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Abstract. Recently, Naruse discovered a hook length formula for the number of stan-
dard Young tableaux of a skew shape. Morales, Pak and Panova found two q-analogs
of Naruse’s hook length formula over semistandard Young tableaux (SSYTs) and re-
verse plane partitions (RPPs). As an application of their formula, they expressed
certain q-Euler numbers, which are generating functions for SSYTs and RPPs of a
zigzag border strip, in terms of weighted Dyck paths. They found a determinantal
formula for the generating function for SSYTs of a skew staircase shape and proposed
two conjectures related to RPPs of the same shape.

In this paper, we show that the results of Morales, Pak and Panova on the q-Euler
numbers can be derived from previously known results due to Prodinger by ma-
nipulating continued fractions. These q-Euler numbers are naturally expressed as
generating functions for alternating permutations with certain statistics involving
maj. It has been proved by Huber and Yee that these q-Euler numbers are generating
functions for alternating permutations with certain statistics involving inv. By mod-
ifying Foata’s bijection we construct a bijection on alternating permutations which
sends the statistics involving maj to the statistic involving inv. We also prove the
aforementioned two conjectures of Morales, Pak and Panova.

Keywords: reverse plane partition, Euler number, alternating permutation, lattice
path, continued fraction

1 q-Euler numbers and continued fractions

Morales, Pak and Panova [6, Corollaries 1.7 and 1.8] obtained that

E2n+1(q)
(q; q)2n+1

= ∑
D∈Dyck2n

∏
(a,b)∈D

qb

1− q2b+1 (1.1)
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and
E∗2n+1(q)
(q; q)2n+1

= ∑
D∈Dyck2n

qH(D) ∏
(a,b)∈D

1
1− q2b+1 , (1.2)

where Dyck2n is the set of Dyck paths of length 2n, H(D) = ∑(a,b)∈HP(D)(2b + 1),
HP(D) is the set of high peaks in D,

En(q) = ∑
π∈Altn

qmaj(π−1) and E∗n(q) = ∑
π∈Altn

qmaj(κnπ−1). (1.3)

κn is the permutation (1)(2, 3)(4, 5) . . . (2 b(n− 1)/2c , 2 b(n− 1)/2c+ 1) in cycle nota-
tion and maj(π) is the major index of π.

Prodinger [7] considered the probability τ≥≤n (q) that a random word w1 . . . wn of
positive integers of length n satisfies the relations w1 ≥ w2 ≤ w3 ≥ w4 ≤ · · · , where
each wi is chosen independently randomly with probability Pr(wi = k) = qk−1(1− q)
for 0 < q < 1. For other choices of inequalities, for example ≥ and <, the probability
τ≥<n (q) is defined similarly. From the definition, one can easily see that

∑
π∈SSYT(δn+2/δn)

q|π| =
τ≥<2n+1(q)

(1− q)2n+1 , (1.4)

∑
π∈RPP(δn+2/δn)

q|π| =
τ≥≤2n+1(q)

(1− q)2n+1 (1.5)

and

∑
π∈ST(δn+2/δn)

q|π| =
τ><

2n+1(q)
(1− q)2n+1 , (1.6)

where ST(λ/µ) is the set of strict tableaux of shape λ/µ and a strict tableau of shape
λ/µ is a filling of λ/µ with nonnegative integers such that the integers are strictly
increasing in each row and each column.

In this section we show (1.1) and (1.2) using Prodinger’s results. Prodinger [7]
found continued fraction expressions for the generating functions of τ≥<2n+1(q) and
τ≥≤2n+1(q). Using Flajolet’s theory [1] of continued fractions we show that (1.1) is equiv-
alent to Prodinger’s continued fraction. We prove (1.2) in a similar fashion. However,
unlike (1.1), the weight of a Dyck path in (1.2) is not a usual weight used in Flajolet’s
theory. To remedy this we first express E∗2n+1(q) as a generating function for weighted
Schröder paths and change it to a generating function of weighted Dyck paths.

We recall Flajolet’s theory[1] which gives a combinatorial interpretation for the con-
tinued fraction expansion as a generating function of weighted Dyck paths.

Let u = (u0, u1, . . . ), d = (d1, d2, . . . ) and w = (w0, w1, . . . ) be sequences satisfying
wi = uidi+1 for i ≥ 0. For a Dyck path P ∈ Dyck2n, we define the weight wtw(P) with
respect to w to be the product of the weight of each step in P, where the weight of an
up step {(i, j), (i + 1, j + 1)} is uj and the weight of a down step {(i, j), (i + 1, j− 1)}
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is dj. Flajolet [1] showed that the generating function for weighted Dyck paths has a
continued fraction expansion:

∑
n≥0

∑
P∈Dyck2n

wtw(P)x2n =
1

1−
w0x2

1−
w1x2

1−
w2x2

1− · · ·

. (1.7)

1.1 The q-Euler numbers E2n+1(q)

We give a new proof of (1.1) using (1.7).

Proposition 1.1 ([6, Corollary 1.7]). We have

E2n+1(q)
(q; q)2n+1

= ∑
P∈Dyck2n

∏
(a,b)∈P

qb

1− q2b+1 . (1.8)

Proof. By the result of Prodinger [7, Theorem 4.1] (with replacing z by x/(1− q)), we
have the following continued fraction expansion:

∑
n≥0

E2n+1(q)
x2n+1

(q; q)2n+1
=

x
1− q

·
1

1−
qx2/(1− q)(1− q3)

1−
q3x2/(1− q3)(1− q5)

1−
q5x2/(1− q5)(1− q7)

1− · · ·

. (1.9)

By comparing (1.9) and (1.7) with ui = di = qi

1−q2i+1 and wi = uidi+1, we deduce
(1.1).

1.2 The q-Euler numbers E∗2n+1(q)

By using Prodinger’s result on E∗2n+1(q), we give a new proof of (1.2).

Proposition 1.2 ([6, Corollary 1.8]). We have

E∗2n+1(q)
(q; q)2n+1

= ∑
P∈Dyck2n

qH(P) ∏
(a,b)∈P

1
1− q2b+1 .

Corollary 1.3. We have

∑
P∈Dyck2n

qH(P) ∏
(a,b)∈P

1
1− q2b+1 =

1
1− q ∑

P∈Dyck2n

wtw(P),

where w = (w0, w1, . . . ) is the suitable weight sequence.
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TAB τ
αβ
n (q) (A,B)

(C,D)

M I

Definition

P-partition

Prodinger

Huber–Yee
Foata-type bijection

Figure 1: The connections in Theorems 2.1 and 2.2.

2 Prodinger’s q-Euler numbers and Foata-type bijections

2.1 Prodinger’s q-Euler numbers

Prodinger [7] showed that the generating function for τ
αβ
n (q) for any choice of alternat-

ing inequalities α and β, i.e.,

(α, β) ∈ {(≥,≤) (≥,<), (>,≤), (>,<), (≤,≥), (≤,>), (<,≥), (<,>)},

has a nice expression as a quotient of series. Observe that we have τ≥<2n+1(q) = τ>≤
2n+1(q),

τ≤>2n+1(q) = τ<≥
2n+1(q), τ≥≤2n (q) = τ≤≥2n (q), τ≥<2n (q) = τ≤>2n (q), τ>≤

2n (q) = τ<≥
2n (q) and

τ><
2n (q) = τ<>

2n (q). Therefore, we only need to consider 6 q-tangent numbers τ
αβ
2n+1 and

4 q-secant numbers τ
αβ
2n .

Now we state a unifying theorem for Prodinger’s q-tangent numbers combining
some results of Huber and Yee [3].

Theorem 2.1. For each row τ
αβ
2n+1(q), TAB, M, I, (A, B)/(C, D) in Table 1, we have

f2n+1 :=
τ

αβ
2n+1(q)

(1− q)2n+1 = ∑
π∈TAB

q|π| =
M

(q; q)2n+1
=

I
(q; q)2n+1

,

whose generating function is

∑
n≥0

f2n+1x2n+1 =
∑n≥0(−1)nqAn2+Bnx2n+1/(q; q)2n+1

∑n≥0(−1)nqCn2+Dnx2n/(q; q)2n
.

By the same arguments, we obtain a unifying theorem for Prodinger’s q-secant
numbers.

Theorem 2.2. For each row τ
αβ
2n (q), TAB, M, I, 1/(C, D) in Table 2, we have

f2n :=
τ

αβ
2n (q)

(1− q)2n = ∑
π∈TAB

q|π| =
M

(q; q)2n
=

I
(q; q)2n

,
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τ
αβ
2n+1(q) TAB M I (A,B)

(C,D)

τ≥<2n+1(q) SSYT(δn+2/δn) ∑
π∈Alt2n+1

qmaj(π−1) ∑
π∈Alt∗2n+1

qinv(π) (0,0)
(0,0)

τ≥≤2n+1(q) RPP(δn+2/δn) ∑
π∈Alt2n+1

qmaj(κ2n+1π−1) ∑
π∈Alt∗2n+1

qinv(π)−ndes(πe) (1,1)
(1,−1)

τ><
2n+1(q) ST(δn+2/δn) ∑

π∈Alt2n+1

qmaj(η2n+1π−1) ∑
π∈Alt∗2n+1

qinv(π)+nasc(πe) (1,0)
(1,0)

τ<≥
2n+1(q) SSYT(δ(1,1)

n+3 /δn+1) ∑
π∈Ralt2n+1

qmaj(π−1) ∑
π∈Alt∗2n+1

qinv(π) (0,0)
(0,0)

τ≤≥2n+1(q) RPP(δ(1,1)
n+3 /δn+1) ∑

π∈Ralt2n+1

qmaj(η2n+1π−1) ∑
π∈Alt∗2n+1

qinv(π)−asc(πo) (1,0)
(1,−1)

τ<>
2n+1(q) ST(δ(1,1)

n+3 /δn+1) ∑
π∈Ralt2n+1

qmaj(κ2n+1π−1) ∑
π∈Alt∗2n+1

qinv(π)+des(πo) (1,1)
(1,0)

Table 1: Interpretations for Prodinger’s q-tangent numbers. The notation Alt∗2n+1
means it can be either Alt2n+1 or Ralt2n+1.

τ
αβ
2n (q) TAB M I 1

(C,D)

τ≥<2n (q) SSYT(δ(0,1)
n+2 /δn) ∑

π∈Alt2n

qmaj(π−1) ∑
π∈Alt2n

qinv(π) 1
(0,0)

τ≥≤2n (q) RPP(δ(0,1)
n+2 /δn) ∑

π∈Alt2n

qmaj(κ2nπ−1) ∑
π∈Alt2n

qinv(π)−asc(π∗) 1
(1,−1)

τ><
2n (q) ST(δ(0,1)

n+2 /δn) ∑
π∈Alt2n

qmaj(η2nπ−1) ∑
π∈Alt2n

qinv(π)+nasc(π∗) 1
(1,0)

τ<≥
2n (q) SSYT(δ(1,0)

n+2 /δn) ∑
π∈Ralt2n

qmaj(π−1) ∑
π∈Ralt2n

qinv(π) 1
(2,−1)

τ≤≥2n (q) RPP(δ(1,0)
n+2 /δn) ∑

π∈Ralt2n

qmaj(η2nπ−1) ∑
π∈Ralt2n

qinv(π)−ndes(π∗) 1
(1,−1)

τ<>
2n (q) ST(δ(1,0)

n+2 /δn) ∑
π∈Ralt2n

qmaj(κ2nπ−1) ∑
π∈Ralt2n

qinv(π)+des(π∗) 1
(1,0)

Table 2: Interpretations for Prodinger’s q-secant numbers. The notation π∗ means it
can be either πo or πe.



6 Byung-Hak Hwang, Jang Soo Kim, Meesue Yoo, and Sun-mi Yun

whose generating function is

∑
n≥0

f2nx2n =
1

∑n≥0(−1)nqCn2+Dnx2n/(q; q)2n
.

2.2 Foata-type bijection for E∗2n+1(q).

We denote by Alt−1
n the set of permutations π ∈ Sn with π−1 ∈ Altn.

Let ≺ be a total order on N. For a word w1 . . . wk consisting of distinct positive
integers, we define f (w1 . . . wk,≺) as follows. Let b0, b1, . . . , bm be the integers such
that

• 0 = b0 < b1 < · · · < bm = k− 1,

• if wk−1 ≺ wk, then wb1 , . . . , wbm ≺ wk ≺ wj for all j ∈ [k− 1] \ {b1, . . . , bm}, and

• if wk ≺ wk−1, then wj ≺ wk ≺ wb1 , . . . , wbm for all j ∈ [k− 1] \ {b1, . . . , bm}.

For 1 ≤ j ≤ m, let Bj = wbj−1+1 . . . wbj . We denote

B(w1 . . . wk,≺) = (B1, B2, . . . , Bm).

Note that w1 . . . wk−1wk is the concatenation B1B2 . . . Bmwk. Let B′j = wbj wbj−1+1 . . . wbj−1.
Then we define

f (w1 . . . wk,≺) = B′1B′2 . . . B′mwk.

For a permutation π = π1 . . . πn ∈ Sn and a total order ≺ on N, we define F(π,≺)
as follows. Let w(1) = π1. For 2 ≤ k ≤ n, let w(k) = f (w(k−1)πk,≺). Finally F(π,≺) =
w(n). Note that for the natural order 1 < 2 < · · · , the map F(π,<) is the same as the
Foata map.

For i ≥ 1, we define <i to be the total order on N obtained from the natural
ordering by reversing the order of i and i + 1, i.e., for a < b with (a, b) 6= (i, i + 1), we
have a <i b and i + 1 <i i.

For π ∈ Alt−1
2n+1, we define Falt(π) as follows. First, we set w(1) = π1. For 2 ≤ k ≤

2n + 1, there are two cases:

• If πk = 2i and π1 . . . πk−1 does not have 2i + 2, then w(k) = f (w(k−1)πk,<2i).

• Otherwise, w(k) = f (w(k−1)πk,<).

Then Falt(π) is defined to be w(2n+1). For example, if π = 317295486 ∈ Alt−1
9 , then

w(4) = 7312, w(8) = 37912548 and Falt(π) = w(9) = 739812546.

Theorem 2.3. The map Falt induces a bijection Falt : Alt−1
2n+1 → Alt−1

2n+1. Moreover, if
π ∈ Alt−1

2n+1 and σ = Falt(π), then

maj(κ2n+1π) = inv(σ)− ndes((σ−1)e).
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Corollary 2.4. We have

∑
π∈Alt2n+1

qmaj(κ2n+1π−1) = ∑
π∈Alt2n+1

qinv(π)−ndes(πe).

3 Proofs of two conjectures of Morales, Pak and Panova

In this section, we provide proofs of two conjectures of Morales et al. [6] via a mod-
ification of Lindström–Gessel–Viennot lemma. The two conjectures are of the form
A = Q det(cij). Let us briefly outline our proof. In Section 3.1 we interpret pleasant
diagrams of δn+2k/δn as non-intersecting marked Dyck paths. This interpretation can
be used to express A as a generating function for non-intersecting Dyck paths. In Sec-
tion 3.2 we show a modification of Lindström–Gessel–Viennot lemma which allows us
to express det(cij) as a generating function for weakly non-intersecting Dyck paths.
In Section 3.3 we find a connection between the generating function for weakly non-
intersecting Dyck paths and the generating function for (strictly) non-intersecting Dyck
paths. Using these results we prove Theorems 3.1 and 3.2 in Sections 3.4 and 3.5.

Let p(λ/µ) be the number of pleasant diagrams of λ/µ. Morales et al. [6] showed
that p(δn+2/δn) = sn, where sn = 2n+2sn for the little Schröder number sn. They pro-
posed the following conjectures on p(λ/µ) and the generating function for RPPs of
shape λ/µ for λ/µ = δn+2k/δn.

Theorem 3.1 ([6, Conjecture 9.3]). We have

p(δn+2k/δn) = 2(
k
2) det(sn−2+i+j)

k
i,j=1. (3.1)

Theorem 3.2 ([6, Conjecture 9.6]). We have

∑
π∈RPP(δn+2k/δn)

q|π| = q−
k(k−1)(6n+8k−1)

6 det

(
E∗2n+2i+2j−3(q)

(q; q)2n+2i+2j−3

)k

i,j=1

. (3.2)

Let Dyck2n be the set of Dyck paths from (−n, 0) to (n, 0) and Dyckk
2n the set of

k-tuples (D1, . . . , Dk) of Dyck paths, where for i ∈ [k],

Di ∈ Dyck2n+4i−4 .

For a Dyck path D ∈ Dyck2n, we denote by V(D) (resp. HP(D)) the set of valleys
(resp. high peaks) of D. For D1 ∈ Dyck2n and D2 ∈ Dyck2n+4k, we write D1 ≤ D2
if D1(i) ≤ D2(i) for all −n ≤ i ≤ n and there is no i such that D1(i) = D2(i) and
D1(i + 1) = D2(i + 1). Similarly, we write D1 < D2 if D1(i) < D2(i) for all −n ≤ i ≤ n.
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3.1 Pleasant diagrams of δn+2k/δn and non-intersecting marked Dyck
paths

For a point p = (i, j) ∈ Z×N, the height ht(p) of p is defined to be j. We identify
the square u = (i, j) in the ith row and jth column in δn+2k with the point p = (j−
i, n+ 2k− i− j) ∈ Z×N. Under this identification one can easily check that if a square
u ∈ δn+2k corresponds to a point p ∈ Z×N then the hook length h(u) in δn+2k is equal
to 2 ht(p) + 1.

A marked Dyck path is a Dyck path in which each point that is not a valley may or
may not be marked. Let

ND∗k2n =

{
(D1, . . . , Dk, C) : (D1 < D2 < · · · < Dk) ∈ Dyckk

2n, C ⊂
k⋃

i=1

(Di \ V(Di))

}
.

The following proposition allows us to consider pleasant diagrams of δn+2k/δn as non-
intersecting marked Dyck paths.

Proposition 3.3. The map ρ∗ : ND∗k2n → P(δn+2k/δn) defined by

ρ∗(D1, . . . , Dk, C) = (D1 ∪ · · · ∪ Dk) \ C

is a bijection.

3.2 A modification of Lindström–Gessel–Viennot lemma

Let wt and wtext be fixed weight functions defined on Z×N. We define

wtV (D) = ∏
p∈D

wt(p) ∏
p∈V(D)

wtext(p)

and
wtHP (D) = ∏

p∈D
wt(p) ∏

p∈HP(D)

wtext(p).

One can regard wtV (D) as a weight of a Dyck path D in which every point p of D
has the weight wt(p) and every valley p of D has the extra weight wtext(p). For Dyck
paths D1, . . . , Dk, we define

wtV (D1, . . . , Dk) = wtV (D1) · · ·wtV (Dk).

The next lemma is a modification of Lindström–Gessel–Viennot lemma.

Lemma 3.4. For 1 ≤ i, j ≤ k, let Ai = (−n− 2i + 2, 0), Bj = (n + 2j− 2, 0) and

di,j
n (q) = ∑

D∈Dyck(Ai→Bj)

wtV (D).
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Then

det(di,j
n (q))k

i,j=1 = ∑
(D1≤···≤Dk)∈Dyckk

2n

wtV (D1, . . . , Dk)
k−1

∏
i=1

∏
p∈Di∩Di+1

(
1− 1

wtext(p)

)
.

(3.3)

Note that if wt and wtext depend only on the y-coordinates, then di,j
n (q) can be

written as dn+i+j−2(q), where

dn(q) = ∑
D∈Dyck2n

wtV (D).

Remark 3.5. Lindström–Gessel–Viennot lemma [2, 5] expresses a determinant as a sum
over non-intersecting lattice paths. In our case, due to the extra weights on the valleys,
the paths which have common points are not completely cancelled. Therefore the
right-hand side of (3.3) is a sum over weakly non-intersecting lattice paths.

3.3 Weakly and strictly non-intersecting Dyck paths

The following proposition is the key ingredient for the proofs of Theorems 3.1 and
3.2.

Proposition 3.6. Suppose that the weight functions wt and wtext satisfy wt(p) (wtext(p)− 1)
= c for all p ∈ Z×N. Let A ∈ Dyck2n and B ∈ Dyck2n+8 be fixed Dyck paths with A < B.
Then

∑
(A≤D<B)∈Dyck3

2n

wtV (D) ∏
p∈A∩D

(
1− 1

wtext(p)

)

= ∑
(A<D≤B)∈Dyck3

2n

wtHP (D) ∏
p∈D∩B

(
1− 1

wtext(p)

)
.

Proposition 3.7. Suppose that wt and wtext satisfy the following conditions

• wt(p) (wtext(p)− 1) = c for all p ∈ Z×N, and

• wtHP (D) = tj wtV (D) for all D ∈ Dyck2j such that every peak in D is a high peak.

Then we have

∑
(D1≤···≤Dk)∈Dyckk

2n

wtV (D1, . . . , Dk)
k−1

∏
i=1

∏
p∈Di∩Di+1

(
1− 1

wtext(p)

)

=
k−1

∏
i=1

ti
n+2i ∑

(D1<···<Dk)∈Dyckk
2n

wtV (D1, . . . , Dk).
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3.4 Proof of Theorem 3.1

Let
dn(q) = ∑

D∈Dyck2n

qv(D)

and
dn,k(q) = ∑

(D1<D2<···<Dk)∈Dyckk
2n

qv(D1)+···+v(Dk).

Then by Proposition 3.3, (3.1) can be rewritten as

2−(
k
2)dn,k(1/2) = det(dn+i+j−2(1/2))k

i,j=1.

Thus Theorem 3.1 is obtained from the following theorem by substituting q = 1/2.

Theorem 3.8. For n, k ≥ 1, we have

det(dn+i+j−2(q))k
i,j=1 = q(

k
2)dn,k(q).

3.5 Proof of Theorem 3.2

By Morales, Pak and Panova’s result [6]

∑
π∈RPP(λ/µ)

q|π| = ∑
P∈P(λ/µ)

∏
u∈P

qh(u)

1− qh(u)

and Proposition 3.3, we have

∑
π∈RPP(δn+2k/δn)

q|π| = ∑
(D1<···<Dk)∈Dyckk

2n

k

∏
i=1

 ∏
p∈V(Di)

q2 ht(p)+1 ∏
p∈Di

1
1− q2 ht(p)+1


and

E∗2n+1(q)
(q; q)2n+1

= ∑
π∈RPP(δn+2/δn)

q|π| = ∑
D∈Dyck2n

∏
p∈V(D)

q2 ht(p)+1 ∏
p∈D

1
1− q2 ht(p)+1

.

Thus, by Lemma 3.4 with wt(p) = 1/(1− q2 ht(p)+1) and wtext(p) = q2 ht(p)+1, we can
rewrite (3.2) as follows.

Theorem 3.9. We have

∑
(D1≤···≤Dk)∈Dyckk

2n

k

∏
i=1

 ∏
p∈V(Di)

q2 ht(p)+1 ∏
p∈Di

1
1− q2 ht(p)+1

 k−1

∏
j=1

∏
p∈Dj∩Dj+1

(
1− 1

q2 ht(p)+1

)

= q
k(k−1)(6n+8k−1)

6 ∑
(D1<···<Dk)∈Dyckk

2n

k

∏
i=1

 ∏
p∈V(Di)

q2 ht(p)+1 ∏
p∈Di

1
1− q2 ht(p)+1

 .
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4 A determinantal formula for a certain class of skew
shapes

In this section, applying the same methods used in the previous section, we find a
determinantal formula for p(λ/µ) and the generating function for the reverse plane
partitions of shape λ/µ for a certain class including δn+2k/δn and δn+2k+1/δn.

Consider a partition λ. Let L = (u0, u1, . . . , um) be a sequence of cells in λ. Each
pair (ui−1, ui) is called a step of L. A step (ui−1, ui) is called an up step (resp. down step)
if ui − ui−1 is equal to (−1, 0) (resp. (0, 1)). We say that L is a λ-Dyck path if every step
is either an up step or a down step. The set of λ-Dyck paths starting at a cell s and
ending at a cell t is denoted by Dyckλ(s, t). We denote by Lλ(s, t) the lowest Dyck path
in Dyckλ(s, t).

Let D = (u0, u1, . . . , um) be a λ-Dyck path. A cell ui, for 1 ≤ i ≤ m− 1, is called a
peak (resp. valley) if (ui−1, ui) is an up step (resp. down step) and (ui, ui+1) is a down
step (resp. up step). A peak ui is called a λ-high peak if ui + (1, 1) ∈ λ. The set of valleys
in D is denoted by V(D). For two λ-Dyck paths D1 and D2, D1 ≤ D2 and D1 < D2 can
be defined similar to Dyck paths cases.

The Kreiman outer decomposition [4] of λ/µ is a sequence L1, . . . , Lk of mutually dis-
joint nonempty λ-Dyck paths satisfying the following conditions.

• Each Li starts at the southmost cell of a column of λ and ends at the eastmost cell
of a row of λ.

• L1 ∪ · · · ∪ Lk = λ/µ.

And we can regard {L1, . . . , Lk} as a poset. See Figure 2.

L1 L3L2 L4

L5

L6 L7

L1

L2

L3

L4 L5

L6

L7

Figure 2: The left diagram shows the Kreiman outer decomposition L1, . . . , L7 of λ/µ

for λ = (9, 8, 8, 8, 5, 5, 4) and µ = (4, 3, 1). The label Li is written below the starting
cell of it. The right diagram shows the poset of L1, . . . , L7 with relation <.

Theorem 4.1. Let L1, . . . , Lk be the Kreiman outer decomposition of λ/µ. Let P be the poset
of L1, . . . , Lk with relation <. Suppose that the following conditions hold.
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• P is a ranked poset.

• If Li < Lj, then in Lj the first step is an up step, the last step is a down step and every
peak is a λ-high peak.

Let si (resp. ti) be the first (resp. last) cell in Li and ri the rank of Li in the poset P. Then we
have

∑
π∈RPP(λ/µ)

q|π| = q−∑k
i=1 ri|Li| det

(
Eλ(si, tj; q)

)k
i,j=1 ,

where

Eλ(si, tj; q) = ∑
π∈RPP(Lλ(si,tj))

q|π| = ∑
D∈Dyckλ(si,tj)

∏
u∈D

1
1− qh(u) ∏

u∈V(D)

qh(u).

Theorem 4.2. Under the same conditions in Theorem 4.1, we have

p(λ/µ) = 2∑k
i=1 ri det

(
p(Lλ(si, tj))

)k
i,j=1 .
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