑
π∈P(V)

∏
B∈π

cG|B(q),
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where G|B is a sub-multigraph of G supported on B. Thus the Möbius inversion formula
on the set–partition lattice implies that

cG(q) = ∑
π∈P(V)

(−1)#π−1(#π − 1)! ∏
B∈π

ncG|B(q).

Using (2.4) we relate cG(q) with a Tutte polynomial:

cG(q) = (q)#V−1 TutteG(1, q + 1). (3.2)

Plugging ncG|B(q) = (1 + q)#E|B and (3.2) into the above equality and substituting IG(q)
= Tutte(1, q) yield the desired result.

We are ready to sketch the proof of Theorem 2.2.

Sketch of the proof of Theorem 2.2. We use definitions (1.3) and (1.2) of Macdonald cumu-
lants and Haglund’s formula (2.1) to rewrite the left hand side of (2.5) as follows:

(q− 1)1−r ∑
π∈P([r])

(−1)#π−1(#π − 1)! ∏
B∈π

H̃λB(x; q, t)

= ∑
σ:λ[r]→N+

tmaj(σ)

(q− 1)1−r ∑
π∈P([r])

(−1)#π−1(#π − 1)! ∏
B∈π

qinv(σB)

 xσ. (3.3)

This is a consequence of the one-to-one correspondence between fillings of a given dia-
gram and the sets of fillings of its subdiagrams described in Section 3.1 and the following
identity:

maj(σ) = ∑
�∈Des(σ)

(`λ[r](�) + 1) = ∑
B∈π

maj(σB).

Notice now that setting Gσ
λ1,...,λr := (V, E), the expression in parentheses in (3.3) is given

by the following formula:

(q− 1)1−#V ∑
π∈P(V)

(−1)#π−1(#π − 1)! ∏
B∈π

q#E|B ,

which is equal to IGσ
λ1,...,λr

(1, q) by Lemma 3.1. Indeed, strictly from the construction of

Gσ
λ1,...,λr one has V = [r], and it is easy to check that #E|B = inv(σB). This concludes the

proof.

4 Consequences of the formula

In this section we present some important consequences of Theorem 2.2
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Figure 3: The graph G�1,�2,�3
λ1,λ2,λ3 for λ1, λ2, λ3 from Figure 2.

4.1 Expansion in fundamental quasisymmetric functions

Definition 4.1 ([7]). For any nonnegative integer n and a subset D ⊂ [n− 1] a fundamental
quasisymmetric function Fn,D(x) of degree n in variables x = x1, x2, . . . is defined by the
formula

Fn,D(x) := ∑
i1≤···≤in

j∈D⇒ij<ij+1

xi1 · · · xin . (4.1)

Let λ1, . . . , λr be partitions and let n = |λ1| + · · · + |λr|. Then, using formula (2.5)
and a verbatim argumentation as in [9, Section 4] (see [2] for more details) we have the
expansion:

κ(λ1, . . . , λr)(x) = ∑
σ∈Sn

IGσ
λ1,...,λr

(q) tmaj
λ[r]

(σ) Fn,iDes(σ)(x), (4.2)

where we abuse notation by denoting both a permutation by σ, and the associated stan-
dard filling of λ[r] with the reading word given by σ (see Section 2.1).

4.2 Expansion in Schur symmetric functions

Let λ1, . . . , λr be partitions, and let 1 ≤ s ≤ |λ1|+ · · ·+ |λr| be a positive integer. For any
subset {�1, . . . ,�s} ⊂ λ[r] of boxes we construct a graph G�1,...,�s

λ1,...,λr := (V, E) as follows:
we draw an edge between each �i and each box to its left lying in the same row, and we
color its endpoints by the colors of the corresponding boxes in λ[r]; then we identify all
the endpoints of the same color – see Figure 3 for a construction of G�1,�2,�3

λ1,...,λr for r = 3
and λ1, λ2, λ3 as in Figure 2. In other words

• the set of vertices V is equal to [r],
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• the number of edges linking vertices i, j ∈ V is equal to the number of pairs (�k,�′)
such that �′ is lying in the same row as �k to its left, and the pair (�k,�′) is colored
by {i, j}, where 1 ≤ k ≤ s.

We are ready to prove Conjecture 1.2 in the case of hooks.

Theorem 4.2. Let λ1, . . . , λr be partitions with |λ[r]| = n. Then, for any nonnegative integer s,
the coefficient of (−u)s in κ(λ1, . . . , λr)[1− u] is equal to

κ(λ1, . . . , λr)[1− u]|(−u)s = ∑
{�1,...,�s}⊂λ[r]

I
G
�1,...,�s
λ1,...,λr

(q) t∑1≤i≤s `
′
λ[r]

(�i). (4.3)

Equivalently, the multivariate q, t-Kostka number K̃(n−s,1s);λ1,...,λr(q, t) := [s(n−s,1s)]κ(λ
1, . . . , λr)

is a polynomial in q, t with nonnegative integer coefficients given by the following formula:

K̃(n−s,1s);λ1,...,λr(q, t) = ∑
{�1,...,�s}⊂λ[r]\(1,1)

I
G
�1,...,�s
λ1,...,λr

(q) t∑1≤i≤s `
′
λ[r]

(�i). (4.4)

Let us describe the main ingredients of the proof of Theorem 4.2. For the detailed
proof, we refer to [2].

Sketch of the proof of Theorem 4.2. Firstly, we sketch an argument of Macdonald showing
the equivalence of formulas (4.3) and (4.4). Macdonald proved [12, Section VI.8, Example
2] that

sλ[1− u] =

{
0 if λ is not a hook,
(1− u)(−u)s if λ = (n− s, 1s).

Applying this to any homogeneous symmetric function

f := ∑
λ`n

cλ sλ,

we obtain the following relation:

f [1− u]|(−u)s = c(n−s,1s) + c(n−s+1,1s−1). (4.5)

Thus, we need to prove that the relation (4.5) is satisfied by (4.3) and (4.4). This follows
easily from the construction of G�1,...,�s

λ1,...,λr .
Haglund, Haiman and Loehr [9] explained how to compute H̃µ(x; q, t)[1− u]|(−u)s

from their formula (2.1). Using small modifications of their argumentation and simple
properties of graphs G�1,...,�s

λ1,...,λr , we are able to compute κ(λ1, . . . , λr)[1− u]|(−u)s relying
on (2.5) in a similar manner. This yields the desired (4.3).
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References

[1] A. Borodin and I. Corwin. “Macdonald processes”. Probab. Theory Related Fields 158.1-2
(2014), pp. 225–400. DOI: 10.1007/s00440-013-0482-3.
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