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Abstract. We define a subclass of Hessenberg varieties called abelian Hessenberg va-
rieties, inspired by the theory of abelian ideals in a Lie algebra developed by Kostant
and Peterson. We prove that the cohomology of an abelian regular semisimple Hes-
senberg variety, with respect to the symmetric group action defined by Tymoczko, is a
non-negative combination of tabloid representations. Our result implies that a graded
version of the Stanley–Stembridge conjecture holds in the abelian case. As part of our
arguments, we obtain inductive formulas for the Betti numbers of regular Hessenberg
varieties.
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1 Introduction

Hessenberg varieties are subvarieties of the full flag variety F`ags(Cn) of nested se-
quences of linear subspaces in Cn. Their geometry and (equivariant) topology have
been studied extensively since the late 1980s [2]. This subject lies at the intersection of,
and makes connections between, many research areas such as geometric representation
theory, combinatorics, and algebraic geometry and topology.

In this extended abstract, we are concerned with the connection between Hessen-
berg varieties and the famous Stanley–Stembridge conjecture in combinatorics, which
states that the chromatic symmetric function of the incomparability graph of a so-called
(3+ 1)-free poset is a non-negative linear combination of elementary symmetric polyno-
mials [12, Conjecture 5.5]. Guay-Paquet has proved that this conjecture can be reduced
to the statement that the chromatic symmetric function of the incomparability graph of a
unit interval order is e-positive [5]. Shareshian and Wachs linked the Stanley–Stembridge
conjecture to Hessenberg varieties via the “dot action” Sn-representation on the co-
homology ring of regular semisimple Hessenberg varieties defined by Tymoczko [13].
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Specifically, Shareshian and Wachs established a bijection between Hessenberg functions
and unit interval orders [9, Proposition 4.1]. They then formulated a conjecture relating
the chromatic quasisymmetric function of the incomparability graph of a unit inter-
val order to the dot action representation on the cohomology of an associated regular
semisimple Hessenberg variety. This conjecture, known as the Shareshian–Wachs con-
jecture, provides the link between Hessenberg varieties and chromatic symmetric (and
quasisymmetric) functions.

The Shareshian–Wachs conjecture was proved in 2015 by Brosnan and Chow [1] (also
independently by Guay-Paquet [6]) by showing a remarkable relationship between the
Betti numbers of different Hessenberg varieties. Since cohomology rings are graded by
degree, the Shareshian–Wachs conjecture naturally suggests a stronger, “graded” con-
jecture based on the original Stanley–Stembridge conjecture (stated as Conjecture 2.3
below). In order to prove this graded Stanley–Stembridge conjecture, it suffices to prove
that the cohomology H2i(Hess(S, h)) is a non-negative combination of the tabloid rep-
resentations Mλ [3, Section 7.2] of Sn for λ a partition of n. In other words, given the
decomposition

H2i(Hess(S, h)) = ∑
λ`n

cλ,i Mλ

in the representation ring Rep(Sn) of Sn, it suffices to prove that the coefficients cλ,i are
non-negative [9, Conjecture 10.4].

The above discussion explains the motivation for this manuscript. We now describe
our main results. Let h : {1, 2, ..., n} → {1, 2, ..., n} be a Hessenberg function. Our ap-
proach to the graded Stanley–Stembridge conjecture is by induction. From any Hessen-
berg function h one can construct a corresponding incomparability graph Γh. Previous
results of Stanley show that the acyclic orientations of Γh, and their corresponding sets
of sinks, encode information about the coefficients cλ,i. The Hessenberg function also
corresponds uniquely to a certain subset Ih of the negative roots of gl(n, C). In this
manuscript, in the special case when Ih is abelian, we give an inductive formula for the
coefficients of the tabloid representations. Roughly, the idea is that the coefficients cλ,i
associated to a Hessenberg variety in F`ags(Cn) for n ≥ 3, can be computed via coeffi-
cients associated to certain Hessenberg varieties in a smaller flag variety F`ags(Cn−2).

The technical core of this result consists of two inductive formulas for the Betti num-
bers of regular nilpotent Hessenberg varieties (Proposition 4.4) and of regular Hessen-
berg varieties (Proposition 4.5) which are also of independent interest. It is straightfor-
ward to prove the graded Stanley–Stembridge conjecture for the abelian case based on
our inductive formula in Theorem 4.1, and we record this in Corollary 4.3. Our approach
using abelian ideals is closely connected with the lower central series of an ideal. An
ideal is abelian precisely when its lower central series has length one, so we can interpret
Theorem 4.1 as the “base case” of an argument for the full graded Stanley–Stembridge
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conjecture, using induction on the length of the lower central series of Ih. We intend to
explore this further in future work.

The “abelian case” considered in Corollary 4.3 corresponds, in combinatorial lan-
guage, to the case when the vertices of the graph Γh can be partitioned into two disjoint
cliques. The fact that the coefficients cλ = ∑i≥0 cλ,i are non-negative in this case was
stated in [11, Corollary 3.6] as a corollary to [11, Theorem 3.4]; moreover, this fact is also
equivalent to [12, Remark 4.4]. However, [11, Theorem 3.4] is incorrect as stated [10],
and the equivalence of [12, Remark 4.4] and [11, Corollary 3.6] is not explicit in [12, 11].
Thus, our Corollary 4.3 records a new and explicit proof of the non-negativity of the
coefficients cλ. Shareshian and Wachs also proved a graded version of Corollary 4.3 for
the case when h satisfies h(3) = · · · = h(n) = n, using very different techniques. This
instance is a special case of our result.

2 Preliminaries

Let n be a positive integer, and [n] = {1, 2, . . . , n}. We work in Lie type A throughout,
so G = GL(n, C) is the group of invertible n× n complex matrices and gl(n, C) is the Lie
algebra of GL(n, C) consisting of all n× n complex matrices.

2.1 Hessenberg varieties

The full flag variety is the collection of sequences of nested linear subspaces:

F`ags(Cn) := {V• = ({0} ⊂ V1 ⊂ V2 ⊂ · · ·Vn−1 ⊂ Vn−1 ⊂ Cn) | dimC(Vi) = i}.

A Hessenberg variety in F`ags(Cn) is specified by two pieces of data: a Hessenberg
function and a choice of an element in gl(n, C). A Hessenberg function is an increasing
function h : [n]→ [n] such that h(i) ≥ i for all i ∈ [n]. We frequently write a Hessenberg
function by listing its values in sequence, i.e., h = (h(1), h(2), . . . , h(n)).

Let h : [n]→ [n] be a Hessenberg function and X be an n× n matrix in gl(n, C), which
we also consider as a linear operator Cn → Cn. Then the Hessenberg variety Hess(X, h)
associated to h and X is defined to be

Hess(X, h) := {V• ∈ F`ags(Cn) | XVi ⊂ Vh(i) for all i ∈ [n]}.

We focus on certain special cases of Hessenberg varieties. Let λ = (λ1, λ2, . . . , λn) ∈
Zn
≥0 be a composition of n, i.e. λ1 + · · ·+ λn = n. A linear operator is regular of Jordan

type λ if its standard Jordan canonical form has block sizes given by λ1, λ2, etc., and the
eigenvalues from different blocks are distinct. Note that if g ∈ GL(n, C), then Hess(X, h)
and Hess(gXg−1, h) can be identified via the action of GL(n, C) on F`ags(Cn). For
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concreteness in what follows, for a given λ as above we let Xλ denote a (fixed) matrix in
standard Jordan canonical form, which is regular of Jordan type λ.

Two special cases are of particular interest. Namely, if λ = (n), then we may take the
corresponding regular operator to be the regular nilpotent operator which we denote by
N. The regular Hessenberg variety Hess(N, h) is called a regular nilpotent Hessenberg
variety. Similarly let S denote a regular semisimple matrix in gl(n, C). This corresponds
to the other extreme case, namely, λ = (1, 1, 1, . . . , 1). We call Hess(S, h) a regular
semisimple Hessenberg variety.

Denote the root system of gl(n, C) by Φ. Then the negative roots Φ− of gl(n, C) are
Φ− = {ti − tj | 1 ≤ j < i ≤ n} where ti − tj ∈ Φ− corresponds to the weight space of the
adjoint action spanned by the elementary matrix Eij. Let

Φ−h := {γ = ti − tj ∈ Φ− | i ≤ h(j)}

and Φh := Φ−h tΦ+. It is clear that h is uniquely determined by either Φ−h or Φh.
An ideal (also called an upper-order ideal) I of Φ− is defined to be a collection of

(negative) roots such that if α ∈ I, β ∈ Φ−, and α + β ∈ Φ−, then α + β ∈ I. The
definition of a Hessenberg function implies that Ih := Φ− \ Φ−h is an ideal in Φ−. We
call it the ideal corresponding to h.

Definition 2.1. We say that an ideal I ⊆ Φ− is abelian if α + β /∈ Φ− for all α, β ∈ I.

The notion of abelian ideals is not new in the context of Lie theory. However, as far
as we are aware, its use in the study of Hessenberg varieties is new.

Example 2.2. Consider h = (3, 4, 5, 6, 6, 6). This Hessenberg function corresponds to the abelian
ideal

Ih = {t4 − t1, t5 − t1, t5 − t2, t6 − t1, t6 − t2, t6 − t3} ⊆ Φ−.

We say that the Hessenberg variety Hess(X, h) and the corresponding Hessenberg
function h are abelian, if Ih is abelian. Abelian ideals of Φ− (or equivalently, of Φ+) are
the source of many combinatorial and Lie-theoretic formulas. The number of abelian
ideals in the negative roots of any Lie algebra g is exactly 2rank(g) [7, Theorem 2.1].

2.2 The Stanley–Stembridge conjecture

As discussed in the Introduction, the main motivation for this manuscript was to study
the graded version of the Stanley–Stembridge conjecture (Conjecture 2.3 below), stated
in terms of the Sn-representation on the cohomology rings of regular semisimple Hes-
senberg varieties through the dot action defined by Tymoczko [13].

A partition of n is a composition λ = (λ1, λ2, . . . , λn) ∈ Zn
≥0 of n such that λ1 ≥ λ2 ≥

· · · ≥ λn. If λ is a partition of n we write λ ` n. We say a partition λ ` n has k parts if
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λk 6= 0 and λk+1 = · · · = λn = 0. In this case, we write λ = (λ1, . . . , λk). Moreover, for
each ν ` n, we let Sν ⊆ Sn denote the Young subgroup of Sn corresponding to ν.

It is well known that the set of tabloid representations {Mλ}λ`n form a Z-basis for
the representation ring Rep(Sn) of Sn. Therefore there exist unique integers cλ and cλ,i
such that

H∗(Hess(S, h)) = ∑
λ`n

cλMλ and H2i(Hess(S, h)) = ∑
λ`n

cλ,i Mλ (2.1)

as elements in Rep(Sn). Note that, a priori, the coefficients cλ and cλ,i may be negative.
We also have cλ = ∑i≥0 cλ,i for all λ ` n. We can now formulate the graded Stanley–
Stembridge conjecture which motivates this manuscript.

Conjecture 2.3. Let n be a positive integer and h : [n] → [n] be a Hessenberg function. Then
the integers cλ,i appearing in (2.1) are non-negative.

Finally, we recall a fundamental result of Brosnan and Chow which identifies the
dimension of the subspaces H∗(Hess(S, h))Sν with the dimension of the cohomology
of the regular Hessenberg variety of Jordan type ν [1, Theorem 76]. This result is an
essential tool in the proof of Theorem 4.1.

Theorem 2.4. Let n be a positive integer and h : [n]→ [n] be a Hessenberg function. Let ν ` n
be a partition of n, Xν a regular operator of Jordan type ν, and S a regular semisimple operator.
Then for each non-negative integer i,

dim(H2i(Hess(S, h)))Sν = dim H2i(Hess(Xν, h)).

When Ih is abelian, the corresponding restriction on the partitions that can appear
in the right hand side of (2.1) is quite striking. One can prove the following lemma
using results of Gasharov [4] which describe the decomposition of the representation
H∗(Hess(S, h)) into irreducible representations.

Lemma 2.5. If h : [n]→ [n] is an abelian Hessenberg function, then cλ = cλ,i = 0 for all λ ` n
with more than 2 parts and for all i ≥ 0.

3 Acyclic orientations

In this section we recall some graph-theoretic data which can be constructed from a Hes-
senberg function. We define the incomparability graph Γh = (V(Γh), E(Γh)) associated
to the Hessenberg function h as follows. The vertex set V(Γh) is [n] = {1, 2, . . . , n}. The
edge set E(Γh) is defined as follows: {i, j} ∈ E(Γh) if 1 ≤ j < i ≤ n and i ≤ h(j).
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Example 3.1. The incomparability graphs for h = (2, 4, 4, 4) and h = (3, 4, 5, 5, 5) are given
below.

1 2 3 4 1 2 3 4 5

Recall that an orientation ω of a graph is an assignment of a direction to each edge e ∈
E(Γh). Equivalently, ω assigns to each edge e a source and a target; we notate the source
(respectively target) of e according to the orientation ω by srcω(e) (respectively tgtω(e)).
A (directed) cycle is a sequence of vertices starting and ending at the same vertex whose
edges are oriented consistently with the order of the vertices in the sequence. We say that
an orientation ω is acyclic if there are no (directed) cycles in the corresponding oriented
graph. Let

A(Γh) := { ω | ω is an acyclic orientation of Γh}
denote the set of all acyclic orientations of Γh. Moreover, given an orientation ω, a sink
associated to ω is a vertex v of the graph such that tgtω(e) = v for all edges e adjacent to
v. It will be important to pay close attention to the number of sinks associated to a given
orientation. Thus we define

Ak(Γh) := { ω ∈ A(Γh) | ω has exactly k sinks}.

Since every acyclic orientation has at least one sink, we have A(Γh) =
⊔

k≥1Ak(Γh).
The following is a result of Shareshian and Wachs [9, Theorem 5.3] which generalizes

a theorem of Stanley [11, Theorem 3.3]. Following their terminology, for an orientation
ω of Γh, we let

asc(ω) := |{e = {a, b} ∈ E(Γh) | srcω(e) = a, tgtω(e) = b, and a < b}|.

In other words, if Γh is drawn as in Example 3.1 with the labels of the vertices increasing
from left to right, then asc(ω) is the total number of edges which “point to the right”.

Theorem 3.2. Let n be a positive integer and h : [n] → [n] a Hessenberg function. Let cλ,i
denote the coefficients appearing in (2.1). Then

∑
λ`n and λ has k parts

cλ,i = |{ω | ω ∈ Ak(Γh) and asc(ω) = i}|.

Since there is only one partition of n with exactly 1 part, namely λ = (n), we may
immediately conclude that c(n),i ≥ 0 for all i.

The result above makes it evident that the set of acyclic orientations, and the cardinal-
ities of the sink sets associated to them, play a crucial role in determining the coefficients
cλ,i. We further develop this circle of ideas by analyzing the sink sets themselves. For
a fixed Γh and acyclic orientation ω of Γh, let sk(ω) := {v ∈ V(Γh) | v is a sink of ω}
denote the sink set of ω. We let

SK(Γh) := { sk(ω) | ω ∈ A(Γh)}
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denote the set of all subsets of V(Γh) which can arise as the sink set of some acyclic
orientation. Similarly, we let SKk(Γh) denote the subset of SK(Γh) consisting of sink sets
of cardinality k. By definition, we have

Ak(Γh) =
⊔

T∈SKk(Γh)

{ω ∈ Ak(Γh) | sk(ω) = T}.

We call this the sink set decomposition. It isn’t difficult to show that a set of vertices is a
sink set of Γh so long as it is an independent set, i.e., no two of the vertices are connected
by an edge. In fact, Ih is abelian if and only if any independent set of vertices in Γh
contains at most two elements. Although this is case addressed in Theorem 4.1 below,
the results of this section are more general.

Let k ≥ 1 and suppose T ∈ SKk(Γh). We define Γh − T to be the induced subgraph
corresponding to the vertices V(Γh) \ T ⊆ V(Γh).

Example 3.3. Consider the graph Γh for h = (3, 4, 5, 5, 5) and let T = {2, 5}. Then T is indeed
a sink set, for the following acyclic orientation of Γh.

1 //
""

2 3oo //
""

4
||

// 5

We also draw the (unoriented) graphs Γh and Γh − T in the figure below. In the figure for Γh, the
vertices of T and all incident edges to T are in bold. The bold edges and vertices are then deleted
to obtain Γh − T (with re-labelled vertices).

1 2 3 4 5 1 2 3

Lemma 3.4. Let T ∈ SKk(Γh) and let Γh− T be defined as above. Then there exists a Hessenberg
function hT : [n− k]→ [n− k] such that Γh − T = ΓhT .

Finally, we observe that the construction of the smaller graph Γh − T ∼= ΓhT from
the data of Γh also extends to orientations. Specifically, let ω ∈ Ak(Γh) be any acyclic
orientation such that sk(ω) = T. Then the orientation ω naturally induces, by restriction,
an orientation on Γh− T = ΓhT (since the edges of Γh− T are a subset of those of Γh). We
denote this acyclic orientation on ΓhT by ωT.

Example 3.5. We continue with Example 3.3. In the pictures below, we draw an orientation ω

of Γh on the left, and its corresponding induced orientation ωT of ΓhT on the right.

1 ////00//.... 2 3oo ooppoonnnn
|| """"!!!!""""""

4oo ////00//....
||||}}}}||||||

5 1 2oo 3oo

Suppose T ∈ SK(Γh). Any acyclic orientation ω with sink set T must have some
number of edges oriented to the right, as determined by the vertices in T. Suppose
T ∈ SK(Γh). We define the degree of T to be

deg(T) := min{ asc(ω) | ω ∈ A(Γh), sk(ω) = T}.
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In practice, it is easy to compute deg(T) for any T ∈ SK(Γh)–it is the number of edges
incident to the the vertices of T that are oriented to the right. We define the maximum
sink-set size m(Γh) to be the maximum of the cardinalities of the sink sets sk(ω) associ-
ated to all possible acyclic orientations of Γh.

Example 3.6. Consider the graph Γh for h = (3, 4, 5, 5, 5) as in Example 3.3. In this example
we have m(Γh) = 2 and T = {2, 5} is a sink set of maximal cardinality. In the figure below we
draw all acyclic orientations ω ∈ A(Γh) such that sk(ω) = {2, 5}. The corresponding acyclic
orientation of ΓhT is displayed to the right. In this example, we have deg(T) = 3.

1 ////00//.... 2 3oo ooppoonnnn
|| """"!!!!""""""

4oo ////00//....
||||}}}}||||||

5 1 2oo 3oo

1 ////00//....
""

2 3oo ooppoonnnn
""""!!!!""""""

4oo ////00//....
||||}}}}||||||

5 1 // 2 3oo

1 ////00//.... 2 3oo ooppoonnnn
|| """"!!!!""""""// 4 ////00//....

||||}}}}||||||
5 1 2oo // 3

1 ////00//....
""

2 3oo ooppoonnnn
""""!!!!""""""// 4 ////00//....

||||}}}}||||||
5 1 // 2 // 3

In the example above, there is a bijection between acyclic orientations of ΓhT and
acyclic orientations of Γh with sink set T. The next proposition shows that this is always
the case when T is a sink set of maximal cardinality. Moreover, this natural bijection gives
a tight relationship between the number of ascending edges asc(ω) of the orientation ω

of the original graph Γh with the number asc(ωT) of the induced orientation on the
smaller graph ΓhT .

Proposition 3.7. Let h : [n] → [n] be a Hessenberg function and let m = m(Γh) be the
maximum sink-set size for Γh. Let T ∈ SKm(Γh). Then the restriction map

{ ω ∈ Am(Γh) | sk(ω) = T} → A(ΓhT), ω 7→ ωT

is a bijection. For any ω ∈ Am(Γh) with sk(ω) = T we have asc(ω) = deg(T) + asc(ωT).

4 The main theorem

We now state our main theorem, which gives an inductive formula which, in the case
when Ih is abelian, expresses Tymoczko’s dot action representation on H2i(Hess(S, h))
as a combination of trivial representations and a sum of tabloid representations with
coefficients associated to Hessenberg varieties in F`ags(Cn−2).
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Theorem 4.1. Let n be a positive integer and n ≥ 3. Let h : [n]→ [n] be a Hessenberg function
such that Ih is abelian and i ≥ 0 be a non-negative integer. In the representation ring Rep(Sn)
we have the equality

H2i(Hess(S, h)) = c(n),i M
(n) + ∑

T∈SK2(Γh)
∑

µ `(n−2)
µ=(µ1,µ2)

cT
µ,i−deg(T)M(µ1+1,µ2+1).

To illustrate this result, we give an extended example when n = 6.

Example 4.2. Let n = 6 and h = (3, 4, 5, 6, 6, 6). Then Ih is abelian, and there are six maximum
dimensional sink sets in SK2(Γh). The graphs below show an acyclic orientation ω ∈ A2(Γh)
such that asc(ω) = deg(T) for each T ∈ SK2(Γh). In each case, we display the corresponding
acyclic orientation of Γh − T ∼= ΓhT on the right.

1 2oo ooppoonnnn
""""!!!!""""""

3 ////00//....oo
||||}}}}||||||

4 5
||

oo ooppoonnnn 6oo
||||}}}}||||||

1 2oo 3oo 4oo

1 2oo ooppoonnnn 3oo
||||}}}}|||||| """"!!!!""""""

4
||

////00//....oo 5 6oo ooppoonnnn
||

1 2oo 3oo
||

4oo

1 2oo ooppoonnnn 3oo
||||}}}}||||||

4oo
|| """"!!!!""""""

5oo
||

////00//.... 6 1 2oo 3
||

oo 4
||

oo

1 ////00//.... 2 3
||

oo ooppoonnnn
""""!!!!""""""

4
||||}}}}|||||| ////00//....oo 5 6oo ooppoonnnn

||
1 2oo 3oo 4oo

1 ////00//.... 2 3oo ooppoonnnn
||

4oo
||||}}}}|||||| """"!!!!""""""

5oo
||

////00//.... 6 1 2oo 3oo 4
||

oo

1
""""!!!!""""""

2 ////00//....oo 3 4oo ooppoonnnn
|| """"!!!!""""""

5oo
||||}}}}|||||| ////00//.... 6 1 2oo 3oo 4oo

Since the graphs are symmetric, Γ− {1, 5} ∼= Γ− {2, 6}. Let ST denote a regular semisimple
element in gl(n− 2, C). The representation H∗(Hess(ST, hT)) for each Hessenberg function hT
with T ∈ SK2(Γh) is shown in the table below.

Hessenberg function hT: (2, 3, 4, 4) (3, 3, 4, 4) (3, 4, 4, 4)
H0(Hess(ST, hT)) M(4) M(4) M(4)

H2(Hess(ST, hT)) M(4) + M(3,1) + M(2,2) 2M(4) + M(3,1) 3M(4)

H4(Hess(ST, hT)) M(4) + M(3,1) + M(2,2) 2M(4) + 2M(3,1) 4M(4) + M(3,1)

H6(Hess(ST, hT)) M(4) 2M(4) + M(3,1) 4M(4) + M(3,1)

H8(Hess(ST, hT)) M(4) 3M(4)

H10(Hess(ST, hT)) M(4)

Next we see deg({1, 4}) = deg({1, 5}) = deg({1, 6}) = 2, deg({2, 5}) = deg({2, 6}) = 3,
and deg({3, 6}) = 4 from the graphs. We now have all the information we need to compute
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H∗(Hess(S, h)) in all degrees as the shifted sum of M(µ1+1,µ2+1)’s where M(µ1,µ2) appears in the
representations above. The next two tables show how to shift these representations using deg(T)
in order to obtain H∗(Hess(S, h)).

T ∈ SK2(Γh): {1, 4} {1, 5} {1, 6}
H4(Hess(S, h)) M(5,1) M(5,1) M(5,1)

H6(Hess(S, h)) M(5,1) + M(4,2) + M(3,3) 2M(5,1) + M(4,2) 3M(5,1)

H8(Hess(S, h)) M(5,1) + M(4,2) + M(3,3) 2M(5,1) + 2M(4,2) 4M(5,1) + M(4,2)

H10(Hess(S, h)) M(5,1) 2M(5,1) + M(4,2) 4M(5,1) + M(4,2)

H12(Hess(S, h)) M(5,1) 3M(5,1)

H14(Hess(S, h)) M(5,1)

T ∈ SK2(Γh): {2, 5} {3, 6} {2, 6}
H6(Hess(S, h)) M(5,1) M(5,1)

H8(Hess(S, h)) M(5,1) + M(4,2) + M(3,3) M(5,1) 2M(5,1) + M(4,2)

H10(Hess(S, h)) M(5,1) + M(4,2) + M(3,3) M(5,1) + M(4,2) + M(3,3) 2M(5,1) + 2M(4,2)

H12(Hess(S, h)) M(5,1) M(5,1) + M(4,2) + M(3,3) 2M(5,1) + M(4,2)

H14(Hess(S, h)) M(5,1) M(5,1)

For example, we get,

H8(Hess(S, h)) = c(6),4M(6) + 11M(5,1) + 6M(4,2) + 2M(3,3).

We can now prove the graded Stanley–Stembridge conjecture in the abelian case.

Corollary 4.3. Let n be a positive integer and h : [n] → [n] a Hessenberg function such that Ih
is abelian. Then the integers cλ,i appearing in (2.1) are non-negative.

Proof. We argue by induction. Our base cases are n = 1 and n = 2. The case n = 1 is
trivial in the sense that the regular semisimple Hessenberg variety under consideration
is just a single point, and the symmetric group is the trivial group. Hence the claim
holds in this case. If n = 2 then the corresponding flag variety F`ags(C2) ∼= P1 is
non-trivial. In this case there are only two Hessenberg functions to consider: h = (1, 2)
and h = (2, 2). Both cases correspond to abelian ideals and the reader may confirm that
H0(Hess(S, (1, 2))) ∼= M(1,1), H0(Hess(S, (2, 2))) ∼= M(2), and H2(Hess(S, (2, 2))) ∼= M(2)

are the corresponding representations.
The proof for n ≥ 3 now follows from the inductive description of H2i(Hess(S, h))

given in Theorem 4.1 together with the fact that c(n),i ≥ 0 for all i.

The proof of Theorem 4.1 relies on the following inductive formulas for the Betti num-
bers of a regular Hessenberg variety together with Brosnan and Chow’s result, Theo-
rem 2.4. Proposition 4.4 gives a formula for the Betti numbers ofHess(N, h) ⊆ F`ags(Cn)
in terms of the Betti numbers of regular nilpotent Hessenberg varieties in F`ags(Cn−2),
and Proposition 4.5 is of a similar flavor.
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Proposition 4.4. Let n be a positive integer and n ≥ 3. Let h : [n] → [n] be a Hessenberg
function such that Ih is abelian. Let N be a regular nilpotent element of gl(n, C) and N′ be a
regular nilpotent element of gl(n− 2, C). Then the 2i-th Betti number of Hess(N, h) satisfies

dim H2i(Hess(N, h)) = c(n),i + ∑
T∈SK2(Γh)

dim H2i−2 deg(T)(Hess(N′, hT)).

Proposition 4.5. Let n be a positive integer and n ≥ 3. Let h : [n] → [n] be a Hessenberg
function such that Ih is abelian. Let Xν be the regular element of gl(n, C) associated to ν = (µ1 +
1, µ2 + 1) ` n and Xµ be a regular element of gl(n− 2, C) associated to µ = (µ1, µ2) ` (n− 2).
Then the 2i-th Betti number of Hess(Xν, h) satisfies

dim H2i(Hess(Xν, h)) = dim H2i(Hess(N, h)) + ∑
T∈SK2(Γh)

dim H2i−2 deg(T)(Hess(Xµ, hT)).

The proofs of Proposition 4.4 and 4.5 are combinatorial in nature, and rely on a
formula for the Betti numbers of regular Hessenberg varieties obtained by the second
author in [8] using geometric techniques. The aforementioned formula, together with
the restriction to partitions with at most two parts, yields a simple presentation of these
Betti numbers in the abelian case.

Although Theorem 4.1 holds for abelian Hessenberg varieties only, much of the
framework and analysis in Section 3 is general. In particular the analysis of maximal
sink sets of the graph Γh in Section 3 shows that every acyclic orientation of Γh corre-
sponding to such a sink set T is obtained inductively from an acyclic orientation of the
smaller graph ΓhT on n− |T| vertices. Using Theorem 3.2, this indicates a correspondence
between the representations H∗(Hess(S, h)) and H∗(Hess(ST, hT)), where ST denotes a
regular semisimple element in gl(n− |T|, hT).

Conjecture 4.6. Let h : [n] → [n] be a Hessenberg function and λ ` n be a partition with
exactly m = m(Γh) parts. Let µ = (µ1, µ2, ..., µm) be a partition of n − |T| such that λ =
(µ1 + 1, µ2 + 1, · · · , µm + 1). Then for all i ≥ 0,

cλ,i = ∑
T∈SKm(Γh)

cT
µ,i−deg(T).

This conjecture extends the results of Theorem 4.1 to arbitrary regular semisimple
Hessenberg varieties. The formula given in Conjecture 4.6 does not determine the co-
efficients for Mλ unless λ has a maximal number of parts. To obtain a formula which
fully generalizes Theorem 4.1 using similar methods, we need an inductive formula for
the Betti numbers of an arbitrary regular Hessenberg variety.
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