
Séminaire Lotharingien de Combinatoire 80B (2018) Proceedings of the 30th Conference on Formal Power
Article #47, 12 pp. Series and Algebraic Combinatorics (Hanover)

Parking Functions on Oriented Trees

Westin King*1 and Catherine Yan†1

1Department of Mathematics, Texas A&M University. College Station, TX 77843. USA.

Abstract. Classical parking functions arise from an analogy of drivers attempting to
park in spots along a one-way street, which we consider a directed path, via a fixed
parking process. We give a new generalization of the parking process, as well as prime
parking functions, to all directed graphs. We then present some enumerative results
for trees with edges oriented either towards or away from a root.

Keywords: parking function, digraph, prime parking functions

1 Introduction

Classical parking functions first appeared in a 1966 paper by Konheim and Weiss [3],
where they examined the probability that n drivers could find a parking spot on a one-
way street with n spaces when their starting location was randomly chosen. Suppose
instead of random starting positions, the ith driver prefers spot si. One-by-one, the
drivers enter and drive to their preferred spots. If it is available, the driver parks there,
otherwise parking in the first open spot afterwards.

Definition 1.1. If the parking procedure allows all the drivers to park, the sequence of
preferences, s = (s1, s2, . . . , sn), is called a parking function of length n.

For a parking lot with n spaces, there are (n + 1)(n−1) distinct parking functions [3,
6]. Figure 1 gives an example.

1 2 3 4 5

Figure 1: A path with classical parking function s = (1, 3, 2, 3, 1).

Alternatively, let s ∈ [n]n. Then s is a parking function if and only if we have

|{j : sj ≥ i}| ≤ n + 1− i for all i ∈ [n]. (1.1)

An immediate observation from this characterization is that the order in which the cars
enter does not matter. If we concern ourselves with only the number of drivers preferring

*wking@math.tamu.edu
†cyan@math.tamu.edu

mailto:wking@math.tamu.edu
mailto:cyan@math.tamu.edu

2 Westin King and Catherine Yan

each spot, we can write terms in non-decreasing order. Such parking functions are called
increasing and are counted by the Catalan number Cn = 1

n+1(
2n
n) [6, Exercise 6.19s].

Another interesting subset of classical parking functions arises by making the in-
equalities in Equation (1.1) strict, whenever possible.

Definition 1.2. A parking function s is called prime if and only if for all 2 ≤ i ≤ n, we
have

|{j : sj ≥ i}| < n + 1− i.

Prime parking functions are also those which, after removing any 1 from the se-
quence, are parking functions on the first n− 1 spaces (see [6, Exercise 5.49f]). Named
by Gessel, there are (n− 1)(n−1) prime parking functions of length n. The parking func-
tion in Figure 1 is a prime parking function since both (3, 2, 3, 1) and (1, 3, 2, 3) fill the
first four spots. The name “prime” arises because the parking function can not be de-
composed into two smaller ones by deleting an edge from the graph. We discuss this
property in Section 3.

The parking process has seen a limited extension to digraphs, in particular those in
which each vertex has out-degree at most 1. In this case, the path a driver takes after
failing to park at her preferred spot is unique. In [4], Lackner and Panholzer focus on
trees on vertex set [n] with edges oriented towards a root and mapping digraphs, those
with vertex set [n] and edge set E = {(i, f (i))}n

i=1 for some function f : [n] → [n].
Let Fn denote the total number of parking functions on trees with [n] vertices and Mn
denote likewise the total number of parking functions on mapping digraphs. They prove
n · Fn = Mn and give precise formulas for each.

In Section 2, we give a generalization of the parking process and extend the notion of
prime parking functions to arbitrary digraphs. In Section 3, we count the total number of
prime parking functions on trees with edges oriented towards a root. We then reverse the
edge orientation in Section 4 and give a relationship between trees with edges oriented
away from the root and inverse mapping digraphs. Finally, in Section 5, we give some
directions for future research.

2 The Parking Process on Digraphs

Postnikov and Shapiro have already defined a notion of parking functions on a (di)graph
G, called G-parking functions [5]. Their extension is concerned with the number of
(directed) spanning trees of a graph, and thus the Kn+1-parking functions (where Kn+1
is the complete graph) are in bijection with the classical parking functions of length n.
Our generalization instead extends the parking process and is distinct.

Consider a parking lot more complex than a line, where the parking spots are repre-
sented by vertices of a digraph D and the paths between parking spots are the edges. We

Parking Functions on Oriented Trees 3

generalize the process whereby the drivers find a parking spot: beginning their search
at their preferred spot, moving through D following edge orientations, and parking in
the first unoccupied space they encounter. This parking process is deterministic when
the vertices in D have outdegree at most one, as drivers have a unique path along which
to search. However, if a vertex has outdegree at least two, a driver may have to choose
along which branch to travel. In the case of a general digraph D with vertex set [n] and
s ∈ [n]n we give the following definition [7].

Definition 2.1. For a digraph D, a sequence s ∈ [n]n is a parking function on D if and only
if drivers with preference sequence s can choose the paths they take during parking in
such a way that all drivers park.

If s is a parking function on D, we will say the pair (D, s) is a parking function and
for simplicity, we will assume V(D) = [n]. On digraphs with at least one vertex of out-
degree ≥ 2, the order in which spots are filled by drivers is not necessarily well-defined.
For example, in the following digraph, the sequence (1,1,1) is a parking function, but
the order in which spots 2 and 3 are filled is not unique. The sequence (1,1,2) is also a
parking function because the second driver can choose to travel to 3 during her search.

1

2 3

We have the following additional characterization of a parking function on digraphs.
For i, j ∈ [n], we say i �D j if and only if there exists a directed path from i to j in D. By
convention, we will say that i �D i, making �D a quasiorder on the vertices of D. For
vertex i, let

VD(i) = {j ∈ V(D) : i �D j}.

Then for any A ⊆ [n] define

RD(A) =
⋃
i∈A

VD(i).

Theorem 2.2. Let D be a digraph with vertex set [n] and s ∈ [n]n. Then s is a parking function
on D if and only if for all A ⊆ [n] we have

|{i : si ∈ RD(A)}| ≤ |RD(A)|.

We omit the proof due to length, but we mention a few words on the main ideas.

4 Westin King and Catherine Yan

Idea of proof for Theorem 2.2. As in the classical case, if (D, s) is a parking function, then
so is (D, s∗) for any rearrangement s∗ of the letters of s. Thus, we need only show that
all cars can park for some ordering of s.

For a pair (D, s) satisfying the subset hypothesis of Theorem 2.2, we choose some
∅ 6= A ({si : i ∈ [n]}, if possible, such that |{i : si ∈ RD(A)}| = |RD(A)| holds. We
use induction to show that s can be broken into a parking function on the subgraph
induced by RD(A) and its complement in D. If no such A exists, we find a maximal
strongly connected subset B of vertices such that no edge (i, j) has i ∈ B and j /∈ B.
Since B is strongly connected and no edge leaves B, all cars preferring B must and do
park in B. We then construct a digraph D′ and sequence s′ that represents the remaining
vertices and cars after those preferring B have parked and show that (D′, s′) is a parking
function.

Theorem 2.2 is a “Hall-like” condition that matches cars to vertices they could poten-
tially park at. However, it is not a direct consequence of the Marriage Theorem since the
parking process requires that cars must park at the first empty spot they arrive at and
not necessarily the spots a matching would pair them with. We also extend the notion
of prime parking functions to digraphs.

Definition 2.3. A parking function (D, s) is prime if and only if for all A ⊆ [n] such that
RD(A) 6= [n] we have

|{i : si ∈ RD(A)}| < |RD(A)|.
If we choose D to be the path in the case of classical parking functions, we see that

for any A ⊆ [n], |RD(A)| = |RD({a1})| = n + 1− a1 where a1 is the smallest element of
A. Thus, the prime parking functions are those who, for 2 ≤ j ≤ n, have

|{i : si ≥ j}| < n + 1− j,

and so these are indeed the classical prime parking functions.

3 Prime Parking Functions On Sink Trees

In this section, we consider sink tree digraphs, those rooted trees with vertex set [n] and
edges oriented towards the root. For a sink tree T and v ∈ [n], we let Tv = {u : u �T v},
the vertices in the maximal subtree rooted at v. Restricting Theorem 2.2 to sink trees
is equivalent to the definition given in [4] and gives the following characterization for
parking functions on sink trees:

Corollary 3.1. The pair (T, s) is a parking function if and only if for all v ∈ [n], we have
|{i ∈ [n] : si ∈ Tv)}| ≥ |Tv|. Further, (T, s) is prime if and only if the inequality is strict for all
non-root vertices v.

Parking Functions on Oriented Trees 5

5

3 4

2 1

6

Figure 2: A sink tree.

Figure 2 shows a sink tree on which (2, 2, 5, 1, 4, 2) is a parking function and (1, 4, 1, 2, 2, 4)
is a prime parking function.

Because paths between points are unique, prime parking functions have the following
alternative description. Let (T, s) be a parking function. For an edge e, we say e is used
by s if, after failing to park at her preferred spot, some driver crosses e while searching
for a parking spot. If every edge in T is used by s, then this implies (T, s) is prime. On
the other hand, if (T, s) is prime, we see that s uses any edge (u, v) by considering the
maximal subtree rooted at u.

Theorem 3.2. For n ≥ 1, let Pn be the total number of prime tree parking functions (T, p) with
|T| = n. Then

Pn = (2n− 2)!

To prove this, we use the following result of Lackner and Panholzer [4]:

Theorem 3.3. Let Fn be the total number of parking functions on sink trees with vertex set [n]

and set F(x) = ∑
n≥1

Fn
xn

(n!)2 . Then F(x) satisfies the equation

F(x) = T(2x) + ln
(

1− T(2x)
2

)
, (3.1)

where T(x) is the tree generating function satisfying T(x) = xeT(x). Further, Fn is given by

Fn = ((n− 1)!)2 ·
(

n−1

∑
i=0

(n− i) · (2n)i

i!

)
.

Sketch of proof of Theorem 3.2. We decompose any parking function (T, s) into a “core”
component supporting a prime parking function and some collection of other compo-
nents with normal parking functions, attached to the core component. The core com-
ponent is given by the maximal subtree T0 containing the root of T such that the sub-
sequence s0 of s consisting of cars preferring T0 is a prime parking function on T0. The

6 Westin King and Catherine Yan

other components, {(Ti, si)}r
i=1, are identified by deleting the edges in T which are inci-

dent to exactly one vertex in T0 and the respective subsequences of s. Figure 3 gives a
general depiction of this decomposition. Dashed edges are those unused edges connect-
ing the Ti to the component T0, which has a prime parking function.

T0

T1 T2 T3 Tr. . .

Figure 3: Decomposing into a “core” component containing the root.

This decomposition is unique for every parking function, so in order to construct
a parking function with n drivers, we may select parking functions for the prime and
additional components, their labellings, how their preference sequences merge to form
one of length n, and how the others attach to the prime component. This gives

Fn = ∑
r≥0

1
r! ∑

r
∑

i=0
ki=n

Pk0 Fk1 · · · Fkr

(
n

k0, k1, . . . , kr

)2

(k0)
r.

We set

P(x) = ∑
n≥1

Pn
xn

(n!)2 ,

and sum over n to obtain the relation

F(x) = P
(

xeF(x)
)

. (3.2)

The (n!)2 is chosen to account for both the label permutations on the trees and the choice
of indices in which each si appears.

If we set z = z(x) = xeF(x) and y = y(x) = T(2x)
2 and combine Equation (3.2) with

Equation (3.1) we see that

P(z) = 2y + ln(1− y).

Parking Functions on Oriented Trees 7

Solving for y in terms of z by using the relation T(x) = xeT(x), and applying the compo-
sitional inverse of z, we conclude

P(x) = 2xC(x) + ln(1− xC(x)),

where C(x) is the ordinary generating function for the Catalan numbers and has analytic
expression

C(x) =
1−
√

1− 4x
2x

.

After taking the derivative and some algebra, we notice

P′(x) = C(x).

Hence,

P(x) = ∑
n≥1

Cn−1

n
xn,

and the conclusion follows.

The simple formula of Theorem 3.2 demands a bijective proof, so we will construct
one. Given a prime parking function (T, p), we first standardize the labels of T by
considering T as a plane tree and ordering siblings by when a driver first crosses the
edge to their parent vertex, earliest on the right. We then choose the standard labeling
to be given by post-order: starting from the left, travel around the border of the tree
labeling as one reaches the right side of a vertex. The first tree in Figure 4 shows a tree
labeled via post-order. There are n!-many relabelings of a tree with a standard labeling,
so what remains is to count the number of prime parking functions with standardized
labelings.

To do this, we construct a bijection α, which sends a prime parking function (T, p)
with a standard labeling to a plane tree O whose non-root vertices are labeled by [n− 1].
There are Cn−1 plane trees on n vertices and (n− 1)! labelings of the non-root vertices,
combined with the n!-many parking functions relabeled to the same standard labelings,
there are n!Cn−1(n− 1)! = (2n− 2)! prime parking functions.

Idea of the bijection α. We inductively define α. For the base case, if T is a singleton, then
α((T, p)) is an unlabeled vertex. Otherwise, α is defined through the following steps:

1. Park all except the final driver. Deleting edges not yet used defines collection of
prime parking functions linearly ordered by the order in which the final driver
would visit the vertices of the trees on her search for a parking spot.

8 Westin King and Catherine Yan

2. For each component in this decomposition, consider the set containing the indices
of the cars preferring the component and if the final driver would first enter the
component at the kth smallest vertex, mark the kth smallest element of the set.

3. Apply α to the standardized versions of each component.

4. Relabel the results of Step 3 with the unmarked elements from Step 2, preserving
relative order, and label the roots by the marked elements. Attach the roots to a
new unlabeled root in order.

To reverse, one follows the steps backwards, being sure to attach a vertex to the left
of any siblings to preserve the ordering of the tree.

6

5

43

2

1

p = (1, 4, 4, 2, 1, 2)

−→
5

43

2

1 {1, 4, 5}

{2, 3}

p(1) = (1, 2, 1)

p(2) = (4, 4)

Figure 4: Steps 1 and 2 of α.

2 1 1

{1, 4, 5} {2, 3}

−→
α

−→ 3

2

4

5 1

2

13

2

1 {1, 4, 5}

{2, 3}

p(1) = (1, 2, 1)

p(2) = (1, 1)

Figure 5: Steps 3 and 4 of α. Note the relabeling from Figure 4.

Figure 4 gives an example of steps 1 and 2, while Figure 5 shows steps 3 and 4,
after labeling the components via post-order. The dotted edges in Figure 4 are those

Parking Functions on Oriented Trees 9

unused before the final driver and the shaded vertices are the ones in each component
that the final driver would first encounter during her search and correspond to the bold
elements in the sets. Notice that the elements in the set near p(i) are the indices in p of
the subsequence p(i) for i ∈ {1, 2}.

Details of this bijection can be found in [2].

4 Source Trees and Mappings

We now turn our attention to source trees, those with edges oriented away from the root.
For a sink tree T, we denote by T̃ the source tree obtained by reversing edge orientations.
Recall that Fn is the total number of parking functions on sink trees with n vertices, and
we denote F̃n similarly for source trees. An exact formula for Fn is given in Theorem 3.3,
but we have yet to find a formula for F̃n. Although related, the exact relationship between
the two quantities Fn and F̃n is not immediately clear. The initial values of Fn and F̃n are
given by 1, 6, 132, 6384 and 1, 6, 135, 6760, respectively. Restricting to individual trees, we
have some comparison of the number of parking functions.

Theorem 4.1. The number of parking functions on a sink tree T is not greater than the number
of parking functions on the corresponding source tree T̃. Equality occurs if and only if T is a
path.

Idea of proof. Given a parking function (T, s), we reversibly construct a parking function
(T̃, s̃) by reassigning driver preference along judiciously chosen paths, dependent on s.
In fact, s̃ = sτ for some τ ∈ Sn. The parking function (T, s) can be considered as a
collection of prime parking functions by parking drivers and highlighting edges as they
are crossed. Components connected by highlighted edges are prime by construction.
Our driver reassignment works on each of these prime components individually, so it is
sufficient to assume that (T, s) is in fact prime.

Beginning with the smallest leaf, travel along the path to the root until the number of
drivers preferring a vertex in the path is equal to the number of vertices in the path. Let
there be k1 vertices in the path. Reassign drivers preferring the ith vertex in the path to
instead prefer the (k1 + 1− i)th. If the ith vertex has label α and the (k1 + 1− i)th vertex
has label β, add the transposition (αβ) to τ. Proceed to the next smallest leaf. At any
point, if one would add a vertex to a path that is already a member of a previous path,
skip over it. Once one has accounted for all the leaves, reverse edge orientations to form
a source tree. By construction, all drivers are able to park if they follow the path their
preferred vertex was in.

The parking function on T̃ which has all cars preferring the root is only obtainable in
this way when T happens to be a path, from which the result follows.

Summing the parking functions over all trees with |T| = n,

10 Westin King and Catherine Yan

6

5

43

2

1

p = (1, 4, 4, 2, 1, 3)

−→

6

5

43

2

1

p̃ = pτ = (5, 6, 6, 3, 5, 2)

Figure 6: Constructing a parking function on T̃ from one on T. τ = (15)(23)(46)

Corollary 4.2. For n ≥ 1, we have

Fn ≤ F̃n

with equality if and only if n ∈ {1, 2}.

We next consider parking functions on mapping digraphs and study their relation-
ship to those on the oriented trees. For f : [n] → [n], we consider the digraphs G f and
G̃ f with vertex set [n] and edge sets E(G f) = {(i, f (i)) : i ∈ [n]} and E(G̃ f) = {(f (i), i) :
i ∈ [n]}. We will call G f the sink mapping digraph and G̃ f the source mapping digraph.
These graphs are formed by attaching the roots of sink or source trees, respectively, to
cycles. We allow multiedges when the cycle is of length 2 and loops when the cycle is
only a single root vertex. Let Mn and M̃n denote the total number of parking functions
(G f , s) and (G̃ f , t), summed over all f : [n]→ [n]. Then we have

Theorem 4.3. For n ≥ 1,

n · F̃n = M̃n

Idea of proof. Consider a parking function (T̃, s̃) and some vertex v ∈ T̃. Identify the
edges in the path between the root and v that could be removed without affecting park-
ing. If an edge is not necessary, a driver must prefer the terminal vertex of the edge,
otherwise the vertex remains unfilled. Denote these terminal vertices by {vi}r

i=1 with
indices increasing away from the root. At least one driver must prefer each vi, so let `i
be the index in s̃ at which vi first appears. Finally, add the vertex vi to a set J if and
only if `i > `m for 1 ≤ m ≤ i− 1. Notice that the root of the tree, denoted v1, is always
in J. For each vi ∈ J, detach the path edge with terminus vi to create the components
of the mapping digraph, and assign the first path edge in each component as the new
terminus of each edge just detached. Add a new edge from v to the first path edge in the
component of v. This creates a collection of components, each with one cycle, for which

Parking Functions on Oriented Trees 11

the vertices in the cycles are precisely those who were on the path between the root and
v in T̃.

Figure 7 gives and example of this transformation and has J = {1, 3, 5}, creating
three components. The chosen vertex is shaded, while the dotted edges are those unused
during parking. Since the edges are unused, they can be manipulated without affecting
the drivers’ ability to park.

3

6 1

2 7 4

5

s̃ = (2, 3, 4, 1, 3, 5, 1)

−→

3

6 1

2 7 4

5

Figure 7: Turning a source tree into an inverse mapping digraph.

The proof is structurally similar to one by Lackner and Panholzer on sink trees and
digraphs (Theorem 3.6, [4]), which states that for n ≥ 1, n · Fn = Mn. However, our result
is distinct because, unlike on sink trees and mapping digraphs, the order in which spots
are filled during parking on source trees and mapping digraphs is not well-defined.
We must determine which edges to manipulate in order to form the mapping digraph
without considering which spots along the path between the root and v are filled at a
given step during parking. Additionally, it is not immediately clear that at least one
edge in the cycle of each component of the source mapping digraph is not necessary for
parking, which is crucial to reversing the bijection.

So far, formulas for F̃n and the number of prime parking functions on source trees,
P̃n, have proven elusive. In the case of both Fn and Pn, one can decompose the parking
function based on the final vertex filled. However, since the order in which vertices are
occupied is not necessarily well-defined when the maximum outdegree of a vertex is
more than 1, this approach does not work for general source trees.

5 Final Words and Future Work

In this paper, we generalized both the parking process and the notion of prime park-
ing functions to general digraphs. We then gave an enumerative result on trees with
edges orients towards a root and discussed some relationships between several families

12 Westin King and Catherine Yan

of digraphs. We note here that we can also generalize other special kinds of parking
functions, such as increasing parking functions, which Butler, Graham, and Yan [1] have
done to trees. This opens up many more enumeration problems, several of which we
have answers to. Below we present several other avenues for research.

1. Find a formula for F̃n, the total number of parking functions on source trees with
vertex set [n].

2. Similarly, find formulas for the number of increasing parking functions (called
parking distributions, see [1]) and the number of prime parking functions on source
trees.

3. Find the exact relationship between Fn and F̃n.

4. Study the number of parking functions on various families of graphs.

Acknowledgments

The authors would like to thank the referees for their numerous helpful remarks and
suggestions.

References

[1] S. Butler and C. Yan. “Parking distributions on trees”. European J. Combin. 65 (2017), pp. 168–
185. DOI: 10.1016/j.ejc.2017.06.003.

[2] W. King and C. Yan. “Prime Parking Functions on Rooted Trees”. 2018. arXiv: 1804.01616.

[3] A. Konheim and B. Weiss. “An Occupancy Discipline and Applications”. SIAM J. Appl. Math.
14.6 (1966), pp. 1266–1274. DOI: 10.1137/0114101.

[4] M.-L. Lackner and A. Panholzer. “Parking functions for mappings”. J. Combin. Theory Ser. A
142 (2016), pp. 1–28. DOI: 10.1016/j.jcta.2016.03.001.

[5] A. Postnikov and B. Shapiro. “Trees, parking functions, syzygies, and deformations of mono-
mial ideals”. Trans. Amer. Math Soc. 142.8 (2004), pp. 3109–3142. DOI: 10.1090/S0002-9947-
04-03547-0.

[6] R. Stanley. Enumerative Combinatorics. Vol. 2. Cambridge University Press, 1999.

[7] C. Yan. “Parking Functions on Digraphs”. Preprint. 2014.

https://doi.org/10.1016/j.ejc.2017.06.003
https://arxiv.org/abs/1804.01616
https://doi.org/10.1137/0114101
https://doi.org/10.1016/j.jcta.2016.03.001
https://doi.org/10.1090/S0002-9947-04-03547-0
https://doi.org/10.1090/S0002-9947-04-03547-0

	Introduction
	The Parking Process on Digraphs
	Prime Parking Functions On Sink Trees
	Source Trees and Mappings
	Final Words and Future Work

