Reverse plane partitions of skew staircase shapes and *q*-Euler numbers

Byung-Hak Hwang^{*1}, Jang Soo Kim^{†2}, Meesue Yoo^{‡3}, and Sun-mi Yun^{§4}

¹Department of Mathematics, Seoul National University, Seoul, South Korea ²Department of Mathematics, Sungkyunkwan University, Suwon, South Korea ³Applied Algebra and Optimization Research Center, Sungkyunkwan University, Suwon, South Korea

⁴Department of Mathematics, Sungkyunkwan University, Suwon, South Korea

Abstract. Recently, Naruse discovered a hook length formula for the number of standard Young tableaux of a skew shape. Morales, Pak and Panova found two *q*-analogs of Naruse's hook length formula over semistandard Young tableaux (SSYTs) and reverse plane partitions (RPPs). As an application of their formula, they expressed certain *q*-Euler numbers, which are generating functions for SSYTs and RPPs of a zigzag border strip, in terms of weighted Dyck paths. They found a determinantal formula for the generating function for SSYTs of a skew staircase shape and proposed two conjectures related to RPPs of the same shape.

In this paper, we show that the results of Morales, Pak and Panova on the *q*-Euler numbers can be derived from previously known results due to Prodinger by manipulating continued fractions. These *q*-Euler numbers are naturally expressed as generating functions for alternating permutations with certain statistics involving *maj*. It has been proved by Huber and Yee that these *q*-Euler numbers are generating functions for alternating permutations with certain statistics involving *maj*. It has been proved by Huber and Yee that these *q*-Euler numbers are generating functions for alternating permutations with certain statistics involving *maj*. By modifying Foata's bijection we construct a bijection on alternating permutations which sends the statistics involving *maj* to the statistic involving *inv*. We also prove the aforementioned two conjectures of Morales, Pak and Panova.

Keywords: reverse plane partition, Euler number, alternating permutation, lattice path, continued fraction

1 *q*-Euler numbers and continued fractions

Morales, Pak and Panova [6, Corollaries 1.7 and 1.8] obtained that

$$\frac{E_{2n+1}(q)}{(q;q)_{2n+1}} = \sum_{D \in \text{Dyck}_{2n}} \prod_{(a,b) \in D} \frac{q^b}{1 - q^{2b+1}}$$
(1.1)

*xoda@snu.ac.kr

[†]jangsookim@skku.edu. This work was supported by NRF grants #2016R1D1A1A09917506 and #2016R1A5A1008055.

[‡]meesue.yoo@skku.edu. This work was supported by NRF grants #2016R1A5A1008055 and #2017R1C1B2005653.

[§]sera314@skku.edu

and

$$\frac{E_{2n+1}^*(q)}{(q;q)_{2n+1}} = \sum_{D \in \text{Dyck}_{2n}} q^{H(D)} \prod_{(a,b) \in D} \frac{1}{1 - q^{2b+1}},$$
(1.2)

where Dyck_{2n} is the set of *Dyck paths* of length 2n, $H(D) = \sum_{(a,b) \in \mathcal{HP}(D)} (2b+1)$, $\mathcal{HP}(D)$ is the set of *high peaks* in *D*,

$$E_n(q) = \sum_{\pi \in \operatorname{Alt}_n} q^{\operatorname{maj}(\pi^{-1})} \quad \text{and} \quad E_n^*(q) = \sum_{\pi \in \operatorname{Alt}_n} q^{\operatorname{maj}(\kappa_n \pi^{-1})}.$$
 (1.3)

 κ_n is the permutation $(1)(2,3)(4,5) \dots (2\lfloor (n-1)/2 \rfloor, 2\lfloor (n-1)/2 \rfloor + 1)$ in cycle notation and maj (π) is the *major index* of π .

Prodinger [7] considered the probability $\tau_n^{\geq \leq}(q)$ that a random word $w_1 \dots w_n$ of positive integers of length n satisfies the relations $w_1 \geq w_2 \leq w_3 \geq w_4 \leq \cdots$, where each w_i is chosen independently randomly with probability $\Pr(w_i = k) = q^{k-1}(1-q)$ for 0 < q < 1. For other choices of inequalities, for example \geq and <, the probability $\tau_n^{\geq <}(q)$ is defined similarly. From the definition, one can easily see that

$$\sum_{\pi \in \text{SSYT}(\delta_{n+2}/\delta_n)} q^{|\pi|} = \frac{\tau_{2n+1}^{\geq <}(q)}{(1-q)^{2n+1}},$$
(1.4)

$$\sum_{\pi \in \operatorname{RPP}(\delta_{n+2}/\delta_n)} q^{|\pi|} = \frac{\tau_{2n+1}^{\geq \leq}(q)}{(1-q)^{2n+1}}$$
(1.5)

and

$$\sum_{\pi \in \mathrm{ST}(\delta_{n+2}/\delta_n)} q^{|\pi|} = \frac{\tau_{2n+1}^{><}(q)}{(1-q)^{2n+1}},\tag{1.6}$$

~ ~ / `

where $ST(\lambda/\mu)$ is the set of *strict tableaux* of shape λ/μ and a strict tableau of shape λ/μ is a filling of λ/μ with nonnegative integers such that the integers are strictly increasing in each row and each column.

In this section we show (1.1) and (1.2) using Prodinger's results. Prodinger [7] found continued fraction expressions for the generating functions of $\tau_{2n+1}^{\geq \leq}(q)$ and $\tau_{2n+1}^{\geq \leq}(q)$. Using Flajolet's theory [1] of continued fractions we show that (1.1) is equivalent to Prodinger's continued fraction. We prove (1.2) in a similar fashion. However, unlike (1.1), the weight of a Dyck path in (1.2) is not a usual weight used in Flajolet's theory. To remedy this we first express $E_{2n+1}^*(q)$ as a generating function for weighted Schröder paths and change it to a generating function of weighted Dyck paths.

We recall Flajolet's theory[1] which gives a combinatorial interpretation for the continued fraction expansion as a generating function of weighted Dyck paths.

Let $u = (u_0, u_1, ...)$, $d = (d_1, d_2, ...)$ and $w = (w_0, w_1, ...)$ be sequences satisfying $w_i = u_i d_{i+1}$ for $i \ge 0$. For a Dyck path $P \in \text{Dyck}_{2n}$, we define the weight $\text{wt}_w(P)$ with respect to w to be the product of the weight of each step in P, where the weight of an up step $\{(i, j), (i + 1, j + 1)\}$ is u_j and the weight of a down step $\{(i, j), (i + 1, j - 1)\}$

is d_j . Flajolet [1] showed that the generating function for weighted Dyck paths has a continued fraction expansion:

$$\sum_{n \ge 0} \sum_{P \in \text{Dyck}_{2n}} \text{wt}_w(P) x^{2n} = \frac{1}{1 - \frac{w_0 x^2}{1 - \frac{w_1 x^2}{1 - \frac{w_2 x^2}{1 - \cdots}}}}.$$
(1.7)

1.1 The *q*-Euler numbers $E_{2n+1}(q)$

We give a new proof of (1.1) using (1.7).

Proposition 1.1 ([6, Corollary 1.7]). We have

$$\frac{E_{2n+1}(q)}{(q;q)_{2n+1}} = \sum_{P \in \text{Dyck}_{2n}} \prod_{(a,b) \in P} \frac{q^b}{1 - q^{2b+1}}.$$
(1.8)

Proof. By the result of Prodinger [7, Theorem 4.1] (with replacing z by x/(1-q)), we have the following continued fraction expansion:

$$\sum_{n\geq 0} E_{2n+1}(q) \frac{x^{2n+1}}{(q;q)_{2n+1}} = \frac{x}{1-q} \cdot \frac{1}{1-\frac{qx^2/(1-q)(1-q^3)}{1-\frac{q^3x^2/(1-q^3)(1-q^5)}{1-\frac{q^5x^2/(1-q^5)(1-q^7)}{1-\cdots}}}.$$
 (1.9)

By comparing (1.9) and (1.7) with $u_i = d_i = \frac{q^i}{1-q^{2i+1}}$ and $w_i = u_i d_{i+1}$, we deduce (1.1).

1.2 The *q*-Euler numbers $E_{2n+1}^*(q)$

By using Prodinger's result on $E_{2n+1}^*(q)$, we give a new proof of (1.2).

Proposition 1.2 ([6, Corollary 1.8]). We have

$$\frac{E_{2n+1}^*(q)}{(q;q)_{2n+1}} = \sum_{P \in \text{Dyck}_{2n}} q^{H(P)} \prod_{(a,b) \in P} \frac{1}{1 - q^{2b+1}}.$$

Corollary 1.3. We have

Р

$$\sum_{\in \operatorname{Dyck}_{2n}} q^{H(P)} \prod_{(a,b)\in P} \frac{1}{1-q^{2b+1}} = \frac{1}{1-q} \sum_{P\in \operatorname{Dyck}_{2n}} \operatorname{wt}_{w}(P),$$

where $w = (w_0, w_1, ...)$ is the suitable weight sequence.

Figure 1: The connections in Theorems 2.1 and 2.2.

2 **Prodinger's** *q*-Euler numbers and Foata-type bijections

2.1 Prodinger's *q*-Euler numbers

Prodinger [7] showed that the generating function for $\tau_n^{\alpha\beta}(q)$ for any choice of alternating inequalities α and β , i.e.,

$$(\alpha,\beta) \in \{(\geq,\leq) \ (\geq,<), (>,\leq), (>,<), (\leq,\geq), (<,>), (<,\geq), (<,>)\},$$

has a nice expression as a quotient of series. Observe that we have $\tau_{2n+1}^{\geq <}(q) = \tau_{2n+1}^{>\leq}(q)$, $\tau_{2n+1}^{\leq >}(q) = \tau_{2n+1}^{<\geq}(q)$, $\tau_{2n}^{\geq <}(q) = \tau_{2n}^{\leq >}(q)$, $\tau_{2n}^{\geq <}(q) = \tau_{2n}^{<\geq}(q)$ and $\tau_{2n}^{><}(q) = \tau_{2n}^{<>}(q)$. Therefore, we only need to consider 6 *q*-tangent numbers $\tau_{2n+1}^{\alpha\beta}$ and 4 *q*-secant numbers $\tau_{2n}^{\alpha\beta}$.

Now we state a unifying theorem for Prodinger's *q*-tangent numbers combining some results of Huber and Yee [3].

Theorem 2.1. For each row $\tau_{2n+1}^{\alpha\beta}(q)$, TAB, M, I, (A, B)/(C, D) in Table 1, we have

$$f_{2n+1} := \frac{\tau_{2n+1}^{\alpha\beta}(q)}{(1-q)^{2n+1}} = \sum_{\pi \in \text{TAB}} q^{|\pi|} = \frac{M}{(q;q)_{2n+1}} = \frac{I}{(q;q)_{2n+1}},$$

whose generating function is

$$\sum_{n\geq 0} f_{2n+1} x^{2n+1} = \frac{\sum_{n\geq 0} (-1)^n q^{An^2 + Bn} x^{2n+1} / (q;q)_{2n+1}}{\sum_{n\geq 0} (-1)^n q^{Cn^2 + Dn} x^{2n} / (q;q)_{2n}}.$$

By the same arguments, we obtain a unifying theorem for Prodinger's *q*-secant numbers.

Theorem 2.2. For each row $\tau_{2n}^{\alpha\beta}(q)$, TAB, M, I, 1/(C, D) in Table 2, we have

$$f_{2n} := \frac{\tau_{2n}^{\alpha \beta}(q)}{(1-q)^{2n}} = \sum_{\pi \in \text{TAB}} q^{|\pi|} = \frac{M}{(q;q)_{2n}} = \frac{I}{(q;q)_{2n}},$$

$\tau^{\alpha\beta}_{2n+1}(q)$	TAB	М	Ι	$\frac{(A,B)}{(C,D)}$
$\tau_{2n+1}^{\geq <}(q)$	$\operatorname{SSYT}(\delta_{n+2}/\delta_n)$	$\sum_{\pi \in \operatorname{Alt}_{2n+1}} q^{\operatorname{maj}(\pi^{-1})}$	$\sum_{\pi\in \operatorname{Alt}_{2n+1}^*}q^{\operatorname{inv}(\pi)}$	<u>(0,0)</u> (0,0)
$\tau_{2n+1}^{\geq\leq}(q)$	$\operatorname{RPP}(\delta_{n+2}/\delta_n)$	$\sum_{\pi \in \operatorname{Alt}_{2n+1}} q^{\operatorname{maj}(\kappa_{2n+1}\pi^{-1})}$	$\sum_{\pi \in \operatorname{Alt}_{2n+1}^*} q^{\operatorname{inv}(\pi) - \operatorname{ndes}(\pi_e)}$	$\frac{(1,1)}{(1,-1)}$
$\tau^{><}_{2n+1}(q)$	$\operatorname{ST}(\delta_{n+2}/\delta_n)$	$\sum_{\pi \in \operatorname{Alt}_{2n+1}} q^{\operatorname{maj}(\eta_{2n+1}\pi^{-1})}$	$\sum_{\pi \in \operatorname{Alt}_{2n+1}^*} q^{\operatorname{inv}(\pi) + \operatorname{nasc}(\pi_e)}$	<u>(1,0)</u> (1,0)
$\tau^{<\geq}_{2n+1}(q)$	$\mathrm{SSYT}(\delta_{n+3}^{(1,1)}/\delta_{n+1})$	$\sum_{\pi \in \operatorname{Ralt}_{2n+1}} q^{\operatorname{maj}(\pi^{-1})}$	$\sum_{\pi\in \operatorname{Alt}_{2n+1}^*}q^{\operatorname{inv}(\pi)}$	<u>(0,0)</u> (0,0)
$\tau_{2n+1}^{\leq\geq}(q)$	$\operatorname{RPP}(\delta_{n+3}^{(1,1)}/\delta_{n+1})$	$\sum_{\pi \in \operatorname{Ralt}_{2n+1}} q^{\operatorname{maj}(\eta_{2n+1}\pi^{-1})}$	$\sum_{\pi\in \operatorname{Alt}_{2n+1}^*}q^{\operatorname{inv}(\pi)-\operatorname{asc}(\pi_o)}$	(1,0) (1,-1)
$\tau^{<>}_{2n+1}(q)$	$\operatorname{ST}(\delta_{n+3}^{(1,1)}/\delta_{n+1})$	$\sum_{\pi \in \operatorname{Ralt}_{2n+1}} q^{\operatorname{maj}(\kappa_{2n+1}\pi^{-1})}$	$\sum_{\pi \in \operatorname{Alt}_{2n+1}^*} q^{\operatorname{inv}(\pi) + \operatorname{des}(\pi_o)}$	$\frac{(1,1)}{(1,0)}$

Table 1: Interpretations for Prodinger's *q*-tangent numbers. The notation Alt_{2n+1}^* means it can be either Alt_{2n+1} or $Ralt_{2n+1}$.

$\tau_{2n}^{\alpha\beta}(q)$	TAB	М	Ι	$\frac{1}{(C,D)}$
$\tau_{2n}^{\geq <}(q)$	$\operatorname{SSYT}(\delta_{n+2}^{(0,1)}/\delta_n)$	$\sum_{\pi \in \operatorname{Alt}_{2n}} q^{\operatorname{maj}(\pi^{-1})}$	$\sum_{\pi \in \operatorname{Alt}_{2n}} q^{\operatorname{inv}(\pi)}$	$\frac{1}{(0,0)}$
$\tau_{2n}^{\geq\leq}(q)$	$\operatorname{RPP}(\delta_{n+2}^{(0,1)}/\delta_n)$	$\sum_{\pi \in \operatorname{Alt}_{2n}} q^{\operatorname{maj}(\kappa_{2n}\pi^{-1})}$	$\sum_{\pi \in \operatorname{Alt}_{2n}} q^{\operatorname{inv}(\pi) - \operatorname{asc}(\pi_*)}$	$\frac{1}{(1,-1)}$
$\tau_{2n}^{><}(q)$	$\operatorname{ST}(\delta_{n+2}^{(0,1)}/\delta_n)$	$\sum_{\pi \in \operatorname{Alt}_{2n}} q^{\operatorname{maj}(\eta_{2n}\pi^{-1})}$	$\sum_{\pi \in \operatorname{Alt}_{2n}} q^{\operatorname{inv}(\pi) + \operatorname{nasc}(\pi_*)}$	<u>1</u> (1,0)
$ au^{<\geq}_{2n}(q)$	$\operatorname{SSYT}(\delta_{n+2}^{(1,0)}/\delta_n)$	$\sum_{\pi \in \operatorname{Ralt}_{2n}} q^{\operatorname{maj}(\pi^{-1})}$	$\sum_{\pi \in \operatorname{Ralt}_{2n}} q^{\operatorname{inv}(\pi)}$	<u>1</u> (2,-1)
$\tau_{2n}^{\leq\geq}(q)$	$\operatorname{RPP}(\delta_{n+2}^{(1,0)}/\delta_n)$	$\sum_{\pi \in \operatorname{Ralt}_{2n}} q^{\operatorname{maj}(\eta_{2n}\pi^{-1})}$	$\sum_{\pi \in \operatorname{Ralt}_{2n}} q^{\operatorname{inv}(\pi) - \operatorname{ndes}(\pi_*)}$	$\frac{1}{(1,-1)}$
$\tau^{<>}_{2n}(q)$	$\operatorname{ST}(\delta_{n+2}^{(1,0)}/\delta_n)$	$\sum_{\pi \in \operatorname{Ralt}_{2n}} q^{\operatorname{maj}(\kappa_{2n}\pi^{-1})}$	$\sum_{\pi \in \operatorname{Ralt}_{2n}} q^{\operatorname{inv}(\pi) + \operatorname{des}(\pi_*)}$	<u>1</u> (1,0)

Table 2: Interpretations for Prodinger's *q*-secant numbers. The notation π_* means it can be either π_o or π_e .

whose generating function is

$$\sum_{n\geq 0} f_{2n} x^{2n} = \frac{1}{\sum_{n\geq 0} (-1)^n q^{Cn^2 + Dn} x^{2n} / (q;q)_{2n}}.$$

2.2 Foata-type bijection for $E_{2n+1}^*(q)$.

We denote by $\operatorname{Alt}_n^{-1}$ the set of permutations $\pi \in \mathfrak{S}_n$ with $\pi^{-1} \in \operatorname{Alt}_n$.

Let \prec be a total order on \mathbb{N} . For a word $w_1 \dots w_k$ consisting of distinct positive integers, we define $f(w_1 \dots w_k, \prec)$ as follows. Let b_0, b_1, \dots, b_m be the integers such that

- $0 = b_0 < b_1 < \cdots < b_m = k 1$,
- if $w_{k-1} \prec w_k$, then $w_{b_1}, \ldots, w_{b_m} \prec w_k \prec w_j$ for all $j \in [k-1] \setminus \{b_1, \ldots, b_m\}$, and
- if $w_k \prec w_{k-1}$, then $w_j \prec w_k \prec w_{b_1}, \ldots, w_{b_m}$ for all $j \in [k-1] \setminus \{b_1, \ldots, b_m\}$.

For $1 \le j \le m$, let $B_j = w_{b_{j-1}+1} \dots w_{b_j}$. We denote

$$B(w_1\ldots w_k,\prec)=(B_1,B_2,\ldots,B_m).$$

Note that $w_1 \dots w_{k-1} w_k$ is the concatenation $B_1 B_2 \dots B_m w_k$. Let $B'_j = w_{b_j} w_{b_{j-1}+1} \dots w_{b_j-1}$. Then we define

$$f(w_1\ldots w_k,\prec)=B'_1B'_2\ldots B'_mw_k.$$

For a permutation $\pi = \pi_1 \dots \pi_n \in \mathfrak{S}_n$ and a total order \prec on \mathbb{N} , we define $F(\pi, \prec)$ as follows. Let $w^{(1)} = \pi_1$. For $2 \leq k \leq n$, let $w^{(k)} = f(w^{(k-1)}\pi_k, \prec)$. Finally $F(\pi, \prec) = w^{(n)}$. Note that for the natural order $1 < 2 < \cdots$, the map $F(\pi, <)$ is the same as the Foata map.

For $i \ge 1$, we define $<_i$ to be the total order on \mathbb{N} obtained from the natural ordering by reversing the order of *i* and *i* + 1, i.e., for *a* < *b* with $(a, b) \ne (i, i + 1)$, we have $a <_i b$ and $i + 1 <_i i$.

For $\pi \in Alt_{2n+1}^{-1}$, we define $F_{alt}(\pi)$ as follows. First, we set $w^{(1)} = \pi_1$. For $2 \le k \le 2n + 1$, there are two cases:

- If $\pi_k = 2i$ and $\pi_1 \dots \pi_{k-1}$ does not have 2i + 2, then $w^{(k)} = f(w^{(k-1)}\pi_k, <_{2i})$.
- Otherwise, $w^{(k)} = f(w^{(k-1)}\pi_k, <)$.

Then $F_{\text{alt}}(\pi)$ is defined to be $w^{(2n+1)}$. For example, if $\pi = 317295486 \in \text{Alt}_9^{-1}$, then $w^{(4)} = 7312, w^{(8)} = 37912548$ and $F_{\text{alt}}(\pi) = w^{(9)} = 739812546$.

Theorem 2.3. The map F_{alt} induces a bijection $F_{alt} : Alt_{2n+1}^{-1} \to Alt_{2n+1}^{-1}$. Moreover, if $\pi \in Alt_{2n+1}^{-1}$ and $\sigma = F_{alt}(\pi)$, then

$$\operatorname{maj}(\kappa_{2n+1}\pi) = \operatorname{inv}(\sigma) - \operatorname{ndes}((\sigma^{-1})_e).$$

Corollary 2.4. We have

$$\sum_{\pi \in \operatorname{Alt}_{2n+1}} q^{\operatorname{maj}(\kappa_{2n+1}\pi^{-1})} = \sum_{\pi \in \operatorname{Alt}_{2n+1}} q^{\operatorname{inv}(\pi) - \operatorname{ndes}(\pi_e)}.$$

3 Proofs of two conjectures of Morales, Pak and Panova

In this section, we provide proofs of two conjectures of Morales et al. [6] via a modification of Lindström–Gessel–Viennot lemma. The two conjectures are of the form $A = Q \det(c_{ij})$. Let us briefly outline our proof. In Section 3.1 we interpret pleasant diagrams of δ_{n+2k}/δ_n as non-intersecting marked Dyck paths. This interpretation can be used to express A as a generating function for non-intersecting Dyck paths. In Section 3.2 we show a modification of Lindström–Gessel–Viennot lemma which allows us to express $\det(c_{ij})$ as a generating function for weakly non-intersecting Dyck paths. In Section 3.3 we find a connection between the generating function for weakly nonintersecting Dyck paths and the generating function for (strictly) non-intersecting Dyck paths. Using these results we prove Theorems 3.1 and 3.2 in Sections 3.4 and 3.5.

Let $p(\lambda/\mu)$ be the number of pleasant diagrams of λ/μ . Morales et al. [6] showed that $p(\delta_{n+2}/\delta_n) = \mathfrak{s}_n$, where $\mathfrak{s}_n = 2^{n+2}s_n$ for the *little Schröder number* s_n . They proposed the following conjectures on $p(\lambda/\mu)$ and the generating function for RPPs of shape λ/μ for $\lambda/\mu = \delta_{n+2k}/\delta_n$.

Theorem 3.1 ([6, Conjecture 9.3]). We have

$$p(\delta_{n+2k}/\delta_n) = 2^{\binom{k}{2}} \det(\mathfrak{s}_{n-2+i+j})_{i,j=1}^k.$$
(3.1)

Theorem 3.2 ([6, Conjecture 9.6]). We have

$$\sum_{\pi \in \operatorname{RPP}(\delta_{n+2k}/\delta_n)} q^{|\pi|} = q^{-\frac{k(k-1)(6n+8k-1)}{6}} \det\left(\frac{E_{2n+2i+2j-3}^*(q)}{(q;q)_{2n+2i+2j-3}}\right)_{i,j=1}^k.$$
(3.2)

Let Dyck_{2n} be the set of Dyck paths from (-n, 0) to (n, 0) and Dyck_{2n}^k the set of *k*-tuples (D_1, \ldots, D_k) of Dyck paths, where for $i \in [k]$,

$$D_i \in \operatorname{Dyck}_{2n+4i-4}$$
.

For a Dyck path $D \in \text{Dyck}_{2n}$, we denote by $\mathcal{V}(D)$ (resp. $\mathcal{HP}(D)$) the set of valleys (resp. high peaks) of D. For $D_1 \in \text{Dyck}_{2n}$ and $D_2 \in \text{Dyck}_{2n+4k}$, we write $D_1 \leq D_2$ if $D_1(i) \leq D_2(i)$ for all $-n \leq i \leq n$ and there is no i such that $D_1(i) = D_2(i)$ and $D_1(i+1) = D_2(i+1)$. Similarly, we write $D_1 < D_2$ if $D_1(i) < D_2(i)$ for all $-n \leq i \leq n$.

3.1 Pleasant diagrams of δ_{n+2k}/δ_n and non-intersecting marked Dyck paths

For a point $p = (i, j) \in \mathbb{Z} \times \mathbb{N}$, the *height* ht(p) of p is defined to be j. We identify the square u = (i, j) in the *i*th row and *j*th column in δ_{n+2k} with the point $p = (j - i, n+2k-i-j) \in \mathbb{Z} \times \mathbb{N}$. Under this identification one can easily check that if a square $u \in \delta_{n+2k}$ corresponds to a point $p \in \mathbb{Z} \times \mathbb{N}$ then the hook length h(u) in δ_{n+2k} is equal to 2ht(p) + 1.

A *marked Dyck path* is a Dyck path in which each point that is not a valley may or may not be marked. Let

$$\mathcal{ND}_{2n}^{*k} = \left\{ (D_1, \dots, D_k, C) : (D_1 < D_2 < \dots < D_k) \in \operatorname{Dyck}_{2n}^k, C \subset \bigcup_{i=1}^k (D_i \setminus \mathcal{V}(D_i)) \right\}.$$

The following proposition allows us to consider pleasant diagrams of δ_{n+2k}/δ_n as non-intersecting marked Dyck paths.

Proposition 3.3. The map $\rho^* : \mathcal{ND}_{2n}^{*k} \to \mathcal{P}(\delta_{n+2k}/\delta_n)$ defined by

$$\rho^*(D_1,\ldots,D_k,C) = (D_1\cup\cdots\cup D_k)\setminus C$$

is a bijection.

3.2 A modification of Lindström–Gessel–Viennot lemma

Let wt and wt_{ext} be fixed weight functions defined on $\mathbb{Z} \times \mathbb{N}$. We define

$$\operatorname{wt}_{\mathcal{V}}(D) = \prod_{p \in D} \operatorname{wt}(p) \prod_{p \in \mathcal{V}(D)} \operatorname{wt}_{\operatorname{ext}}(p)$$

and

$$\operatorname{wt}_{\mathcal{HP}}(D) = \prod_{p \in D} \operatorname{wt}(p) \prod_{p \in \mathcal{HP}(D)} \operatorname{wt}_{\operatorname{ext}}(p).$$

One can regard $wt_{\mathcal{V}}(D)$ as a weight of a Dyck path *D* in which every point *p* of *D* has the weight wt(p) and every valley *p* of *D* has the extra weight $wt_{ext}(p)$. For Dyck paths D_1, \ldots, D_k , we define

$$\operatorname{wt}_{\mathcal{V}}(D_1,\ldots,D_k) = \operatorname{wt}_{\mathcal{V}}(D_1)\cdots\operatorname{wt}_{\mathcal{V}}(D_k).$$

The next lemma is a modification of Lindström–Gessel–Viennot lemma.

Lemma 3.4. For $1 \le i, j \le k$, let $A_i = (-n - 2i + 2, 0)$, $B_j = (n + 2j - 2, 0)$ and

$$d_n^{i,j}(q) = \sum_{D \in \operatorname{Dyck}(A_i \to B_j)} \operatorname{wt}_{\mathcal{V}}(D).$$

Then

$$\det(d_n^{i,j}(q))_{i,j=1}^k = \sum_{(D_1 \le \dots \le D_k) \in \text{Dyck}_{2n}^k} \operatorname{wt}_{\mathcal{V}}(D_1, \dots, D_k) \prod_{i=1}^{k-1} \prod_{p \in D_i \cap D_{i+1}} \left(1 - \frac{1}{\operatorname{wt}_{\text{ext}}(p)}\right).$$
(3.3)

Note that if wt and wt_{ext} depend only on the *y*-coordinates, then $d_n^{i,j}(q)$ can be written as $d_{n+i+j-2}(q)$, where

$$d_n(q) = \sum_{D \in \operatorname{Dyck}_{2n}} \operatorname{wt}_{\mathcal{V}}(D).$$

Remark 3.5. Lindström–Gessel–Viennot lemma [2, 5] expresses a determinant as a sum over non-intersecting lattice paths. In our case, due to the extra weights on the valleys, the paths which have common points are not completely cancelled. Therefore the right-hand side of (3.3) is a sum over *weakly* non-intersecting lattice paths.

3.3 Weakly and strictly non-intersecting Dyck paths

The following proposition is the key ingredient for the proofs of Theorems 3.1 and 3.2.

Proposition 3.6. Suppose that the weight functions wt and wt_{ext} satisfy wt(p) (wt_{ext}(p) – 1) = c for all $p \in \mathbb{Z} \times \mathbb{N}$. Let $A \in \text{Dyck}_{2n}$ and $B \in \text{Dyck}_{2n+8}$ be fixed Dyck paths with A < B. Then

$$\sum_{(A \le D < B) \in \operatorname{Dyck}_{2n}^3} \operatorname{wt}_{\mathcal{V}}(D) \prod_{p \in A \cap D} \left(1 - \frac{1}{\operatorname{wt}_{ext}(p)} \right)$$
$$= \sum_{(A < D \le B) \in \operatorname{Dyck}_{2n}^3} \operatorname{wt}_{\mathcal{HP}}(D) \prod_{p \in D \cap B} \left(1 - \frac{1}{\operatorname{wt}_{ext}(p)} \right).$$

Proposition 3.7. Suppose that wt and wt_{ext} satisfy the following conditions

- wt(p) (wt_{ext}(p) 1) = c for all $p \in \mathbb{Z} \times \mathbb{N}$, and
- $\operatorname{wt}_{\mathcal{HP}}(D) = t_j \operatorname{wt}_{\mathcal{V}}(D)$ for all $D \in \operatorname{Dyck}_{2j}$ such that every peak in D is a high peak.

Then we have

$$\sum_{(D_1 \le \dots \le D_k) \in \operatorname{Dyck}_{2n}^k} \operatorname{wt}_{\mathcal{V}}(D_1, \dots, D_k) \prod_{i=1}^{k-1} \prod_{p \in D_i \cap D_{i+1}} \left(1 - \frac{1}{\operatorname{wt}_{ext}(p)} \right)$$
$$= \prod_{i=1}^{k-1} t_{n+2i}^i \sum_{(D_1 < \dots < D_k) \in \operatorname{Dyck}_{2n}^k} \operatorname{wt}_{\mathcal{V}}(D_1, \dots, D_k).$$

3.4 **Proof of Theorem 3.1**

Let

$$d_n(q) = \sum_{D \in \text{Dyck}_{2n}} q^{v(D)}$$

and

$$d_{n,k}(q) = \sum_{(D_1 < D_2 < \dots < D_k) \in \text{Dyck}_{2n}^k} q^{v(D_1) + \dots + v(D_k)}.$$

Then by Proposition 3.3, (3.1) can be rewritten as

$$2^{-\binom{k}{2}}d_{n,k}(1/2) = \det(d_{n+i+j-2}(1/2))_{i,j=1}^k.$$

Thus Theorem 3.1 is obtained from the following theorem by substituting q = 1/2.

Theorem 3.8. For $n, k \ge 1$, we have

$$\det(d_{n+i+j-2}(q))_{i,j=1}^k = q^{\binom{k}{2}} d_{n,k}(q).$$

3.5 **Proof of Theorem 3.2**

By Morales, Pak and Panova's result [6]

$$\sum_{\pi \in \operatorname{RPP}(\lambda/\mu)} q^{|\pi|} = \sum_{P \in \mathcal{P}(\lambda/\mu)} \prod_{u \in P} \frac{q^{h(u)}}{1 - q^{h(u)}}$$

and Proposition 3.3, we have

$$\sum_{\pi \in \operatorname{RPP}(\delta_{n+2k}/\delta_n)} q^{|\pi|} = \sum_{(D_1 < \dots < D_k) \in \operatorname{Dyck}_{2n}^k} \prod_{i=1}^k \left(\prod_{p \in \mathcal{V}(D_i)} q^{2\operatorname{ht}(p)+1} \prod_{p \in D_i} \frac{1}{1 - q^{2\operatorname{ht}(p)+1}} \right)$$

and

$$\frac{E_{2n+1}^*(q)}{(q;q)_{2n+1}} = \sum_{\pi \in \operatorname{RPP}(\delta_{n+2}/\delta_n)} q^{|\pi|} = \sum_{D \in \operatorname{Dyck}_{2n}} \prod_{p \in \mathcal{V}(D)} q^{2\operatorname{ht}(p)+1} \prod_{p \in D} \frac{1}{1 - q^{2\operatorname{ht}(p)+1}}.$$

Thus, by Lemma 3.4 with $wt(p) = 1/(1 - q^{2ht(p)+1})$ and $wt_{ext}(p) = q^{2ht(p)+1}$, we can rewrite (3.2) as follows.

Theorem 3.9. We have

$$\sum_{\substack{(D_1 \le \dots \le D_k) \in \operatorname{Dyck}_{2n}^k i=1}} \prod_{i=1}^k \left(\prod_{p \in \mathcal{V}(D_i)} q^{2\operatorname{ht}(p)+1} \prod_{p \in D_i} \frac{1}{1-q^{2\operatorname{ht}(p)+1}} \right) \prod_{j=1}^{k-1} \prod_{p \in D_j \cap D_{j+1}} \left(1 - \frac{1}{q^{2\operatorname{ht}(p)+1}} \right) = q^{\frac{k(k-1)(6n+8k-1)}{6}} \sum_{\substack{(D_1 < \dots < D_k) \in \operatorname{Dyck}_{2n}^k i=1}} \prod_{i=1}^k \left(\prod_{p \in \mathcal{V}(D_i)} q^{2\operatorname{ht}(p)+1} \prod_{p \in D_i} \frac{1}{1-q^{2\operatorname{ht}(p)+1}} \right).$$

10

4 A determinantal formula for a certain class of skew shapes

In this section, applying the same methods used in the previous section, we find a determinantal formula for $p(\lambda/\mu)$ and the generating function for the reverse plane partitions of shape λ/μ for a certain class including δ_{n+2k}/δ_n and δ_{n+2k+1}/δ_n .

Consider a partition λ . Let $L = (u_0, u_1, \dots, u_m)$ be a sequence of cells in λ . Each pair (u_{i-1}, u_i) is called a *step* of *L*. A step (u_{i-1}, u_i) is called an *up step* (resp. *down step*) if $u_i - u_{i-1}$ is equal to (-1, 0) (resp. (0, 1)). We say that *L* is a λ -*Dyck path* if every step is either an up step or a down step. The set of λ -Dyck paths starting at a cell *s* and ending at a cell *t* is denoted by $\text{Dyck}_{\lambda}(s, t)$. We denote by $L_{\lambda}(s, t)$ the lowest Dyck path in $\text{Dyck}_{\lambda}(s, t)$.

Let $D = (u_0, u_1, ..., u_m)$ be a λ -Dyck path. A cell u_i , for $1 \le i \le m - 1$, is called a *peak* (resp. *valley*) if (u_{i-1}, u_i) is an up step (resp. down step) and (u_i, u_{i+1}) is a down step (resp. up step). A peak u_i is called a λ -*high peak* if $u_i + (1, 1) \in \lambda$. The set of valleys in D is denoted by $\mathcal{V}(D)$. For two λ -Dyck paths D_1 and D_2 , $D_1 \le D_2$ and $D_1 < D_2$ can be defined similar to Dyck paths cases.

The *Kreiman outer decomposition* [4] of λ/μ is a sequence L_1, \ldots, L_k of mutually disjoint nonempty λ -Dyck paths satisfying the following conditions.

- Each L_i starts at the southmost cell of a column of λ and ends at the eastmost cell of a row of λ.
- $L_1 \cup \cdots \cup L_k = \lambda / \mu$.

And we can regard $\{L_1, \ldots, L_k\}$ as a poset. See Figure 2.

Figure 2: The left diagram shows the Kreiman outer decomposition L_1, \ldots, L_7 of λ/μ for $\lambda = (9, 8, 8, 8, 5, 5, 4)$ and $\mu = (4, 3, 1)$. The label L_i is written below the starting cell of it. The right diagram shows the poset of L_1, \ldots, L_7 with relation <.

Theorem 4.1. Let L_1, \ldots, L_k be the Kreiman outer decomposition of λ/μ . Let P be the poset of L_1, \ldots, L_k with relation <. Suppose that the following conditions hold.

- *P* is a ranked poset.
- If $L_i < L_j$, then in L_j the first step is an up step, the last step is a down step and every peak is a λ -high peak.

Let s_i (resp. t_i) be the first (resp. last) cell in L_i and r_i the rank of L_i in the poset P. Then we have

$$\sum_{\pi \in \operatorname{RPP}(\lambda/\mu)} q^{|\pi|} = q^{-\sum_{i=1}^{k} r_i |L_i|} \det \left(E_\lambda(s_i, t_j; q) \right)_{i,j=1}^k,$$

where

$$E_{\lambda}(s_i, t_j; q) = \sum_{\pi \in \operatorname{RPP}(L_{\lambda}(s_i, t_j))} q^{|\pi|} = \sum_{D \in \operatorname{Dyck}_{\lambda}(s_i, t_j)} \prod_{u \in D} \frac{1}{1 - q^{h(u)}} \prod_{u \in \mathcal{V}(D)} q^{h(u)}.$$

Theorem 4.2. Under the same conditions in Theorem 4.1, we have

$$p(\lambda/\mu) = 2^{\sum_{i=1}^{k} r_i} \det \left(p(L_\lambda(s_i, t_j)) \right)_{i,j=1}^k.$$

Acknowledgements

The authors would like to thank Alejandro Morales for his helpful comments which motivated Section 4. The full version of this extended abstract appears in arxiv:1711.02337.

References

- P. Flajolet. "Combinatorial aspects of continued fractions". *Discrete Math.* 32.2 (1980), pp. 125– 161. DOI: 10.1016/0012-365X(80)90050-3.
- [2] I. Gessel and G. Viennot. "Binomial determinants, paths, and hook length formulae". *Adv. Math.* 58.3 (1985), pp. 300–321. DOI: 10.1016/0001-8708(85)90121-5.
- [3] T. Huber and A.J. Yee. "Combinatorics of generalized *q*-Euler numbers". *J. Combin. Theory Ser. A* **117**.4 (2010), pp. 361–388. DOI: 10.1016/j.jcta.2009.07.012.
- [4] V. Kreiman. "Schubert classes in the equivariant K-theory and equivariant cohomology of the Grassmannian" (2005). arXiv: math/0512204.
- [5] B. Lindström. "On the vector representations of induced matroids". *Bull. London Math. Soc.* 5.1 (1973), pp. 85–90. DOI: 10.1112/blms/5.1.85.
- [6] A.H. Morales, I. Pak, and G. Panova. "Hook formulas for skew shapes II. Combinatorial proofs and enumerative applications". SIAM J. Discrete Math. 31.3 (2017), pp. 1953–1989. DOI: 10.1137/16M1099625.
- [7] H. Prodinger. "Combinatorics of geometrically distributed random variables: new q-tangent and q-secant numbers". Int. J. Math. Math. Sci. 24.12 (2000), pp. 825–838. URL.