
Séminaire Lotharingien de Combinatoire 80B (2018) Proceedings of the 30th Conference on Formal Power
Article #43, 12 pp. Series and Algebraic Combinatorics (Hanover)

Enumerating permutations sortable by
k passes through a pop-stack

Anders Claesson∗1 and Bjarki Ágúst Guðmundsson†1

1Science Institute, University of Iceland, Dunhaga 5, 107 Reykjavik, Iceland

Abstract. In an exercise in the first volume of his famous series of books, Knuth
considered sorting permutations by passing them through a stack. Many variations of
this exercise have since been considered, including allowing multiple passes through
the stack and using different data structures. We are concerned with a variation using
pop-stacks that was introduced by Avis and Newborn in 1981. Let Pk(x) be the gen-
erating function for the permutations sortable by k passes through a pop-stack. The
generating function P2(x) was recently given by Pudwell and Smith (the case k = 1
being trivial). We show that Pk(x) is rational for any k. Moreover, we give an algorithm
to derive Pk(x), and using it we determine the generating functions Pk(x) for k ≤ 6.

Keywords: permutation, pop-stack, sortable, enumeration, generating function, ratio-
nal, language

1 Introduction

Knuth [9, Exercise 2.2.1.5] noted that permutations sortable by a stack are precisely those
that do not contain a subsequence in the same relative order as the permutation 231. This
exercise inspired a wide range of research and can be seen as the starting point of the
research field we now call permutation patterns. Our interest lies in Knuth’s original
exercise and its variations.

In 1972 Tarjan [13] considered sorting with networks of stacks and queues, a problem
that, in general, has proven itself to be beyond the reach of current methods in permuta-
tion patterns and enumeration. There has been some recent significant progress though:
In 2015 Albert and Bousquet-Mélou [1] enumerated permutations sortable by two stacks
in parallel. The enumeration of permutations sortable by two stacks in series is, however,
an open problem. A related problem is that of sorting permutations by k passes through
a stack, where the elements on the stack are required to be increasing when read from
top to bottom. West [15] characterized the permutations sortable by two passes through
a stack in terms of pattern avoidance and conjectured their enumeration, a conjecture

∗akc@hi.is. This work was supported by The Doctoral Grants of the University of Iceland Research
Fund and The Icelandic Infrastructure Fund.
†suprdewd@gmail.com

mailto:akc@hi.is
mailto:suprdewd@gmail.com

2 Anders Claesson and Bjarki Ágúst Guðmundsson

that was subsequently proved by Zeilberger [16]. Permutations sortable by three passes
have been characterized by Úlfarsson [14], but their enumeration is unknown.

In other variations of Knuth’s exercise different data structures are used for sorting.
One notable example is that of pop-stacks: a stack where each pop operation completely
empties the stack. Avis and Newborn [5] enumerated the permutations sortable by pop-
stacks in series, with the modification that each pop leads to the popped elements being
immediately pushed to the following pop-stack. Atkinson and Stitt [4] considered two
pop-stacks in genuine series. Permutations sortable by pop-stacks in parallel have been
studied by Atkinson and Sack [3], who characterized those permutations by a finite
set of forbidden patterns. They also conjectured that the generating function for their
enumeration is rational, which was subsequently proved by Smith and Vatter [12], who
gave an insertion encoding [2] for the sortable permutations.

Pudwell and Smith [10] recently characterized the permutations sortable by two
passes through a pop-stack in terms of pattern avoidance and gave their enumeration.
They also gave a bijection between certain families of polyominoes and the permutations
sortable by one or two passes through a pop-stack, but noted that the bijection does not
generalize to three passes. We give an algorithm to derive a rational generating function
for the permutations sortable by k passes through a pop-stack, for any fixed k.

2 Sorting plans and traces

7 5 2 4 9 1 8 6 3
2 5 7 4 1 9 3 6 8

Figure 1: Single-pass sorting trace

A single pass of the pop-stack sorting operator
formally works as follows. Processing a permu-
tation π = a1a2 . . . an of [n] = {1, . . . , n} from left
to right, if the stack is empty or its top element is
smaller than the current element ai then perform
a single pop operation (a), emptying the stack and
appending those elements to the output permutation; else do nothing (d). Next, push ai
onto the stack and proceed with element ai+1, or if i = n perform one final pop operation
(a), again emptying the stack onto the output permutation, and terminate. Define P(π)
as the final output permutation and w(π) as the word over the alphabet {a, d} defined
by the operations performed when processing π. For instance, with π = 752491863 we
have P(π) = 257419368 and w(π) = addaadadda. Note that w(π) will always begin and
end with the letter a. We will call any word of length n + 1 with letters in {a, d} that
begin and end with the letter a an operation sequence.

Let us now introduce what we call sorting traces. Consider applying the pop-stack
operator P to a permutation π of [n]. Start by interleaving w(π) with π; for instance,
with π = 752491863 (as before) we have a7d5d2a4a9d1a8d6d3a. Replacing a with a bar
and d with a space, and placing P(π) below this string, we get Figure 1.

Enumerating permutations sortable by k passes through a pop-stack 3

We call the numbers between pairs of successive a’s blocks. Above, the blocks of
π are 752, 4, 91, and 863. Note that P(π) can be obtained from π by reversing each
block. An index i ∈ [n − 1] of a permutation π = a1a2 . . . an is an ascent if ai < ai+1.
Similarly, i is a descent if ai > ai+1. With this terminology w(π) = c1c2 . . . cn+1 is simply
the ascent/descent word of −∞π ∞; i.e. c1 = cn+1 = a and, for 2 ≤ i ≤ n, ci = a if i− 1
is an ascent, and ci = d if i− 1 is a descent.

7 5 2 4 9 1 8 6 3
2 5 7 4 1 9 3 6 8
2 5 1 4 7 3 9 6 8
2 1 5 4 3 7 6 9 8
1 2 3 4 5 6 7 8 9

Figure 2: A sorting trace

A figure such as Figure 1 can be extended to depict
multiple passes. Applying P to the example permu-
tation, π, until it is sorted gives Figure 2.

We will call such figures sorting traces, or traces
for short. The structure that remains when remov-
ing the numbers from a trace we call its sorting plan.
Each row of a sorting plan corresponds to an opera-
tion sequence, and for convenience we shall number
the rows 1 through k, from top to bottom. The exam-
ple sorting plan can be viewed as the array of operation sequences given in Figure 3. By
interpreting each column as a binary number with a = 0 and d = 1 the sorting plan can
more compactly be represented, or encoded, with the sequence of numbers 0, 9, 10, 5, 5,
10, 5, 10, 9, 0. Formally, we define a trace and its sorting plan as follows.

Definition 2.1. Let A = (α1, α2, . . . , αk, αk+1) be a (k+ 1)-tuple of permutations of [n] in which
αk+1 is the identity permutation. Let M = (µ1, µ2, . . . , µk) be a k-tuple of operation sequences,
each of length n + 1. We call T = (A, M) a trace of length n and order k, and M its sorting
plan, if the following conditions are satisfied for i = 1, . . . , k:

1. The word µi records the sequence of operations performed by the pop-stack operator when
applied to αi—in symbols, w(αi) = µi. As to the picture of the trace, two adjacent numbers
form an ascent if and only if they are separated by a bar.

2. The sequence of permutations in A records repeated application of the pop-stack operator
to the permutation α1—in symbols, P(αi) = αi+1. Or, assuming the first condition is
satisfied, rev(αi, µi) = αi+1, where the operator rev is defined below.

Definition 2.2. Let π be a permutation of [n] and µ = c1c2 . . . cn+1 be an operation sequence.
Let i1 < i2 < · · · < ik be the sequence of indices i for which ci = a. Write π = γ1γ2 . . . γk−1,
where |γj| = ij+1 − ij for j = 1, . . . , k− 1. In other words, the length of γj is the same as the
length of the jth block of π with respect to µ. Define rev(π, µ) = γr

1γr
2 . . . γr

k−1, where (·)r is
the reversal operator. We call this the blockwise reversal of π according to µ.

Much of the information stored in a trace is redundant: As we have seen, α1 alone
determines the complete trace. Similarly, from the sorting plan M we can recover α1, . . . ,
αk+1. This is because the last permutation αk+1 is the identity, the permutation αk is the

4 Anders Claesson and Bjarki Ágúst Guðmundsson

blockwise reversal of αk+1 according to µk, the permutation αk−1 is the blockwise reversal
of αk according to µk−1, etc. In symbols, rev(αi, µi) = αi+1 if and only if αi = rev(αi+1, µi).
In this way a sorting plan uniquely determines a trace.

a d d a a d a d d a
a a a d d a d a a a
a a d a a d a d a a
a d a d d a d a d a

Figure 3

Our goal is to count the permutations of [n] that are sortable by k
passes through a pop-stack and for brevity we will sometimes refer
to such permutations as k-pop-stack-sortable. Note that a k-pop-stack-
sortable permutation is also (k + 1)-pop-stack-sortable. Starting with
a k-pop-stack-sortable permutation of [n] and performing k passes of
the pop-stack sorting operator results in a trace of length n and order
k. Conversely, the first row of that trace is the k-pop-stack-sortable
permutation we started with. Thus, k-pop-stack-sortable permutations of [n] are in one-
to-one correspondence with traces of length n and order k. Those are, in turn, in one-to-
one correspondence with their sorting plans, and hence it suffices to count sorting plans
of length n and order k.

Let us call any k-tuple of operation sequences of length n + 1 an operation array of
length n + 1 and order k. Note that sorting plans are operation arrays, but not all op-
eration arrays are sorting plans. Let an operation array (µ1, µ2, . . . , µk) be given. Let
the permutations α1, α2, . . . , αk+1 be defined by requiring that the permutation αk+1 is
the identity, the permutation αk is the blockwise reversal of αk+1 according to µk, the
permutation αk−1 is the blockwise reversal of αk according to µk−1, etc. In symbols,
rev(αi, µi) = αi+1. Then the tuple (α1, . . . , αk+1) is called a semitrace. In other words, a
semitrace is defined by requiring that Property 2 of Definition 2.1 holds, but not neces-
sarily Property 1 of the same definition.

We shall characterize those operation arrays that are sorting plans, then count the
sorting plans of order k, and by extension the k-pop-stack-sortable permutations. We
start by considering cases where k is small.

2.1 1-pop-stack-sortable permutations

3 2 1 4 6 5 8 7
1 2 3 4 5 6 7 8

Figure 4: Semitrace for addaadada

We want to determine which operation sequences of
length n + 1 when interpreted as operation arrays
are sorting plans. Consider the operation sequence
addaadada. The semitrace corresponding to it is given
in Figure 4. Is this a trace? By definition of a semitrace
it satisfies Property 2 of Definition 2.1, but does it also
satisfy Property 1? Yes, because the bottom-most permutation is the identity, any two
adjacent numbers separated by a bar form an ascent, and two adjacent numbers within
a block form a descent. Thus, each operation sequence represents a sorting plan of order
1. An operation sequence starts and ends with the letter a. The remaining letters can
be either a or d. Thus, for n > 0, there are 2n−1 operation sequences of length n + 1,

Enumerating permutations sortable by k passes through a pop-stack 5

· · ·
a1 a2 a3 · · · ak−1 ak

Figure 5: The neighborhood around a
given block, where a dotted line can
either be a bar or not

a2 a3 · · · ak−1

a1 a2 a3 · · · ak−1 ak

Figure 6: The same neighborhood, as
to the left, after inferring the status of
most dotted lines

and hence 2n−1 1-pop-stack-sortable permutations of [n]. It is easy to see that these are
precisely the layered permutations (direct sums of decreasing permutations).

While this simple example outlines our approach to count k-pop-stack-sortable per-
mutations, it is a little too simple, as for larger k, most operation arrays will not be
sorting plans. As an example, we present the following lemma.

Lemma 2.3. In a trace of order 2 or greater, each operation sequence—except for the first one—
contains at most 2 consecutive d’s. Or, equivalently, each row of the sorting plan—except for the
first one—has blocks of size at most 3.

Proof. Given a trace of order 2 or greater, consider any block a1 > a2 > · · · > ak from any
row of its sorting plan, excluding the first row. For contradiction, assume that k ≥ 4. The
neighborhood around the block then looks as in Figure 5. Consider the dotted lines in
the upper row, except for the two outermost dotted lines. If any of them were not solid,
then at least two of a1, a2, . . . , ak would be together in a block. These two elements would
occur in increasing order, violating Property 1 of Definition 2.1. These dotted lines must
thus be solid, as is illustrated in Figure 6. Now, however, a2 and a3 are two adjacent
numbers in distinct blocks that do not form an ascent, again violating Property 1.

This lemma characterizes a certain class of operation arrays that are not sorting plans,
namely those that have at least one block of size 4 or larger in rows 2 to k. In the next
section we will take a more general approach towards characterizing operation arrays
that are not sorting plans by introducing what we call forbidden segments.

3 Forbidden segments

A semitrace fails to be a trace precisely when there is a pair of elements witnessing
Property 1 of Definition 2.1 fail. With the following definition we single out such pairs.

Definition 3.1. Let T be a semitrace of length n and let a and b be two distinct elements of [n].
We call (a, b) a violating pair of T if, in any row, a and b occur in adjacent positions such that
they violate Property 1. That is, a and b form a descent and are separated by a bar, or a and b
form an ascent and are not separated by a bar.

From Definitions 2.1 and 3.1 we get the following characterization of sorting plans.

6 Anders Claesson and Bjarki Ágúst Guðmundsson

1 2 3 4 5 6 7 8
1 3 2 5 4 6 7 8
3 1 5 2 4 7 6 8
3 5 1 7 4 2 6 8
5 3 7 1 4 2 8 6
7 3 5 1 6 8 2 4

Figure 7: An example semitrace

1 2 3 4 5 6 7 8
1 3 2 5 4 6 7 8
3 1 5 2 4 7 6 8
3 5 1 7 4 2 6 8
5 3 7 1 4 2 8 6
7 3 5 1 6 8 2 4

Figure 8: The progress of 2 and 4
through the semitrace to the left

Figure 9: The segment T2,4 of the trace
above

a b
a b

a b
b a
b a

a b

Figure 10: Following the elements a
and b up the segment to the left

Lemma 3.2. An operation array is a sorting plan if and only if its semitrace has no violating
pair.

Definition 3.3. Let ψ be the bijection mapping a sorting plan to its encoding. Let M be a sorting
plan of length n and suppose that 1 ≤ i ≤ j ≤ n + 1. Let ψ(M) = c1c2 . . . cn+1 be the encoding
of M. Then we call S = ψ−1(cici+1 . . . cj) a segment of M, and |S| = j− i + 1 its length.

Definition 3.4. Let T = (A, M) be a semitrace of length n and let a and b be two distinct
elements of [n]. Let B be the set of blocks that contain either a or b, excluding blocks in the first
row. We define the segment of T determined by a and b, denoted Ta,b, as the smallest segment
of M that fully contains all the blocks in B.

As an example, consider the semitrace in Figure 7. It contains four violating pairs,
namely (1, 5), (2, 4), (3, 5), and (6, 8). Looking at the pair (2, 4), Figure 8 shows how
these two numbers progress through the trace. The segment T2,4, shown in Figure 9,
is the smallest segment that contains all blocks on rows 2, 3, 4, and 5 with at least one
circled element.

Any sorting plan of order 5 that contains this segment, no matter where it occurs
horizontally, will violate Property 1, just as the above semitrace. This is because we can
follow the two elements a and b playing the roles of 2 and 4 from the bottom to the
second row, as shown in Figure 10. Formally, we make the following definition.

Enumerating permutations sortable by k passes through a pop-stack 7

Definition 3.5. A segment Ta,b is forbidden if, after inferring the positions of a and b in rows
2 to k, either the two numbers violate Property 1 on row i, where 2 ≤ i ≤ k, or

1. a and b form a descent on row 2 and, if a and b are in columns i and i + 1 on row 2, there
is no bar separating columns i and i + 1 on row 1, or

2. a and b are in decreasing order on row 2 and, if a and b are in columns i and j on row 2,
with i < j, there is a bar immediately to the left of column i on row 1, a bar immediately to
the right of column j on row 1, and exactly one bar between columns i and j on row 1.

In both cases the bars that we reference belong to the segment Ta,b. In other words, we can
determine if Ta,b is forbidden or not without knowing in which semitrace it is embedded.

Lemma 3.6. A segment Ta,b is forbidden if and only if (a, b) is a violating pair of T.

Proof. Consider a forbidden segment Ta,b. If, after inferring the positions of a and b in
rows 2 to k, the two numbers violate Property 1 on row i, where 2 ≤ i ≤ k, then (a, b)
is a violating pair of T. Otherwise we have two cases, corresponding to the two cases
of Definition 3.5, and these are illustrated in Figures 11 and 12, respectively. In the first
case a and b form an ascent and are in the same block on row 1. In the second case a
and b form a descent and are separated by a bar on row 1. In both cases we have found
a violation of Property 1 and hence (a, b) is a violating pair of T.

Conversely, consider a violating pair (a, b) of T, as well as the segment Ta,b. If a and
b violate Property 1 on row i, where 2 ≤ i ≤ k, then Ta,b is a forbidden segment. If, on
the other hand, the two numbers violate Property 1 on row 1, then we have two cases.

If a and b form an ascent on row 1 and are not separated by a bar, then the two
numbers are in the same block on row 1, and will form a descent on row 2. Furthermore,
if the two numbers are in columns i and i + 1 on row 2, there will not be a bar separating
columns i and i + 1 on row 1. Hence Ta,b is a forbidden segment.

If a and b form a descent on row 1 and are separated by a bar, then the two numbers
are in adjacent blocks on row 1. If i is the leftmost column that the left block intersects,
and j is the rightmost column that the right block intersects, then the two numbers will
be in decreasing order on row 2, with the larger number number in column i and the
smaller number in column j. Furthermore, there is a bar immediately to the left of
column i on row 1 and a bar immediately to the right of column j on row 1, and exactly
one bar between columns i and j on row 1. Hence Ta,b is a forbidden segment.

From Lemmas 3.2 and 3.6 we get the following result.

Lemma 3.7. An operation array is a sorting plan if and only if it does not contain any forbidden
segment Ta,b.

Because there are potentially an infinite number of forbidden segments Ta,b this
lemma is of limited practical use as stated. This motivates the following definition.

8 Anders Claesson and Bjarki Ágúst Guðmundsson

a b
b a

1

2

1

2

i i+1

Figure 11: The first case of Defini-
tion 3.5, assuming a < b

b a
b a

1

2

1

2

i j

Figure 12: The second case of Defini-
tion 3.5, assuming a < b

Definition 3.8. A segment of order k is bounded if each of its blocks in rows 2 to k has size
at most 3. Equivalently, a segment is bounded if its operation array has no occurrence of three
consecutive d’s on rows 2 to k.

Combining Lemmas 2.3 and 3.7 we arrive at the following proposition.

Proposition 3.9. An operation array is a sorting plan if and only if it does not contain any
bounded forbidden segment Ta,b and each block on rows 2 through k is of size at most 3.

Through a series of lemmas we shall establish that there are finitely many bounded
forbidden segments Ta,b of order k, for any fixed k.

Lemma 3.10. Let T be a semitrace of length n and order k and let a and b be two distinct elements
of [n]. If Ta,b is a bounded segment, and there is a block, not on the first row, that includes both a
and b, then |Ta,b| ≤ 4k− 5.

Proof. We can disregard the first row, as neither this lemma nor the definition of Ta,b
includes blocks on that row. Since Ta,b is a bounded segment, each of the remaining
blocks that either contains a or b has size at most 3. Thus, if we consider two adjacent
rows and x ∈ {a, b}, then the horizontal distance between x in the upper row and x in
the lower row is at most 2. In total, the horizontal distance between x on the second row
and x on the k-th row is at most 2(k− 2) and, consequently, the length of the segment
Ta,b is at most 4(k− 2) + m, where m ≤ 3 is the size of the block containing a and b.

Lemma 3.11. Let T be a semitrace and (a, b) a violating pair of T. Then there is a block, not on
the first row, that includes both a and b.

Proof. Consider a row i where the pair (a, b) violates Property 1. If a and b form a descent
and are separated by a bar, then the two elements are in distinct blocks on row i, and
will still be in descending order on row i + 1 after performing the blockwise reversals.
If, on the hand, a and b form an ascent and are not separated by a bar, then the two
elements are in the same block on row i, and will be in descending order on row i + 1
after performing the blockwise reversals. In either case, a and b will be in descending
order on row i+ 1. Since the two elements are in increasing order in the last permutation
the two elements must be reversed on at least one of the rows between i + 1 and k. As
the relative order of elements is only reversed when they appear together in a block,
there is a block on one of the rows between i + 1 and k that includes both a and b.

Enumerating permutations sortable by k passes through a pop-stack 9

start
0

0

0

0 0

Σ

0

Figure 13: A DFA recognizing
strings that begin and end with a
solid boundary

start Ai
Ai

Ai

ΣAi

Ai

Ai

Figure 14: A DFA that when intersected
with W recognizes operation arrays with
blocks of size at most 3 in row i

Lemma 3.12. For a fixed k, there are finitely many bounded forbidden segments Ta,b of order k,
and they can be listed.

Proof. If Ta,b is a bounded forbidden segment then (a, b) is a violating pair by Lemma 3.6.
Using Lemma 3.11 we find a block, not on the first row, that includes a and b; and
Lemma 3.10 gives |Ta,b| ≤ 4k− 5. Thus, there are at most as many forbidden segments as
there are words in {a, d}(4k−5)k, and they can be listed by checking against Definition 3.5.

4 Regular language

We will use the characterization of sorting plans in terms of forbidden segments to
count sorting plans of order k, and hence the k-pop-stack-sortable permutations. To that
end, we will employ the theory of formal languages. We will assume that the reader is
familiar with basic constructions such as taking the complement of a deterministic finite
automaton (DFA) or the intersection of two DFAs [8].

Recall that we can encode an operation array of length n and order k as a sequence of
n integers, each in the range [0, 2k − 1]. In this way we can consider operation arrays as
strings of a formal language over the alphabet Σ = {0, 1, . . . , 2k − 1}. Conversely, strings
over this alphabet can be considered as operation arrays, under one condition: that they
both begin and end with a solid boundary. Noting that a solid boundary corresponds
to the integer 0 from Σ, and letting 0 = Σ \ {0}, the DFA W in Figure 13 recognizes the
strings over Σ that begin and end with a solid boundary, i.e. the strings that correspond
to an operation array.

For ease of notation we will use the name of a DFA to also denote the language that it
recognizes. Here, W denotes the DFA recognizing strings that begin and end with a solid
boundary as well as the language consisting of such strings. We want to find the subset
of W corresponding to sorting plans. Recall from Proposition 3.9 that an operation array
is a sorting plan if and only if it does not contain any bounded forbidden segments

10 Anders Claesson and Bjarki Ágúst Guðmundsson

and each block on rows 2 through k is of size at most 3. We shall start with the latter
condition.

If Ai is the set of symbols from Σ that represent a column from the operation array
that has a bar in the ith row, and Ai = Σ \ Ai, then the intersection of W with the
automaton, Ri, in Figure 14 recognizes the operation arrays that have blocks of size at
most 3 in row i. Therefore, the set of operation arrays that have blocks of size at most 3
in all but the first row is recognized by the automaton W ∩ R2 ∩ · · · ∩ Rk.

The other condition that sorting plans satisfy is that they do not contain any bounded
forbidden segments. Consider a segment M and let us encode it in the same manner as
we encode operation arrays, resulting in the sequence m1, . . . , m`. Note that an operation
array A contains M if and only if the encoding of A contains m1 · · ·m` as a factor.
Furthermore, the following nondeterministic finite automaton (NFA), QM, recognizes
the set of strings over Σ that contain the encoding of M as a factor:

start . . .
m1 m2 m`−1 m`

Σ Σ

Taking the complement of QM we get an automaton QM that recognizes the set of strings
over Σ that do not contain the factor M. In particular, if F is a forbidden segment, then
W ∩QF recognizes the set of operation arrays that do not contain F. Let F be the set of
bounded forbidden segments, which is finite by Lemma 3.12. Then the automaton

S = W ∩
k⋂

i=2

Ri ∩
⋂

F∈F
QF

recognizes the set of operation arrays that have blocks of size at most 3 in rows 2 through
k, and do not contain any bounded forbidden segments. Hence, by Proposition 3.9, S
recognizes exactly the set of sorting plans, giving us the following proposition:

Proposition 4.1. The language S = { w ∈ Σ∗ | w is a sorting plan } is regular.

We can now present our main theorem.

Theorem 4.2. For a fixed k, the generating function P(x) = ∑∞
n=0 pnxn, where pn is the number

of k-pop-stack-sortable permutations of length n, is rational.

Proof. We have a bijection between the k-pop-stack-sortable permutations of length n
and the sorting plans of order k and length n, so the two sets are equinumerous. The
sorting plans of length n are in bijection with words of length n + 1 recognized by the
automaton S, which is regular by Proposition 4.1. It is well known that regular languages
have rational generating functions [11], and they can be derived from the corresponding
DFA by setting up a system of linear equations. If S(x) is the rational generating function
for S, it is clear that P(x) = S(x)/x and that this generating function is rational.

Enumerating permutations sortable by k passes through a pop-stack 11

k Generating function

1 (x− 1)/(2x− 1)

2 (x3 + x2 + x− 1)/(2x3 + x2 + 2x− 1)

3
(2x10 + 4x9 + 2x8 + 5x7 + 11x6 + 8x5 + 6x4 + 6x3 + 2x2 + x− 1)/(4x10 + 8x9 + 4x8 + 10x7 +

22x6 + 16x5 + 8x4 + 6x3 + 2x2 + 2x− 1)

4

(64x25 + 448x24 + 1184x23 + 1784x22 + 2028x21 + 1948x20 + 1080x19 + 104x18 − 180x17 +

540x16 + 1156x15 + 696x14 + 252x13 + 238x12 + 188x11 + 502x10 + 806x9 + 544x8 + 263x7 +

185x6 + 99x5 + 33x4 + 13x3 + 3x2 + x− 1)/(128x25 + 896x24 + 2368x23 + 3568x22 + 3928x21 +

3064x20 + 176x19 − 2304x18 − 2664x17 − 1580x16 − 352x15 − 576x14 − 1104x13 − 760x12 −
138x11 + 686x10 + 1238x9 + 869x8 + 382x7 + 210x6 + 102x5 + 27x4 + 12x3 + 3x2 + 2x− 1)

Table 1: The generating functions for the k-pop-stack-sortable permutations, k ≤ 4

Note that all of the above results are constructive, meaning that the generating func-
tion can be computed for any fixed k. We did so for k = 1, . . . , 6 and in Table 1 we list
the resulting generating functions, except for k = 5 and k = 6 whose expressions are too
large to display. For each of them the degree of the polynomial in the numerator is the
same as the degree of the polynomial in the denominator. Those degrees, the growth
rates of coefficients of the generating functions, and the corresponding sequences for the
number of vertices and edges in the final DFAs can be found in the table below.

k 1 2 3 4 5 6
degree 1 3 10 25 71 213

growth rate 2.0000 2.6590 3.4465 4.2706 5.1166 5.9669
vertices 4 5 12 32 99 339
edges 8 11 34 120 477 2010

All the generating functions, source code, and text files defining the DFAs can be found
on GitHub [6]. The growth rate of the coefficients of a rational power series p(x)/q(x)
is given by max{1/|ζ| : q(ζ) = 0} and Sage [7] code for calculating the approximate
growth rates, in the table above, can be found on the same GitHub page.

It would be interesting to find a closed formula for the generating functions, possibly
leading to the distribution of the number of passes needed to sort a permutation using a
pop-stack. It is not clear whether our approach can be used as a basis for such a formula.
Finally, as we only considered their enumeration, finding a useful permutation pattern
characterization of the k-pop-stack-sortable permutations, for k ≥ 3, remains open.

12 Anders Claesson and Bjarki Ágúst Guðmundsson

References

[1] M. Albert and M. Bousquet-Mélou. “Permutations sortable by two stacks in parallel and
quarter plane walks”. European J. Combin. 43 (2015), pp. 131–164. URL.

[2] M. Albert, S. Linton, and N. Ruškuc. “The insertion encoding of permutations”. Electron. J.
Combin. 12.1 (2005), R47. URL.

[3] M.D. Atkinson and J.-R. Sack. “Pop-stacks in parallel”. Inform. Process. Lett. 70.2 (1999),
pp. 63–67. DOI: 10.1016/S0020-0190(99)00049-6.

[4] M.D. Atkinson and T. Stitt. “Restricted permutations and the wreath product”. Discrete
Math. 259.1-3 (2002), pp. 19–36. DOI: 10.1016/S0012-365X(02)00443-0.

[5] D. Avis and M. Newborn. “On pop-stacks in series”. Utilitas Math. 19.129-140 (1981), p. 410.

[6] A. Claesson and B.A. Guðmundsson. “Enumerating the k-pop-stack-sortable permuta-
tions”. URL.

[7] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.6). 2017.

[8] J.E. Hopcroft, R. Motwani, and J.D. Ullman. “Introduction to automata theory, languages,
and computation”. Acm Sigact News 32.1 (2001), pp. 60–65.

[9] D.E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-
Wesley, 1968.

[10] L. Pudwell and R. Smith. “Two-stack-sorting with pop stacks”. 2018. arXiv: 1801.05005.

[11] M.-P. Schützenberger. “On the definition of a family of automata”. Information and Control
4.2-3 (1961), pp. 245–270.

[12] R. Smith and V. Vatter. “The enumeration of permutations sortable by pop stacks in paral-
lel”. Inform. Process. Lett. 109.12 (2009), pp. 626–629. DOI: 10.1016/j.ipl.2009.02.014.

[13] R. Tarjan. “Sorting using networks of queues and stacks”. J. Assoc. Comput. Mach. 19 (1972),
pp. 341–346. DOI: 10.1145/321694.321704.

[14] H. Úlfarsson. “Describing West-3-stack-sortable permutations with permutation patterns”.
Sém. Lothar. Combin. 67 (2012), Art. B67d, 20 pp.

[15] J. West. “Permutations with forbidden subsequences, and stack-sortable permutations”.
PhD thesis. Massachusetts Institute of Technology, 1990.

[16] D. Zeilberger. “A proof of Julian West’s conjecture that the number of two-stacksortable
permutations of length n is 2 (3n)!/((n+1)!(2n+1)!)” Discrete Math. 102.1 (1992), pp. 85–93.
DOI: 10.1016/0012-365X(92)90351-F.

https://doi.org/10.1016/j.ejc.2014.08.024
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v12i1r47
https://doi.org/10.1016/S0020-0190(99)00049-6
https://doi.org/10.1016/S0012-365X(02)00443-0
https://github.com/SuprDewd/popstacks
https://arxiv.org/abs/1801.05005
https://doi.org/10.1016/j.ipl.2009.02.014
https://doi.org/10.1145/321694.321704
https://doi.org/10.1016/0012-365X(92)90351-F

	Introduction
	Sorting plans and traces
	1-pop-stack-sortable permutations

	Forbidden segments
	Regular language

