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Abstract. The Heisenberg product is an associative product defined on symmetric
functions which interpolates between the usual product and the Kronecker product.
In 1938, Murnaghan discovered that the Kronecker product of two Schur functions
stabilizes. We prove an analogous result for the Heisenberg product of Schur func-
tions. We also show a rectangular symmetry for the Schur structural constants of this
product.
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1 Introduction

Aguiar, Ferrer Santos, and Moreira introduced a new product, the Heisenberg product,
on symmetric functions (also on representations of symmetric group) in [1] and [7]. Un-
like the outer product and the Kronecker product, the terms appearing in the Heisenberg
product of two Schur functions have different degrees. The highest degree component
is the usual product. When the Schur functions have the same degree, the lowest degree
component of the Heisenberg product is their Kronecker product.

In 1938, Murnaghan [8] found that the Kronecker product of two Schur functions
stabilizes in the following sense. Given a partition λ of l and a sufficiently large integer
n, let λ[n] be the partition of n obtained by prepending a part of size n− l to λ. Given two
partitions λ and µ, the coefficients appearing in the Schur expansion of the Kronecker
product sλ[n] ∗ sµ[n] do not depend upon n when n is large enough. The aim of this paper
is to show that each degree component of the Heisenberg product also has this property.

This extended abstract is organized as follows. In the second section, we give the
definitions of the induction product, the Kronecker product, and the Heisenberg prod-
uct, and recall some important results. In the third section, we define the Heisenberg
coefficients and prove that each degree component of the Heisenberg product has a sim-
ilar stabilization property as the Kronecker product. In Section 4, we define the stable
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Heisenberg coefficients, and show how to recover the usual Heisenberg coefficients from
the stable ones. In the last section, we show a rectangular symmetry for the Heisenberg
coefficient, which is analogous to the results in [2].

2 Preliminaries

We begin by defining the induction product on representations of symmetric groups.
For an introduction to representations of symmetric groups, see [9]. For any partition
α, let Vα denote the irreducible representation of S|α| indexed by α. Let λ, µ, and ν be
partitions of n, m, and n + m respectively (written as λ ` n, µ ` m, and ν ` m + n).
Note that the tensor product Vλ ⊗ Vµ is a representation of Sn × Sm, and Sn × Sm can
be naturally embedded into Sn+m. The induction product of Vλ and Vµ is the induced
representation of Vλ ⊗ Vµ from Sn × Sm to Sn+m, written as IndSn+m

Sn×Sm
(Vλ ⊗ Vµ). The

Littlewood–Richardson coefficient cν
λ,µ is the multiplicity of Vν in the decomposition of

IndSn+m
Sn×Sm

(Vλ ⊗Vµ) into irreducibles. That is,

IndSn+m
Sn×Sm

(Vλ ⊗Vµ) =
⊕

ν`n+m

cν
λ,µVν. (2.1)

Let 〈 · , · 〉 denote the natural inner product on the representations of the finite groups
in which the irreducible representations form an orthonormal basis. Applying the Frobe-
nius reciprocity theorem to (2.1), we have

cν
λ,µ = 〈 IndSn+m

Sn×Sm
(Vλ ⊗Vµ) , Vν 〉Sn+m

= 〈 Vλ ⊗Vµ , ResSn+m
Sn×Sm

Vν 〉Sn×Sm .

So
ResSn+m

Sn×Sm
Vν =

⊕
λ`n , µ`m

cν
λ,µ(Vλ ⊗Vµ). (2.2)

There is a one-to-one correspondence between the irreducible representations and
the Schur functions by the Frobenius map, which sends Vλ to the Schur function sλ. So
we could also express the induction product in terms of symmetric functions. Under
this bijection, the induction product corresponds to the usual product (denoted by ·) on
symmetric functions. i.e.

sλ · sµ = ∑
ν`n+m

cν
λ,µsν.

The Littlewood–Richardson coefficient has been well-studied and it has a nice combi-
natorial interpretation, the Littlewood–Richardson rule, which describes this coefficient
in terms of counting certain skew tableaux, see [5] (Page 143) for details about this.
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We define the Kronecker coefficient in terms of representations of symmetric groups.
Let λ, µ, and ν be partitions of n. While the tensor product Vλ⊗Vµ is a representation of
Sn× Sn, it can also be considered as a representation of Sn (by viewing Sn as a subgroup
of Sn × Sn through the diagonal map). Write it as ResSn×Sn

Sn
(Vλ ⊗ Vµ). The Kronecker

coefficient gν
λ,µ is the multiplicity of Vν in the decomposition of ResSn×Sn

Sn
(Vλ ⊗ Vµ) into

irreducibles. That is,
ResSn×Sn

Sn
(Vλ ⊗Vµ) =

⊕
ν`n

gν
λ,µVν. (2.3)

We could also express the Kronecker product (denoted by ∗) in terms of symmetric
functions:

sλ ∗ sµ = ∑
ν`n

gν
λ,µsν.

We will switch between the languages of representation theory and symmetric functions.
Given a partition λ = (λ1, λ2, . . . ) and a positive integer n, let λ[n] be the sequence

(n − |λ|, λ1, λ2, . . . ). When n ≥ |λ| + λ1, λ[n] is a partition of n. The stability of the
Kronecker coefficients says that for any partitions λ, µ, and ν, the Kronecker coefficient
gν[n]

λ[n],µ[n] does not depend on n when n is large enough. This property is best shown on an
example. Let λ = (2) and µ = (1, 1), we compute the Kronecker product sn−2,2 ∗ sn−2,1,1
for n ≥ 4:

s2,2 ∗ s2,1,1 = s3,1 + s2,1,1

s3,2 ∗ s3,1,1 = s4,1+s3,2+2s3,1,1 + s2,2,1 + s2,1,1,1

s4,2 ∗ s4,1,1 = s5,1+s4,2+2s4,1,1 + s3,3+2s3,2,1 + s3,1,1,1 + s2,2,1,1

s5,2 ∗ s5,1,1 = s6,1+s5,2+2s5,1,1 + s4,3+2s4,2,1 + s4,1,1,1+s3,3,1 + s3,2,1,1

s6,2 ∗ s6,1,1 = s7,1+s6,2+2s6,1,1 + s5,3+2s5,2,1 + s5,1,1,1+s4,3,1 + s4,2,1,1.

Observe that the last two equations are only different in the first part of the indexing
partitions. Indeed, for n ≥ 7, we have

sn−2,2 ∗ sn−2,1,1 = sn−1,1 + sn−2,2 + 2sn−2,1,1 + sn−3,3 + 2sn−3,2,1

+ sn−3,1,1,1 + sn−4,3,1 + sn−4,2,1,1.

One can also observe that the sequence of Kronecker coefficients in each column in
the above example is weakly increasing from top to bottom. This was shown by Brion
[4] and Manivel [6]:

Proposition 2.1. Let λ, µ, and ν be partitions. The sequence gν[n]
λ[n],µ[n] is weakly increasing.

The sequence in the above proposition is eventually constant due to the stability of
the Kronecker coefficients. Write gν

λ,µ for the stable value of this sequence and call it a
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reduced Kronecker coefficient. In our example, we see that g(2,1)
(2),(1,1) = 2 and g(1,1,1)

(2),(1,1) = 1.
When all the Kronecker coefficients in sλ[n] ∗ sµ[n] reach the reduced ones, we say that the
Kronecker product stabilizes. In our example, the stabilization of the Kronecker product
sn−2,2 ∗ sn−2,1,1 begins at n = 7. Moreover, Murnaghan [8] also claimed that gν

λ,µ vanishes
unless

|λ| ≤ |µ|+ |ν|, |µ| ≤ |λ|+ |ν|, |ν| ≤ |λ|+ |µ|,
which are triangle inequalities. When |ν| = |λ| + |µ|, gν

λ,µ is equal to the Littlewood–
Richardson coefficient cν

λ,µ [8].
Briand et al. [3] determined when the Kronecker product stabilizes and provide an-

other condition for the reduced Kronecker coefficient being nonzero.

Proposition 2.2 ([3, Theorem 1.2]). Let λ and µ be partitions. The expansion of the Kronecker
product sλ[n] ∗ sµ[n] stabilizes at n = |λ|+ |µ|+ λ1 + µ1.

Proposition 2.3 ([3, Theorem 3.2]). Let λ and µ be partitions, then

max{|ν|+ ν1| ν partition, gν
λ,µ > 0} = |λ|+ |µ|+ λ1 + µ1.

Both the induction product and the Kronecker product are graded. Aguiar et al. [1]
and Moreira [7] introduced a new (nongraded commutative) product which interpolates
between these two products.

Definition 2.4 (Heisenberg product). Let V and W be representations of Sn and Sm respec-
tively. Fix an integer l ∈ [max{m, n}, m + n], and let a = l−m, b = n + m− l, and c = l− n.
Observe that Sx × Sy can be viewed as a subgroup of Sx+y: Sx × Sy ↪→ Sx+y, for any nonneg-
ative integers x and y. Also, we can consider Sb as a subgroup of Sb × Sb through the diagonal
embedding ∆Sb : Sb ↪→ Sb × Sb. We have the diagram of inclusions:

Sa × Sb × Sb × Sc
� � // Sa+b × Sb+c = Sn × Sm

Res

||
Sa × Sb × Sc

?�

idSa×∆Sb
×idSc

OO

' �

44

� � //
Ind ,,

Sa+b+c = Sl

(2.4)

The Heisenberg product (denoted by #) of V and W is

V#W =
n+m⊕

l=max(n,m)

(V#W)l, (2.5)

where, following the dashed arrows in diagram (2.4),

(V#W)l = IndSl
Sa×Sb×Sc

ResSn×Sm
Sa×Sb×Sc

(V ⊗W) (2.6)

is the degree l component.
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When l = m + n, (V#W)l = IndSn+m
Sn×Sm

(V ⊗W), which is the induction product of

representations; when l = n = m, (V#W)l = ResSl×Sl
Sl

(V ⊗W), which is the Kronecker
product of representations. The Heisenberg product connects the induction product
and the Kronecker product. Remarkably, this product is associative ([1] Theorem 2.3,
Theorem 2.4, Theorem 2.6). By the definition of the Heisenberg product (look at diagram
(2.4)), when b is much greater than a and c, the corresponding degree component behaves
like the Kronecker product.

A natural question is whether we can develop a stability result for this component.
We look at an example of this.

Let us take λ = (1, 1), µ = (1). We use Sage [10] to compute the lowest degree
components of s(1,1)[n]#s(1)[n−1]:

(s1,1,1#s1,1)3 = s3 + s2,1,
(s2,1,1#s2,1)4 = s4 + 3s3,1 + 2s2,2 + 3s2,1,1 + s1,1,1,1.
(s3,1,1#s3,1)5 = s5 + 3s4,1 + 4s3,2 + 4s3,1,1 + 4s2,2,1 + 3s2,1,1,1 + s1,1,1,1,1,
(s4,1,1#s4,1)6 = s6 + 3s5,1 + 4s4,2 + 4s4,1,1 + 2s3,3 + 5s3,2,1 + 3s3,1,1,1 + s2,2,2 + 2s2,2,1,1

+s2,1,1,1,1,
(s5,1,1#s5,1)7 = s7 + 3s6,1 + 4s5,2 + 4s5,1,1 + 2s4,3 + 5s4,2,1 + 3s4,1,1,1 + s3,3,1 + s3,2,2

+2s3,2,1,1 + s3,1,1,1,1,
(s6,1,1#s6,1)8 = s8 + 3s7,1 + 4s6,2 + 4s6,1,1 + 2s5,3 + 5s5,2,1 + 3s5,1,1,1 + s4,3,1 + s4,2,2

+2s4,2,1,1 + s4,1,1,1,1,

· · · · · ·
We create a table for this:

HH
HHH

HHn
ν

n n− 1 n− 2 n− 2 n− 3 n− 3 n− 3 n− 4 n− 4 n− 4 n− 4

1 2 1 3 2 1 3 2 2 1
1 1 1 1 2 1 1

1 1 1
1

3 1∗ 1
4 1 3∗ 2 3 1
5 1 3 4∗ 4∗ 2 5 3∗ 1
6 1 3 4 4 2∗ 5∗ 3 1∗ 2∗ 1∗
7 1 3 4 4 2 5 3 1∗ 1 2 1
8 1 3 4 4 2 5 3 1 1 2 1

Table 1: (s(1,1)[n]#s(1)[n−1])n for 3 ≤ n ≤ 8.
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The first column gives the values of n. The first row lists all the terms which may
appear in the component, and we use the indexing partitions (written in columns) to
denote the corresponding Schur functions. We can see that the last two rows have the
same Heisenberg coefficients in the Schur expansion, and the only difference is the first
part of the indexing partitions. The stabilization of the lowest degree component begins
at n = 7. When n ≥ 7, we have

(sn−2,1,1#sn−2,1)n = sn + 3sn−1,1 + 4sn−2,2 + 4sn−2,1,1 + 2sn−3,3

+ 5sn−3,2,1 + 3sn−3,1,1,1 + sn−4,3,1 + sn−4,2,2 + 2sn−4,2,1,1

+ sn−4,1,1,1,1.
(2.7)

The main result of this paper is the following:

Theorem 2.5. Given nonnegative integers r and t and two partitions λ and µ, the expansion of
(Vλ[n]#Vµ[n−r])n+t stabilizes when n ≥ |λ|+ |µ|+ λ1 + µ1 + 3t + 2r. Moreover, this is where
the stabilization begins.

From Table 1, we can also see that different columns stabilize at different steps. In
Section 4, we give an upper bound for when each column stabilizes in (Corollary 4.2),
and we add ∗’s to the cells in Table 1 corresponding to the upper bounds.

3 Proof of Theorem 2.5

Let λ be a partition. Define λ+ to be the partition obtained from λ by adding 1 to the
first part λ+ = (λ1 + 1, λ2, λ3, . . . ); similarly, set λ− = (λ1 − 1, λ2, λ3, . . . ). Let λ =
(λ2, λ3, . . . ) be the partition obtained from λ by removing the first part. For partitions λ

and µ, we set λ + µ = (λ1 + µ1, λ2 + µ2, . . . ), and λ− µ = (λ1 − µ1, λ2 − µ2, . . . ) (when
µ is contained in λ). Using the Littlewood–Richardson rule, we can show the following
lemma:

Lemma 3.1. Let λ, µ and ν be partitions with |ν| = |λ|+ |µ|
(1) If ν1 − ν2 ≥ |λ|, then cν

λ,µ = cν+

λ,µ+ .

(2) If µ1 − µ2 ≥ |λ|, then cν
λ,µ = cν+

λ,µ+ .

Remark 3.2. When λ, µ, and ν do not satisfy the conditions in Lemma 3.1, we can show that
cν

λ,µ ≤ cν+

λ,µ+ . In other words, the sequence cν[n+|λ|]
λ,µ[n] is weakly increasing and is constant when n

is large.

The Heisenberg coefficient hν
λ,µ is the multiplicity of Vν in Vλ#Vµ, i.e.

Vλ#Vµ =
n+m⊕

l=max(n,m)

⊕
ν`l

hν
λ,µVν.
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and we set hν
λ,µ = 0 if λ, µ, or ν is not a partition. The first part of Theorem 2.5 states

that when n ≥ |λ|+ |µ|+ λ1 + µ1 + 3t + 2r,

hν−
λ[n],µ[n−r] = hν

λ[n+1],µ[n−r+1] (3.1)

for all ν ` n + t + 1.
To prove (3.1), we first express the Heisenberg coefficient in terms of the Littlewood–

Richardson coefficients and the Kronecker coefficients. Using (2.1), (2.2), (2.3), and (2.6)
we get the following lemma:

Lemma 3.3. For each ν ` l,

hν
λ,µ = ∑

α ` a, ρ ` c, τ ` n
β, η, δ ` b

cλ
α,β cµ

η,ρ gδ
β,η cτ

α,δ cν
τ,ρ (3.2)

where max(n, m) ≤ l ≤ n + m, a = l −m, b = m + n− l, and c = l − n.

We set cν
λ,µ = 0 when λ, µ, or ν is not a partition. Then (3.2) holds for all compositions

ν of l. Combining (3.1) and (3.2), shows that to prove the first part of Theorem 2.5, it is
enough to show that, when n ≥ |λ|+ |µ|+ λ1 + µ1 + 3t + 2r,

∑
(α,β,η,ρ,δ,τ)∈T

cλ[n]
α,β cµ[n−r]

η,ρ gδ
β,η cτ

α,δ cν−
τ,ρ =

∑
(α∗,β∗,η∗,ρ∗,δ∗,τ∗)∈T∗

cλ[n+1]
α∗,β∗ cµ[n+1−r]

η∗,ρ∗ gδ∗
β∗,η∗ cτ∗

α∗,δ∗ cν
τ∗,ρ∗

(3.3)

for all ν ` n + t + 1, where

T = {(α, β, η, ρ, δ, τ) | α ` r + t, ρ ` t, τ ` n, β, η, δ ` n− r− t};
T∗ = {(α∗, β∗, η∗, ρ∗, δ∗, τ∗) | α∗ ` r + t, ρ∗ ` t, τ∗ ` n + 1,

β∗, η∗, δ∗ ` n− r− t + 1}.

Define f : T 7−→ Z≥0 and f ∗ : T∗ 7−→ Z≥0 as follows:

f (α, β, η, ρ, δ, τ) = cλ[n]
α,β cµ[n−r]

η,ρ gδ
β,η cτ

α,δ cν−
τ,ρ,

f ∗(α∗, β∗, η∗, ρ∗, δ∗, τ∗) = cλ[n+1]
α∗,β∗ cµ[n+1−r]

η∗,ρ∗ gδ∗
β∗,η∗ cτ∗

α∗,δ∗ cν
τ∗,ρ∗ .

Then equation (3.3) becomes:

∑
(α,β,η,ρ,δ,τ)∈T

f (α, β, η, ρ, δ, τ) = ∑
(α∗,β∗,η∗,ρ∗,δ∗,τ∗)∈T∗

f ∗(α∗, β∗, η∗, ρ∗, δ∗, τ∗). (3.4)
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Some terms in the sums of (3.4) vanish. Let us consider only the nonvanishing terms.
Let T0 = T r f−1(0) and T∗0 = T∗ r f ∗−1(0), so that T0 and T∗0 index the nonzero

terms. Then (3.4) becomes

∑
(α,β,η,ρ,δ,τ)∈T0

f (α, β, η, ρ, δ, τ) = ∑
(α∗,β∗,η∗,ρ∗,δ∗,τ∗)∈T∗0

f ∗(α∗, β∗, η∗, ρ∗, δ∗, τ∗). (3.5)

Lemma 3.4. The natural embedding ϕ from T to T∗:

ϕ(α, β, η, ρ, δ, τ) = (α, β+, η+, ρ, δ+, τ+)

induces a map ϕ|T0 from T0 to T∗0 . Moreover, f |T0 = f ∗ ◦ ϕ|T0 .

T �
� ϕ

// T∗

T0
?�

OO

� �
ϕ|T0 //

* 


ϕ|T0

77

ϕ(T0)
?�

OO

Proof. For all (α, β, η, ρ, δ, τ) ∈ T0, we show that β, η, δ, and τ have large enough first
parts so that we can apply Proposition 2.2 and Lemma 3.1 to the Kronecker coefficients
and the Littlewood–Richardson coefficients appearing in the definition of f .

Since n ≥ |λ|+ |µ|+ λ1 + µ1 + 3t + 2r, we can easily see

λ[n]1 − λ[n]2 ≥ |α| and µ[n− r]1 − µ[n− r]2 ≥ |ρ|.

Using Lemma 3.1 (1), we get

cλ[n]
α,β = cλ[n+1]

α,β+ and cµ[n−r]
η,ρ = cµ[n+1−r]

η+,ρ .

As β ⊂ λ[n], |β| ≤ |λ| < n − r − t and (β)1 ≤ λ1. Similarly, we have |η| ≤ |µ| <
n− r− t and (η)1 ≤ µ1. Since β and η are both partitions of n− r− t, they can be written
as β = β[n− r − t] and η = η[n− r − t] respectively. They both have large first parts.
More specifically, we have

n− r− t ≥ |λ|+ |µ|+ λ1 + µ1 + 2t + r ≥ |β|+ |η|+ (β)1 + (η)1.

By Proposition 2.2, we have
gδ

β,η = gδ+

β+,η+ = gδ
β,η.

From Proposition 2.3,
|δ|+ (δ)1 ≤ |β|+ |η|+ (β)1 + (η)1,

otherwise gδ
β,η = 0, and so is f . Hence,

|δ| − δ1 + δ2 ≤ |λ|+ |µ|+ λ1 + µ1
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which gives us

δ1 − δ2 ≥ n− r− t− |λ| − |µ| − λ1 − µ1 ≥ 2t + r ≥ |α|

Applying Lemma 3.1 (2), we get

cτ
α,δ = cτ+

α,δ+ .

Since cτ
α,δ 6= 0, by the Little–Richardson rule, we have

τ2 ≤ δ2 + |α| and τ1 ≥ δ1.

So τ1 − τ2 ≥ δ1 − (δ2 + |α|) ≥ 2t + r− (r + t) = t = |ρ|.
Hence, by Lemma 3.1 (2), we get

cν−
τ,ρ = cν

τ+,ρ.

So
f (α, β, η, ρ, δ, τ) = f ∗(ϕ(α, β, η, ρ, δ, τ))( 6= 0), (3.6)

which means ϕ(T0) ⊂ T∗0 and f |T0 = f ∗ ◦ ϕ|T0 .

Proof of Theorem 2.5. The map of Lemma 3.4 is reversible as the map (α, β, η, ρ, δ, τ) −→
(α, β−, η−, ρ, δ−, τ−) gives a well-defined injection from T∗0 to T0. So ϕ|T0 is a bijection
from T0 to T∗0 . With this and (3.6), we prove (3.5), and hence the first part of Theorem
2.5.

To prove that the lower bound is where the stabilization begins, we just need show
that there is some ν ` n + t with ν1 = ν2 such that hν

λ[n],µ[n−r] 6= 0 when n = |λ|+ |µ|+
λ1 + µ1 + 3t + 2r. We use the formula (3.2) for hν

λ[n],µ[n−r] 6= 0 (replace λ and ν by λ[n]
and µ[n− r] respectively, and set l = n + t), and take

α = (a) = (r + t), ρ = (c) = (t), β = λ[n]− α, η = µ[n− r]− ρ,

δ = (β + η)[n− r− t], τ = (δ1, δ2 + |α|, δ3, . . . ), ν = (τ1, τ2 + |ρ|, τ3 . . . ).

By the Pieri rule, 1 = cλ[n]
α,β = cµ[n−d]

η,ρ = cτ
α,δ = cν

τ,ρ , as α and ρ have only one part each.

Since |δ| = |β| + |η|, we have gδ
β,η = gδ

β,η = cδ
β,η

(note that δ = β + η) which is also
nonzero due to the Littlewood–Richardson rule.

So hν
λ[n],µ[n−r] 6= 0 and ν1 = ν2 = λ1 + λ2 + 2t + r, this proves that n = |λ|+ |µ|+

λ1 + µ1 + 3t + 2r is where the stabilization begins.

When n < |λ|+ |µ|+ λ1 + µ1 + 3t + 2r, Lemma 3.4 is not true for some ν. However,
using Remark 3.2 and Proposition 2.1, we know that the map ϕ in Lemma 3.4 induces
an injection from T0 to T∗0 with f |T0 ≤ f ∗ ◦ ϕ|T0 . This gives us the following corollary:

Corollary 3.5. Given three partitions λ, ν, and µ and two nonnegative integers r and t, the
sequence hν[n+t]

λ[n],µ[n−r] is weakly increasing.
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4 Stable Heisenberg Coefficients

By the Jacobi–Trudi determinant formula:

sλ = det(hλj+i−j)i,j

where hk is the complete homogeneous symmetric function, and we set hk = 0 when k
is negative and h0 = 1. We no longer require λ to be a partition; λ can be any finite
integer sequence. Then the Jacobi–Trudi determinant will give us 0 or ±1 times some
Schur function.

Murnaghan [8] pointed out that the reduced Kronecker coefficients determine the
Kronecker product, and Briand et al. gave an exact formula for this in [3]. We show an
analogous result for the Heisenberg product.

Given partitions λ, µ, and ν, Theorem 2.5 says that the sequence
{

hν[n+|ν|]
λ[n+|λ|],µ[n+|µ|]

}∞

n=0
is eventually constant. We write h

ν
λ,µ for that constant value, and call it a stable Heisen-

berg coefficient. By the way we define the stable Heisenberg coefficient, we have

h
ν
λ,µ = h

ν[n+|ν|]
λ[n+|λ|],µ[n+|µ|], for all nonnegative integers n.

The reason we restrict n to nonnegative integers is that λ[n + |λ|], µ[n + |µ|], and ν[n +
|ν|] need to be partitions. But we can remove this restriction if we extend the definition
of h

ν
λ,µ to the case where λ, µ, and ν, starting from the second position, are finite weakly

decreasing sequences of positive integers, i.e. λ2 ≥ λ3 ≥ λ4 ≥ · · · ≥ 0, µ2 ≥ µ3 ≥ µ4 ≥
· · · ≥ 0, and ν2 ≥ ν3 ≥ ν4 ≥ · · · ≥ 0. Then we have

h
ν
λ,µ = h

ν[n+|ν|]
λ[n+|λ|],µ[n+|µ|], for all integers n.

The stable Heisenberg coefficients determine the Heisenberg product, even for small
values of n. Let us look at an example to see how this works. Consider the lowest degree
component of s2,1,1#s2,1. Let n = 4, then (2.7) gives us

(s2,1,1#s2,1)4 = s4 + 3s3,1 + 4s2,2 + 4s2,1,1 + 2s1,3 + 5s1,2,1

+ 3s1,1,1,1 + s0,3,1 + s0,2,2 + 2s0,2,1,1 + s0,1,1,1,1.
(4.1)

Using Jacobi–Trudi determinant, we have

s1,3 = −s2,2, s0,3,1 = −s2,1,1, s0,2,1,1 = −s1,1,1,1, and

s1,2,1 = s0,2,2 = s0,1,1,1,1 = 0.

So (4.1) gives us

(s2,1,1#s2,1)4 = s4 + 3s3,1 + 2s2,2 + 3s2,1,1 + s1,1,1,1,

which coincides with the result we had in Section 2. Using the process in the above
example, we can recover the Heisenberg coefficients from the stable ones.
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Theorem 4.1. Let λ, µ, and ν be partitions with |ν| ≥ |λ| ≥ |µ|, then

hν
λ,µ =

4|ν|−|λ|−|µ|

∑
i=1

(−1)i−1h
ν†i

λ,µ, (4.2)

where ν†i = (νi − i + 1, ν1 + 1, ν2 + 1, . . . , νi−1 + 1, νi+1, νi+2, . . . ).

Using Theorem 2.5 and Theorem 4.1, we can estimate when hν[n+t]
λ[n],µ[n−r] stabilizes for

given partitions λ, µ, and ν and nonnegative integers r and t.

Corollary 4.2. The Heisenberg coefficient hν[n+t]
λ[n],µ[n−r] stabilizes when n ≥ 1

2(|λ|+ |µ|+ |ν|+
λ1 + µ1 + ν1 − 1) + r + t.

5 Rectangular Symmetry for Heisenberg Coefficients

Briand et al. [2] showed that four families of coefficients (Kronecker coefficients, plethysm
coefficients, Littlewood–Richardson coefficients, and the Kostka–Foulkes polynomials)
share symmetries related to the operations of taking complements with respect to rect-
angles. We follow the notations that are used in [2], and prove an analogous result for
the Heisenberg coefficients.

In this section, we use “bialternants” to define Schur functions. Let X = {x1, x2, . . .}
be a countable set of independent variables. For n ≥ 0, we set Xn = {x1, x2, . . . , xn},
and Xn

∨ = {x−1
1 , x−1

2 , . . . , x−1
n } be the set of the inverses of variables in Xn. The Schur

function sλ[Xn] is

sλ[Xn] =
det(xλi+j−1

i )1≤i, j≤n

det(xj−1
i )1≤i, j≤n

,

where the number of nonzero parts of λ, `(λ) ≤ n. If `(λ) > n, we set sλ[Xn] = 0.
Let (kn) denote the partitions with n parts all equal to k. Given a partition λ, and

integers k ≥ λ1, n ≥ `(λ), let �k,n(λ) = (k−λn, k−λn−1, . . . , k−λ1) be the complement
of λ in the n× k rectangle (kn).

From [1] (Theorem 12.1), we have

sν(XY + X + Y) = ∑
λ,ν

hν
λ,νsλ(X)sµ(Y). (5.1)

Restricting variables to Xm and Yn and taking the inverses of variables, get

sν(Xm
∨Yn

∨ + Xm
∨ + Yn

∨) = ∑
λ,ν

hν
λ,νsλ(Xm

∨)sµ(Yn
∨).

Multiplying both sides by (∏
i,j

xiyj)
k(∏

i
xi)

k(∏
j

yj)
k = (∏

i
xi)

kn+k(∏
j

yj)
km+k, for k suffi-

ciently large, and using (5.1), we get a rectangle symmetry for the Heisenberg coefficient:
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Theorem 5.1. Let m, n, and k be nonnegative integers and λ, µ, and ν be three partitions such
that λ ⊂ ((kn + k)m), µ ⊂ ((km + k)n), and ν ⊂ ((k)mn+m+n), then

hν
λ,µ = h�k, mn+m+n(ν)

�kn+k, m(λ), �km+k, n(µ)
(5.2)
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