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Abstract. We compute the number of X -variables (also called coefficients) of a cluster
algebra of finite type when the underlying semifield is the universal semifield. For
non-exceptional types, these numbers arise from a bijection between coefficients and
quadrilaterals (with a choice of diagonal) appearing in triangulations of certain marked
surfaces. We conjecture that similar results hold for cluster algebras from arbitrary
marked surfaces, and obtain corollaries regarding the structure of finite type cluster
algebras of geometric type.
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1 Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in the early 2000s [5], with
the intent of establishing a general algebraic structure for studying dual canonical bases
of semisimple groups and total positivity. A cluster algebra, or equivalently its seed pat-
tern, is determined by an initial set of cluster variables (which we call A-variables) and
coefficients (which we call X -variables), along with some additional data. As the ter-
minology suggests, in the original definitions, X -variables were somewhat in the back-
ground, and A-variables were the object of importance. This is reflected in much of
the research on cluster algebras to date, which focuses largely on A-variables and their
dynamics. However, X -variables are important in total positivity and X -variables over
the universal semifield have recently appeared in the context of scattering amplitudes
in N = 4 Super Yang-Mills theory [8]. Moreover, in the setting of cluster varieties, in-
troduced by Fock and Goncharov [2], the A- and X -varieties (associated with A- and
X -variables, respectively) are on equal footing. Fock and Goncharov conjectured that
a duality holds between the two varieties [2, Conjecture 4.3], which was later shown to
be true under fairly general assumptions [9]. This duality suggests that studying X -
variables could be fruitful both in its own right and in furthering our understanding of
cluster algebras.
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A study along these lines was undertaken by Speyer and Thomas in the case of acyclic
cluster algebras with principal coefficients [13]. Using methods from quiver representa-
tion theory, they found that the X -variables are in bijection with roots of an associated
root system and give a combinatorial description of which roots can appear in the same
X -cluster. Seven found that in this context, mutation of X -seeds roughly corresponds
to reflection across hyperplanes orthogonal to roots [12]. However, the above results do
not address X -variables over the universal semifield, and the combinatorics obtained in
the case of principal coefficients is quite different from what we obtain here.

We investigate the combinatorics of X -variables for seed patterns of finite type, par-
ticularly in the case when the underlying semifield is the universal semifield. The combi-
natorics of A-variables for finite type seed patterns is particularly rich, with connections
to finite root systems [6] and triangulations of certain marked surfaces [4, Chapter 5].
Parker and Scherlis give a partial proof that in type A, X -variables over the universal
semifield are in bijection with the quadrilaterals of these triangulations [10, 11]. We
prove this statement for all types.

Theorem 1.1. Let S be an X -seed pattern of non-exceptional type Zn over the universal semifield
such that one X -cluster consists of algebraically independent elements. Let P be the marked
polygon associated to type Zn. Then the X -variables of S are in bijection with the quadrilaterals
(with a choice of diagonal) appearing in triangulations of P.

As a corollary, we also compute the number of X -variables in a finite type X -seed
pattern Ss f over the universal semifield, listed in the second row of the following table
(the numbers for An for n ≤ 6, D4, and E6 were also computed in [10]). For comparison,
the third row gives the number of X -variables in a finite type X -seed pattern Spc with
principal coefficients, a corollary of the results in [13].

Type An Bn, Cn Dn E6 E7 E8 F4 G2

|X (Ss f )| 2(n+3
4 ) 1

3 n(n + 1)(n2 + 2) 1
3 n(n− 1)(n2 + 4n− 6) 770 2100 6240 196 16

|X (Spc)| n(n + 1) 2n2 2n(n− 1) 72 126 240 48 12

2 Seed Patterns

We largely follow the conventions of [7].

2.1 Seeds and Mutation

We begin by fixing a semifield (P, ·,⊕), a multiplicative abelian group (P, ·) equipped
with an (auxiliary) addition ⊕, a binary operation which is associative, commutative,
and distributive with respect to multiplication.
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Example 2.1. Let t1, . . . , tk be algebraically independent over Q. The universal semi-
field Qs f (t1, . . . , tk) is the set of all rational functions in t1, . . . , tk that can be written
as subtraction-free expressions in t1, . . . , tk. This is a semifield with respect to the usual
multiplication and addition of rational expressions. Note that any (subtraction-free)
identity in Qs f (t1, . . . , tk) holds in an arbitrary semifield for any elements u1, . . . , uk [7].

Let QP denote the field of fractions of the group ring ZP. We fix an ambient field F ,
isomorphic to QP(t1, . . . , tn).

Definition 2.2. A labeled X -seed in P is a pair (x, B) where x = (x1, . . . , xn) is a tuple of
elements in P and B = (bij) is a skew-symmetrizable n × n integer matrix, that is there
exists a diagonal integer matrix D with positive diagonal entries such that DB is skew-
symmetric.

A labeled A-seed in F is a triple (a, x, B) where (x, B) is a labeled X -seed in P and
a = (a1, . . . , an) is a tuple of elements of F which are algebraically independent over QP

and generate F . x is the (labeled) X -cluster, a the (labeled) A-cluster, and B the exchange
matrix of the labeled seed (a, x, B).

The elements of an X - (respectivelyA-)cluster are called X - (respectivelyA-)variables.
In the language of Fomin and Zelevinsky, the X -cluster is the coefficient tuple, the A-
cluster is the cluster, and the X - and A-variables are coefficients and cluster variables,
respectively. The notation here is chosen to parallel Fock and Goncharov’s A- and X -
cluster varieties. Note that an X -seed consists only of an exchange matrix and an X -
cluster, but an A-seed consists of an exchange matrix, an A-cluster and an X -cluster.
For simplicity, we use “cluster”, “seed”, etc. without a prefix when a statement holds
regardless of prefix.

One moves from labeled seed to labeled seed by a process called mutation.

Definition 2.3. Let (a, x, B) be a labeled A-seed in F . A-seed mutation in direction k,
denoted µk, takes (a, x, B) to the labeled A-seed (a′, x′, B′) where

• The entries b′ij of B′ are given by

b′ij =


−bij if i = k or j = k
bij + bik|bkj| if bikbkj > 0
bij else.

(2.1)

• The A-cluster a′ = (a′1, . . . , a′n) is obtained from a by replacing the kth entry ak with
an element a′k ∈ F satisfying the exchange relation

a′kak =

xk ∏
bik>0

abik
i + ∏

bik<0
a−bik

i

xk ⊕ 1
. (2.2)
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• The X -cluster x′ = (x′1, . . . , x′n) is given by

x′j =

{
x−1

j if j = k

xj(x
sgn(−bkj)

k ⊕ 1)−bkj else
(2.3)

where sgn(x) = 0 for x = 0 and sgn(x) = |x|/x otherwise.

Similarly, the X -seed mutation µk in direction k takes the labeled X -seed (x, B) to X -
seed (x′, B′) and matrix mutation takes B to B′. Two skew-symmetrizable integer matrices
are mutation equivalent if some sequence of matrix mutations takes one to the other.

Note that µk(a, x, B) is indeed another labeled A-seed, as B′ is skew-symmetrizable
and a′ again consists of algebraically independent elements generating F . One can check
that µk is an involution.

2.2 Seed Patterns and Exchange Graphs

We organize all seeds obtainable from each other by a sequence of mutations in a seed
pattern. Let Tn denote the (infinite) n-regular tree with edges labeled with 1, . . . , n so
that no vertex is in two edges with the same label.

Definition 2.4. A rank n A-seed pattern (respectively, X -seed pattern) S is an assignment
of labeled A-seeds (respectively X -seeds) Σt to the vertices t of Tn so that if t and t′ are
connected by an edge labeled k, then Σt = µk(Σt′).

Since mutation is involutive, a seed pattern S is completely determined by the choice
of a single seed Σ; we write S(Σ) for the seed pattern containing Σ. Note that in the
language of Fomin and Zelevinsky, an A-seed pattern is a “seed pattern” and an X -seed
pattern is a “Y-pattern”.

Given an A-seed pattern S(a, x, B), one can obtain two X -seed patterns. The first
is S|X := S(x, B), the X -seed pattern in P obtained by simply ignoring the A-clusters
of every seed. The second, which we denote Ŝ = S(x̂, B), is an X -seed pattern in
F constructed in [7, Proposition 3.9]. One can think of Ŝ as recording the “exchange
information” of S(a, x, B); indeed, the X -variables of Ŝ are rational expressions whose
numerators and denominators are, up to multiplication by an element of P, the two
terms on the right hand side of an exchange relation of S .

Two labeled seeds Σ = (a, x, B) and Σ′ = (a′, x′, B′) are equivalent (written as Σ ∼ Σ′)
if one can obtain Σ′ by simultaneously reindexing a, x, and the rows and columns of B.
We define an analogous equivalence relation for X -seeds, also denoted ∼.

An A-seed (respectively X -seed) is an equivalence class of labeled A-seeds (respec-
tively labeled X -seeds) with respect to ∼. The seed represented by the labeled seed Σ
is denoted [Σ]. We mutate a seed [Σ] by applying a mutation µk to Σ and taking its
equivalence class.
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Definition 2.5. The exchange graph of a seed pattern S is the (n-regular connected) graph
whose vertices are the seeds in S and whose edges connect seeds related by a single
mutation. Equivalently, the exchange graph is the graph one obtains by identifying the
vertices t, t′ of Tn such that Σt ∼ Σt′ .

Exchange graphs were defined for A-seed patterns in [6, 7], but can equally be de-
fined for X -seed patterns. It is conjectured that the exchange graph of an A-seed pattern
S = S(a, x, B) depends only on B [7, Conjecture 4.3], meaning that S|X does not influ-
ence the combinatorics of S . The exchange graphs of S|X and Ŝ can be obtained by
identifying some vertices of the exchange graph of S , as passing to either X -seed pat-
tern preserves mutation and the equivalence of labeled seeds. It is not known in general
when any pair of these exchange graphs is equal.

3 Finite Type Seed Patterns

We now restrict our attention to seed patterns of finite type.

Definition 3.1. An A-seed pattern is of finite type if it has finitely many seeds.

Finite type seed patterns were classified completely in [6]; they correspond exactly to
finite (reduced crystallographic) root systems, or equivalently, finite type Cartan matrices
(see for example [1, Chapter 5]).

For a skew-symmetrizable integer matrix B = (bij), its Cartan counterpart is the matrix
A(B) = (aij) defined by aii = 2 and aij = −|bij| for i 6= j.

Theorem 3.2 ([6, Theorems 1.5–1.7]). i. An A-seed pattern is of finite type if and only if
the Cartan counterpart of one of its exchange matrices is a finite type Cartan matrix.

ii. Suppose B, B′ are skew-symmetrizable integer matrices such that A(B), A(B′) are finite
type Cartan matrices. Then A(B) and A(B′) are of the same Cartan–Killing type if and
only if B and B′ are mutation equivalent (modulo simultaneous relabeling of rows and
columns.).

In light of this theorem, we refer to a finite type A-seed pattern as type An, Bn, etc.

Definition 3.3. An X -seed pattern S is of type Zn if the Cartan companion of one of its
exchange matrices is a type Zn Cartan matrix.

We will call such X -seed patterns Dynkin type (rather than finite type, since in fact
not all X -seed patterns with finitely many seeds are of this form).
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Figure 1: Triangulations of P8 and P•8 are shown in solid lines; the dashed arc is the
flip of τ. On the right, qT(τ) = {α, β, γ, δ}.

3.1 Triangulations for types A and D

The material in this section is part of a more general theory of A-seed patterns from
surfaces, developed in [3].

Let Pn denote a convex n-gon and P•n denote a convex n-gon with a distinguished
point p (a puncture) in the interior, with vertices labeled by 1, . . . , n. For P ∈ {Pn, P•n}, the
vertices and puncture of P are called marked points. An arc of P is a non-self-intersecting
curve γ in P such that the endpoints of γ are distinct marked points, the relative interior
of γ is disjoint from ∂P ∪ {p}, and γ does not cut out an unpunctured digon. An arc
incident to the puncture p is a radius. Arcs are considered up to isotopy.

A tagged arc of P is either an ordinary arc between two vertices or a radius that
is labeled either “notched” or “plain.” Two tagged arcs γ, γ′ are compatible if their
untagged versions do not cross (or to be precise, there are two noncrossing arcs isotopic
to γ and γ′) with the following modification: if γ is a notched radius and γ′ is plain,
they are compatible if and only if their untagged versions coincide.

A tagged triangulation T is a maximal collection of pairwise compatible tagged arcs.
All tagged triangulations of P consist of the same number of arcs. Given a tagged
triangulation T, the quadrilateral qT(γ) of an arc γ in T consists of the arcs of T and
boundary segments adjacent to γ (see Figure 1). γ is the diagonal of its quadrilateral.

Proposition 3.4 ([3]). Let T = {γ1, . . . , γn} be a tagged triangulation of P. For all k, there
exists a unique tagged arc γ′k 6= γk such that µk(T) := T \ {γk}∪ {γ′k} is a tagged triangulation
of P.

The arc γ′ in the above proposition is called the flip of γ with respect to T (or with
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respect to qT(γ), since γ and γ′ are exactly the two diagonals of qT(γ)).
We define the flip graph of P to be the graph whose vertices are tagged triangulations

of P and whose edges connect triangulations that can be obtained from each other by
flipping a single arc. The flip graph of P is connected.

We can encode a tagged triangulation T in a skew-symmetric n × n integer matrix
B(T). The nonzero entries in B(T) correspond to pairs of adjacent arcs; the sign of these
entries records the relative orientation of the arcs (see [3] for details).

Flips of arcs are related to matrix mutation in the following way: for a tagged trian-
gulation T = {γ1, . . . , γn} of P, µk(B(T)) = B(µk(T)), or, in words, flipping γk changes
B(T) by mutation in direction k.

As the following theorem shows, these triangulations entirely encode the combina-
torics of type A and D A-seed patterns.

Theorem 3.5 ([3]). Let P = Pn+3 (resp. P = P•n ). Consider an A-seed pattern S such that some
exchange matrix is B(T0) for some triangulation T0 of P. Then S is type An (resp. Dn) and there
is a bijection γ 7→ aγ between arcs of P and A-variables of S . Further, if Σ = (a, x, B) is a seed
of S , there is a unique triangulation T such that a = {aγ}γ∈T and B = B(T). Finally, mutation
in direction k takes the seed corresponding to T to the seed corresponding to µk(T), implying that
the exchange graph of S is isomorphic to the flip graph of P.

3.2 Triangulations for types B and C

To obtain triangulations whose adjacency matrices are exchange matrices of type Bn and
Cn A-seed patterns, we “fold” triangulations of P2n+2 and P•n+1. This is part of a larger
theory of folded cluster algebras (see [4]).

Let G = Z/2Z. We write P G
2n for P2n equipped with the G-action taking vertex i to

vertex i′ := i + n (with labels considered modulo 2n). This induces an action of G on the
arcs of P2n. The triangulations of P G

2n are the triangulations of P2n fixed by the G-action,
commonly called centrally symmetric triangulations.

We write P• G
n for P•n equipped with the G-action switching the notched and plain

version of a radius. Again, the triangulations of P• G
n are the triangulations of P•n fixed

under the G-action, which are exactly those triangulations containing both the notched
and plain versions of the same radius.

Let P ∈ {P2n, P•n}, and let T be a triangulation of PG. For γ ∈ T, let [γ] denote the
G-orbit of γ. The quadrilateral of [γ], denoted qT([γ]), is the G-orbit of qT(γ), or, in other
words, all of the arcs and boundary segments adjacent to arcs in [γ]. Flipping the arcs
in [γ] results in another triangulation of PG (which does not depend on the order of arc
flips, since arcs in the same orbit are pairwise not adjacent). We define the flip graph of
PG in direct analogy to that of P; again, it is connected.

We associate to each triangulation T of PG a skew-symmetrizable integer matrix
BG(T), whose rows and columns are labeled by G-orbits of arcs of T. BG(T) is ob-
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Figure 2: Triangulations of PG
8 and P• G

8 are shown in solid lines. The orbit [τ] of τ is
{τ, τ′} and the flip of [τ] is dashed. On the right, qT([τ]) = {α, β, τ, τ′}.

tained from the usual signed adjacency matrix B(T) of T (see [4, Section 4.4] for details);
again, if two G-orbits consist of pairwise non-adjacent arcs, the corresponding matrix
entry is 0.

Just as with usual triangulations, (orbit of) arc flips and matrix mutation interact
nicely: if T is a triangulation containing arc γ, flipping the arcs in [γ] corresponds to
mutating BG(T) in the direction labeled by [γ]. Further, we have the following theorem.

Theorem 3.6 ([4]). Let P = P•n+1 (resp. P = P2n+2). Consider an A-seed pattern S such
that some exchange matrix is BG(T0) for some triangulation T0 of PG. Then S is type Bn (resp.
Cn) and there is a bijection [γ] 7→ a[γ] between arcs of P and A-variables of S . Further, if
Σ = (a, x, B) is a seed of S , there is a unique triangulation T such that a = {a[γ]}γ∈T and
B = BG(T). Finally, mutation in direction K takes the seed corresponding to T to the seed
corresponding to µK(T), implying that the exchange graph of S is isomorphic to the flip graph of
PG.

4 Dynkin type X -seed patterns

Let S be an X -seed pattern of type Zn (Z ∈ {A, B, C, D}) over an arbitrary semifield P,
and let X (S) denote the set of X -variables of S . Let P be the surface whose triangula-
tions encapsulate the combinatorics of type Zn A-seed patterns (P = Pn+3 for Z = A,
P = P•n for Z = D, P = P G

2n+2 for Z = C, P = P• G
n+1 for Z = B). In this section, we

relate the X -variables of S to the triangulations of P, and show a bijection between XS
and quadrilaterals (with a choice of diagonal) of P in the case when P is the universal
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semifield. Note that in what follows, “arc” should usually be understood to mean “orbit
of arc” if S is type B or C.

First, notice that Theorems 3.5 and 3.6 imply that one can associate to each triangu-
lation of P a seed of S such that mutation of seeds corresponds to flips of arcs. Indeed,
consider any A-seed pattern R with R|X = S ; if the triangulation T corresponds to the
A-seed (a, x, B) with arc γk corresponding to A-variable ak, then we associate to T the
X -seed (x, B) and to the arc γk the X -variable xk. We write ΣT to indicate this associa-
tion. Note that a priori two distinct triangulations may be associated to the same X -seed,
and an X -variable may be associated to a number of different arcs. Further, an arc may
be associated to different X -variables in different triangulations.

The next observation follows immediately from the definition of seed mutation.

Remark 4.1. Consider a seed (x, B). For j 6= k, if bjk = 0, then mutating at k will not
change xj. Further, b′ji = bji and b′ij = bij for all i, since the skew-symmetrizability of B
implies bkj = 0 as well. Thus, if k1, . . . , kt are indices such that bks j = 0, then the mutation
sequence µkt ◦ · · · ◦ µk2 ◦ µk1 leaves xj unchanged.

In other words, let x be an X -variable of ΣT corresponding to arc γ ∈ T. Any
sequence of flips of arcs not in qT(γ) ∪ {γ} will result in a triangulation T′ such that
γ ∈ T′ and the X -variable of ΣT′ corresponding to γ will be x. This, in combination
with results on the connectivity of certain subgraphs of the flip graph of P [3], gives the
following proposition.

Proposition 4.2. Let Q′ = {qT(γ) ∪ {γ}| T a triangulation of P, γ ∈ T} be the set of quadri-
laterals (with a choice of diagonal) of P. Then there is a surjection f : Q′ → X (S).

We remark that this proposition in fact holds in the generality of X -seed patterns
from surfaces, though we do not need that here.

We have the immediate corollary:

Corollary 4.3. Let q(P) = |{qT(γ)| T a triangulation of P, γ ∈ T}| denote the number of
quadrilaterals of P. Then |X (S)| ≤ 2q(P).

The above statements hold regardless of the choice of P and initial X -cluster. Because
|X (S)| can easily be 1, it is clear that we must make additional assumptions to determine
anything further about |X (S)|. If we fix an exchange matrix B and allow P and the X -
cluster of the seed (x, B) to vary, S(x, B) will have the largest number of X -variables
when P = Qs f (t1, . . . , tn) and x consists of elements that are algebraically independent
over Q(t1, . . . , tn). Indeed, let Ss f be such a seed pattern, and S an arbitrary seed pattern
containing the exchange matrix B. The X -variables of S can be obtained from the X -
variables of Ss f by replacing “+” with “⊕” and evaluating at the appropriate elements
of P, so we have |X (S)| ≤ |X (Ss f )|.
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In light of this observation, we now focus on X (Ss f ). To show that the surjection f
of Proposition 4.2 is a bijection for Ss f , it suffices to show that f is injective for some
X -seed pattern of type Zn.

To do this, we use the “geometric” A-seed pattern of type Zn given in [6, 4], which we
denote by R(Zn). Briefly, the A-variables are certain elements of C[Mat2,m], the algebra
of polynomial functions on the space of 2× m complex matrices, where m depends on
Z and n. In R(An) for example, m = n + 3 and the A-variables are exactly the Plücker
coordinates; the X -variables are quotients of Plücker coordinates.

Proposition 4.4. Consider the A-seed pattern R = R(Zn). Then the surjection f : Q′ →
X (R̂) of Proposition 4.2 is injective, where R̂ is given in [7, Proposition 3.9].

This proposition is proved by showing that the X -variables in R̂ associated to differ-
ent quadrilaterals have different values on specific elements of Mat2,m.

Theorem 1.1 follows as a corollary, as does the number of X -variables in Ss f .

Corollary 4.5. |X (Ss f )| = 2q(P).

4.1 Quadrilateral counts

Proposition 4.6. The number of quadrilaterals of each surface P is

P Pn+3 P G
2n+2, P•Gn+1 P•n

q(P) (n+3
4 ) 1

6 n(n + 1)(n2 + 2) 1
6 n(n− 1)(n2 + 4n− 6)

For P 6= P G
2n+2, q(P) follow from a fairly straightforward inspection of the triangula-

tions of the appropriate surfaces. For P = P G
2n+2, q(P) follows from a bijection between

quadrilaterals not appearing in centrally symmetric triangulations of P2n+2 and quadri-
laterals of P2n+2 that appear in centrally symmetric triangulations and are not fixed by
G-action.

4.2 Exceptional types

Let Z ∈ {E6, E7, E8, F4, G2} and let Ss f be a type Z X -seed pattern over Qs f with one
(equivalently every) X -cluster consisting of algebraically independent elements. X (Ss f )
was computed using a computer algebra system (Mathematica), by generating all possi-
ble X -seeds via mutation.
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5 Corollaries and Conjectures

We make a few remarks regarding the implications of these results to the larger theory
of X -seed patterns and cluster algebras, and conjectural extensions.

The bijection between quadrilaterals and X -variables for Ss f implies

Corollary 5.1. The exchange graph of Ss f in types A, B, C, and D coincides with the exchange
graph of any A-seed pattern of the same type.

Recall that the diagonals of a quadrilateral can be uniquely associated to a pair of A-
variables. These pairs are precisely those variables that appear together on the left hand
side of an exchange relation; such A-variables are called exchangeable. Composing the
bijection from ordered pairs of exchangeable A-variables to quadrilaterals with a choice
of diagonal with the bijection of Theorem 1.1 gives the following corollary for classical
types. It was checked by computer for exceptional types.

Corollary 5.2. Let R be an A-seed pattern of finite type. There is a bijection between ordered
pairs of exchangeable A-variables in R and X (Ss f ).

IfR is a finite type A-seed pattern over the tropical semifield, the numbers computed
here are the number of X -variables in R̂ if one (equivalently, every) extended exchange
matrix ofR is full rank. Recall that in this setting, the X -variables of R̂ exactly record the
two terms on the right hand side of an exchange relation. In the bijection of Corollary 5.2,
the pairs of exchangeable A-variables are mapped exactly to the X -variables recording
the exchange relation that the A-variables satisfy. This implies

Corollary 5.3. Let R be an A-seed pattern of type A, B, C, or D over the tropical semifield with
one full rank extended exchange matrix. Then the two terms of the right hand side of an exchange
relation (2.2) uniquely determines the left.

Conjecture 5.4. Let S be an X -seed pattern from a marked surface (S, M). Then the map from
{qT(γ) ∪ {γ}| T a triangulation of (S, M), γ ∈ T} and X (Ss f ), which sends q ∪ {γ} to xq,γ,
is a bijection.

Lastly, in the original development of finite type A-seed patterns, seed patterns were
connected to root systems of the same type. In particular, there is a bijection between
A-variables and almost positive roots (positive roots and negative simple roots). Two
variables are exchangeable if and only if the corresponding roots α, β have (α||β) =
(β||α) = 1, where (−||−) is the compatibility degree [6]. This, combined with Corollary
5.2, give a root theoretic interpretation of the number of X -coordinates of Ss f .

Corollary 5.5. For Ss f of finite type, |X (Ss f )| is the number of pairs of roots (α, β) such that
(α||β) = (β||α) = 1 in the root system of the same type.
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