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Abstract. We consider three notions of connectivity and their interactions in partially
ordered sets coming from reduced factorizations of elements in generated groups.
While one form of connectivity essentially reflects the connectivity of the poset dia-
gram, the other two are a bit more involved: Hurwitz-connectivity has its origins in
algebraic geometry, and shellability in topology. We propose a framework to study
these connectivity properties in a uniform way. Our main tool is a certain total order
of the generators that is compatible with the chosen element.

Résumé. Nous considérons trois notions de connectivité et leurs interactions pour les
posets construits à partir des factorisations réduites d’éléments d’un groupe engen-
dré. Une forme de connectivité reflète essentiellement la connectivité du diagramme
du poset, tandis que les deux autres sont un peu plus complexes: la connectivité
d’Hurwitz a ses origines en géométrie algébrique, et l’épluchabilité est une notion
topologique. Nous proposons un cadre pour étudier ces propriétés de connectivité de
manière uniforme. L’outil principal est un certain ordre total sur les générateurs, qui
est compatible avec l’élément choisi.
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1 Introduction

The main objects in this work are factorization posets Pc(G, A) coming from a group
G with a fixed generating set A, and some group element c ∈ G. When A is closed
under G-conjugation, there is a natural action of the braid group on the set of maximal
chains of Pc(G, A), and the number of orbits under this action can be interpreted as a
“connectivity coefficient” of Pc(G, A).
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This article revolves around the relation of the previously described Hurwitz-connec-
tivity to two other forms of connectivity of a poset: chain-connectivity (motivated by
graph theory) and shellability (motivated by topology). The main result of this article
is the following uniform approach to proving Hurwitz-connectivity, chain-connectivity
and shellability of the factorization poset Pc(G, A). The statement of this result uses
two notions that will be formally defined later in the article, namely a total order of
the generators that is compatible with c (Definition 4.2), and a certain “well-covered”
property (Definition 4.10). The latter property asserts that for every generator that is not
minimal with respect to a given total order we can find a smaller generator such that
both have a common upper cover in Pc(G, A).

Let us fix the following notation for the upcoming three statements. Let G denote
a group that is generated by A ⊆ G as a monoid; we assume that A is closed under
G-conjugation. For c ∈ G let Ac ⊆ A denote the set of all generators that appear in at
least one A-reduced factorization of c.

Theorem 1.1. If the factorization poset Pc(G, A) is finite, admits a c-compatible order ≺ of
Ac and is totally well covered with respect to ≺, then Pc(G, A) is chain-connected, Hurwitz-
connected and shellable.

We want to emphasize that Theorem 1.1 uniformly and simultaneously approaches
the question whether a factorization poset is chain-connected, Hurwitz-connected or
shellable. Note that it is far from trivial in full generality to establish that a factorization
poset is well covered and admits a compatible order. However, for some special groups
the framework presented here may provide a convenient method to reach uniform in-
sights about the connectivity of the respective factorization posets.

By definition, to be well covered is a property of the factorization poset with respect to
a given total order of the generators. We conjecture that we can weaken the assumptions
of Theorem 1.1 a bit, and we prove this conjecture for the Hurwitz-connectivity part.

Theorem 1.2. If the factorization poset Pc(G, A) is finite, chain-connected and admits a c-
compatible order of Ac, then the Hurwitz action is transitive on RedA(c).

Conjecture 1.3. If the factorization poset Pc(G, A) is finite, totally chain-connected and admits
a c-compatible order of Ac, then Pc(G, A) is shellable.

This manuscript is an extended abstract of [9]. We have omitted here the proofs of
statements which are either straightforward to prove or which can be proven analogously
to statements that have appeared (as special cases of our construction) before. We refer
the reader to the full version for those missing proofs and illustrating examples.

In Section 2 we formally define chain-connectivity, Hurwitz-connectivity and shella-
bility. In the process we recall the necessary background and define the needed concepts.
In Section 3 we investigate relations between our three connectivity properties without
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any further assumptions. The heart of this work is Section 4 in which we define the no-
tion of a compatible order of the generators and the “well-covered” property. We prove
Theorem 1.2 and provide an equivalent formulation of Conjecture 1.3. This section cul-
minates in the proof of Theorem 1.1. We refer the interested reader to [9, Figure 1] for an
overview of implications, non-implications and conjectures between the different types
of connectivity considered in this abstract.

2 Three Notions of Connectivity

2.1 Poset Terminology

Let us start by recalling the basic concepts from the theory of partially ordered sets, and
by introducing a first notion of connectivity.

A partially ordered set (poset for short) is a set P equipped with a partial order ≤, and
we usually write P = (P,≤). If P has a least element 0̂ and a greatest element 1̂, then it
is bounded, and the proper part of P is the subposet P =

(
P \ {0̂, 1̂},≤

)
. An interval of P

is a set of the form [x, y] = {z ∈ P | x ≤ z ≤ y} for x, y ∈ P with x ≤ y.
Two elements x, y ∈ P form a covering pair if x < y and there is no z ∈ P with

x < z < y. We then write x l y, and equivalently say that x is covered by y or that y covers
x. We denote the set of covering pairs of P by E (P).

From now on we will only consider finite posets. A chain of P is a totally ordered sub-
set C ⊆ P, meaning that for any x, y ∈ C we have x < y or y < x. If C = {x1, x2, . . . , xk}
with xi < xj whenever i < j, we occasionally use the notation C : x1 < x2 < · · · < xk to
emphasize the order of the elements. Moreover, a chain is maximal if it is not properly
contained in some other chain. Let M (P) denote the set of maximal chains of P . A
poset is graded if all maximal chains have the same cardinality; this common cardinality
minus one is called the rank of P , denoted by rk(P).

The first notion of connectivity of a poset that springs to mind is the connectivity
of its poset diagram, namely the graph

(
P, E (P)

)
. Observe that this graph is trivially

connected whenever P is bounded. However, the poset diagram of the proper part of a
bounded poset need not be connected. We are in fact interested in the following stronger
version of connectivity.

Definition 2.1. Let P be a graded, bounded poset, and define

Ichain =
{
{C, C′} | |C ∩ C′| = rk(P)

}
. (2.1)

The chain graph of P is the graph C (P) =
(
M (P), Ichain

)
.

In other words two maximal chains of P are adjacent in the chain graph if they differ
in exactly one element. We call P chain-connected if C (P) is connected. Observe that the
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poset diagram of the proper part of a chain-connected poset is again connected as soon
as the rank of P is at least three. Moreover, if every interval of P is chain-connected,
then we call P totally chain-connected.

2.2 Factorization Posets in Generated Groups

In this section we introduce the main construction that associates a bounded graded
poset with each triple (G, A, c), where G is a group generated as a monoid by the set
A ⊆ G, and where c is some element of G.

Fix a group G and a subset A ⊆ G that generates G as a monoid. We then call the
pair (G, A) a generated group, and we define the A-length of x ∈ G by

`A(x) = min
{

k ∈N | x = a1a2 · · · ak, where ai ∈ A for i ∈ [k]
}

, (2.2)

where [k] = {1, 2, . . . , k}. If k = `A(x), then any factorization x = a1a2 · · · ak is called
A-reduced. Let RedA(x) denote the set of all A-reduced factorizations of x ∈ G. We
consider the following partial order on G; the A-prefix order:

x ≤A y if and only if `A(y) = `A(x) + `A(x−1y). (2.3)

In other words, x ≤A y if and only if x lies on a geodesic from 1 to y in the right Cayley
graph of (G, A), where 1 denotes the identity of G. The definition of the A-prefix order
as given in (2.3) has perhaps first appeared explicitly in [6] in the case of the symmetric
group.

Now fix some c ∈ G and consider the interval [1, c] in (G,≤A), i.e. the poset

Pc(G, A) =
(
{g ∈ G | g ≤A c},≤A

)
, (2.4)

which we call the factorization poset of c in (G, A). Whenever it is clear from the context,
we omit the group and the generating set. Observe that a poset is completely deter-
mined by its set of maximal chains; and in the given setting, the maximal chains of Pc
correspond bijectively to the A-reduced factorizations of c via the map

λc : M (Pc)→ RedA(c)

1 = x0 lA x1 lA · · ·lA xn = c 7→
(
x−1

0 x1, x−1
1 x2, . . . , x−1

n−1xn
)
,

(2.5)

where n = `A(c).

Example 2.2. Let G = S4 be the symmetric group of permutations of [4]. It is well known that
S4 is generated by its set of transpositions T =

{
(1 2), (1 3), (1 4), (2 3), (2 4), (3 4)

}
. Since

any transposition is an involution, T generates S4 as a monoid. It is moreover easy to check that
T is closed under S4-conjugation. Let c = (1 2 3 4) be a long cycle in S4. The factorization
poset Pc(S4, T) is shown in Figure 1.
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1

(1 3) (1 2) (3 4) (1 4) (2 4) (2 3)

(1 2 3) (1 2)(3 4) (1 3 4) (1 2 4) (2 3 4) (1 4)(2 3)

(1 2 3 4)

Figure 1: The factorization poset Pc of the long cycle c = (1 2 3 4) in the symmetric
group S4 generated by its transpositions.

Perhaps the most important consequence of the assumption that A is closed under
G-conjugation is the existence of a braid group action on RedA(x) (and thus in view of
(2.5) also on M (Pc).) Recall that the braid group on n strands can be defined via the
group presentation

Bn =
〈
σ1, σ2, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1 for i ∈ [n− 2],

and σiσj = σjσi for i, j ∈ [n− 1] with |i− j| > 1
〉
. (2.6)

Now fix x ∈ G with `A(x) = n. For i ∈ [n− 1], we define an action of the braid group
generator σi on RedA(x) by

σi · (a1, . . . , ai−1, ai, ai+1, ai+2, . . . , an)

= (a1, . . . , ai−1, ai+1, a−1
i+1aiai+1, ai+2, . . . , an).

(2.7)

In other words, the generators of Bn swap two consecutive factors of an A-reduced
factorization of x and conjugate one by the other, so that the product stays the same.
Since A is closed under G-conjugation, σi is indeed a map on RedA(x), and it is straight-
forward to verify that this action respects the relations of (2.6), and therefore extends to
a group action of Bn on RedA(x): the Hurwitz action.

We can now define the second notion of connectivity used in this abstract.

Definition 2.3. Let c ∈ G, and define

Ihurwitz =
{
{x, x′} | x, x′ ∈ RedA(c) and x′ = σix for some i ∈ [`A(c)− 1]

}
. (2.8)

The Hurwitz graph of c is the graph H (c) =
(
RedA(c), Ihurwitz

)
.

In view of (2.5) we may as well define the Hurwitz graph of c as a graph on the
maximal chains of Pc, and from this point of view it is clearly (isomorphic to) a subgraph
of C (Pc). We call Pc Hurwitz-connected if H (c) is connected. This is the case if and only
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(14)(13)(12) (13)(34)(12)

(34)(14)(12)

(34)(12)(24)

(34)(24)(14)

(24)(23)(14) (23)(34)(14)

(23)(14)(13)

(23)(13)(34)(13)(12)(34)

(12)(23)(34)

(12)(34)(24)

(12)(24)(23)

(24)(14)(23)(14)(12)(23)

(14)(23)(13)

Figure 2: The Hurwitz graph of the long cycle c = (1 2 3 4) in the symmetric group
S4 generated by its transpositions.

if the braid group B`A(c) acts transitively on RedA(c). By abuse of notation we sometimes
write H (Pc) instead of H (c). Figure 2 shows the Hurwitz graph of the factorization
poset from Figure 1.

2.3 Shellability of Posets

The last notion of connectivity that will be important for this article has its origins in
algebraic topology. Recall that the set of chains of a graded poset P forms a pure
simplicial complex; the order complex of P , denoted by ∆(P).

In this section we want to outline how a simple combinatorial tool, an edge-labeling
of a graded bounded poset P , may serve to learn about the homotopy type of ∆(P). A
class of pure simplicial complexes with a particularly nice homotopy type are the shellable
simplicial complexes: their homotopy type is in fact that of a wedge of spheres [5, The-
orem 4.1], the corresponding (co-)homology groups are torsion-free, and the Stanley–
Reisner ring of such complexes is Cohen–Macaulay [3, Appendix].

We phrase the definition of shellability directly in terms of a graded bounded poset P .
It can be transferred to pure simplicial complexes via the correspondence between max-
imal chains of P and facets of ∆(P).

Definition 2.4. Let P be a graded bounded poset. A shelling of P is a linear order ≺ on M (P)
such that whenever two maximal chains M, M′ ∈ M (P) satisfy M ≺ M′, then there exists
N ∈M (P) with N ≺ M′ and x ∈ M′ with the property that M ∩M′ ⊆ N ∩M′ = M′ \ {x}.

A poset that admits a shelling is shellable. There is a nice combinatorial way to
establish shellability, by exhibiting a particular edge-labeling of the poset. An edge-
labeling of P is a map λ : E (P) → Λ, where Λ is an arbitrary partially ordered set.
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An edge-labeling of P naturally extends to a labeling of M (P), where for C : 0̂ =
x0 l x1 l · · ·l xn = 1̂ we set λ(C) =

(
λ(x0, x1), λ(x1, x2), . . . , λ(xk−1, xk)

)
.

A maximal chain C ∈M (P) is rising if λ(C) is weakly increasing with respect to the
partial order on Λ, and it is falling if λ(C) is strictly decreasing. A chain C ∈ M (P)
precedes a chain C′ ∈M (P) if λ(C) is lexicographically smaller than λ(C′) with respect
to the order on Λ. An edge-labeling λ of P is an EL-labeling if in every interval of P there
exists a unique rising maximal chain, and this chain precedes every other maximal chain
in that interval. A poset that admits an EL-labeling is EL-shellable. A. Björner proved the
following fundamental property.

Theorem 2.5 ([3, Theorem 2.3]). Every EL-shellable poset is shellable.

The converse of Theorem 2.5 is not true, see for instance [11, 12]. We observe that
in the case of factorization posets coming from a generated group (G, A) the map (2.5)
induces an edge-labeling of Pc whose labels are elements of A. One of the main motiva-
tions for this work was the question whether there is a local criterion to guarantee that
a total order on A turns this labeling into an EL-labeling.

Remark 2.6. The motivating example for the work presented here are the lattices of c-noncrossing
W-partitions, where W is an irreducible, well-generated complex reflection group, and c ∈ W is
a Coxeter element. See [2, 10] for more background on these posets. It is well known that these
posets are Hurwitz-connected [2, 7], and EL-shellable [1, 8].

3 Interaction of Different Types of Connectivity

In this section we investigate the implications between the three types of connectivity.

Proposition 3.1. Every Hurwitz-connected bounded graded poset is chain-connected. Every
shellable bounded graded poset is chain-connected.

None of the converse statements in Proposition 3.1 is true without further assump-
tions, see for instance [9, Examples 4.2 and 4.3]. We are not aware of a factorization poset
that is totally chain-connected, but not shellable.

Problem 3.2. Find a generated group (G, A) and some c ∈ G such that RedA(c) is finite and
Pc(G, A) is totally chain-connected but not shellable, or show that this cannot exist.

A solution to Problem 3.2 would be of great importance within the framework pre-
sented here: we could either reduce the difficulty to prove that a factorization poset is
shellable, or the group structure of such an example would exhibit a new obstruction to
shellability.

Example 4.2 in [9] implies that chain-connectivity does not necessarily imply Hurwitz-
connectivity. However, we may add the following local criterion to make things work.
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Definition 3.3. Let Pc(G, A) be factorization poset. If B2 acts transitively on RedA(g) for
every g ≤A c with `A(g) = 2, then we call Pc(G, A) locally Hurwitz-connected.

Theorem 3.4. Assume A is closed under G-conjugation, and fix c ∈ G with `A(c) = n. If Pc
is chain-connected and locally Hurwitz-connected, then Bn acts transitively on RedA(c), i.e., Pc
is Hurwitz-connected.

Example 4.7 in [9] illustrates that being locally Hurwitz-connected is actually not a
necessary condition for the Hurwitz-connectivity of Pc.

4 Compatible A-Orders

In this section we introduce our main tool, a total order of A that is compatible with the
top element c. This concept is an algebraic generalization of the compatible reflection
order introduced in [1], and it also appeared in [8] in the context of reflection groups.
In order to make this definition work, we assume from now on that RedA(c) is finite
(which is equivalent to the requirement that Pc is finite).

4.1 Definition and Properties of Compatible Orders

Let Ac = {a ∈ A | a ≤A c}. Observe that we trivially have RedA(c) = RedAc(c). Let ≺
be any total order on Ac. We say that a factorization (a1, a2, . . . , a`A(c)) ∈ RedA(c) is
≺-rising if ai � ai+1 for i ∈ [`A(c)− 1]. We denote by Rise(c;≺) the number of ≺-rising
A-reduced factorizations of c for a given total order ≺ on Ac.

The next statement relates these rising factorizations to the Hurwitz orbits of RedA(c),
in the specific case when `A(c) = 2.

Proposition 4.1. Let c ∈ G have `A(c) = 2. For any total order ≺ on Ac, the number
Rise(c;≺) is at least as large as the number of Hurwitz orbits of RedA(c), and there exists a total
order on Ac such that these numbers are equal.

If `A(c) > 2, then it is not guaranteed that we can find a total order ≺ on Ac such
that Rise(c;≺) equals the number of Hurwitz orbits of RedA(c), see for instance [9,
Example 5.2]. This brings us to the main definition of this section.

Definition 4.2. A total order ≺ on Ac is c-compatible if for any g ≤A c with `A(g) = 2 there
exists a unique ≺-rising A-reduced factorization of g.

Proposition 4.1 has the following immediate consequences.

Corollary 4.3. If `A(c) = 2, then there exists a c-compatible order of Ac if and only if Pc(G, A)
is Hurwitz-connected.
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Corollary 4.4. If there exists a c-compatible order of Ac, then Pc(G, A) is locally Hurwitz-
connected.

We see immediately that if G is abelian, then for any c ∈ G every total order of A
is c-compatible. Moreover, [9, Example 5.2] illustrates that there are factorization posets
which do not admit a compatible order. However, there are also non-trivial examples.

Example 4.5. Let us continue Example 2.2. Let ≺ be the lexicographic order on the set T of
transpositions of S4, i.e. (1 2) ≺ (1 3) ≺ (1 4) ≺ (2 3) ≺ (2 4) ≺ (3 4). It is straightforward
to check that this order is c-compatible for c = (1 2 3 4).

On the other hand, if we consider the following total order (1 3) ≺′ (1 2) ≺′ (1 4) ≺′
(2 3) ≺′ (2 4) ≺′ (3 4), then we observe that (1 2 3) has two≺′-rising T-reduced factorizations,
namely

(
(1 2), (2 3)

)
and

(
1 3), (1 2)

)
.

We are now in the position to prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that Pc is chain-connected and admits a c-compatible or-
der ≺ of Ac. Then Corollary 4.4 implies that Pc is locally Hurwitz-connected. Theo-
rem 3.4 now implies that B`A(c) acts transitively on RedA(c).

However, [9, Example 5.2] once again shows that there are cases where RedA(c) is
Hurwitz-connected, but there does not exist a c-compatible order of Ac.

In the remainder of this section we provide some evidence that c-compatible orders
are also closely related to the shellability of the factorization poset Pc. Recall that for any
total order on Ac we can consider the lexicographic order on RedA(c), which is itself a
total order.

Lemma 4.6. For any total order ≺ of Ac and any g, h ∈ G with g ≤A h ≤A c the lexicographi-
cally smallest A-reduced factorization of g−1h is ≺-rising.

The following conjecture implies Conjecture 1.3.

Conjecture 4.7. The natural labeling λc from (2.5) induces an EL-labeling of Pc with respect to
some total order ≺ of Ac if and only if Pc is totally chain-connected and ≺ is c-compatible.

Observe that one direction of Conjecture 4.7 is trivially true. If λc is an EL-labeling
of Pc with respect to ≺, then every interval of Pc is shellable, and by Proposition 3.1
chain-connected. Since every rank-2 interval of Pc has a unique rising chain, it follows
that ≺ is c-compatible.

Conjecture 4.7, however, does not suggest that Pc can only be EL-shellable if there
exists a c-compatible order of Ac. If there is no c-compatible order of Ac, we may only
conclude that λc is not an EL-labeling (there may exist others, though).

The next example shows that the assumption of (total) chain-connectivity of Pc can-
not be left out in Conjecture 4.7.
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(a) An interval in the prefix order on the quo-
tient of the free abelian group on six gener-
ators r, s, t, u, v, w given by the relation rst =

uvw.

rst

rts

trs

tsr

str

srt

uvw

uwv

wuv

wvu

vwu

vuw

(b) The Hurwitz graph of the poset in
Figure 3a.

Figure 3: A factorization poset which admits a compatible generator order, but is
neither chain-connected, nor EL-shellable.

Example 4.8. Let G be the quotient of the free abelian group on six generators r, s, t, u, v, w given
by the relation rst = uvw. The factorization poset Prst is shown in Figure 3a; its chain graph,
depicted in Figure 3b, has two connected components. Since the generators all commute, any
total order on {r, s, t, u, v, w} is rst-compatible, but we always find exactly two rising maximal
chains.

4.2 The Well-Covered Property and EL-Labelings

Let us first state some further properties of factorization posets admitting compatible
orders. Fix a total order ≺ of Ac, and for a ∈ Ac define

F≺(a; c) =
{

g ∈ G | a lA g ≤A c and there is a′ ∈ Ac with a′ ≺ a and a′ lA g
}

.

In other words, F≺(a; c) consists of all upper covers of a in Pc that also cover some a′ ≺ a.

Proposition 4.9. If ≺ is a c-compatible order of Ac, then the natural labeling λc satisfies

(i) if g ∈ F≺(a; c), then λc(a, g) ≺ λc(1, a), and

(ii) if g /∈ F≺(a; c), then λc(a, g) � λc(1, a)

for any a ∈ Ac and any g ∈ G with a lA g.

By definition for any total order ≺ of Ac the set F≺(a; c) is empty for a = min Ac.
Factorization posets in which this is the only case when F≺(a; c) is empty will be awarded
a special name. The purpose of this definition is that it provides a different perspective
on Conjecture 1.3.
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Definition 4.10. A factorization poset Pc is well covered with respect to a total order ≺ of Ac if
F≺(a; c) is empty if and only if a = min Ac. Moreover, Pc is totally well covered with respect
to ≺ if for all g ∈ Pc the factorization poset Pg is well covered with respect to the appropriate
restriction of ≺.

In other words, Pc is well covered if and only if for every atom a (except the smallest
one with respect to ≺), we can find an upper cover g of a such that a 6= min Ag.

Example 4.11. Let us continue Example 2.2 once more, and fix the lexicographic order ≺ on T
from Example 4.5 again. It is straightforward to verify that Pc is well covered with respect to ≺.

Example 4.12. Let us continue Example 4.8. If we fix the total order r ≺ s ≺ t ≺ u ≺ v ≺ w,
then we observe that F≺(u; rst) is empty even though u is not minimal with respect to ≺. By
definition Prst is not well covered with respect to ≺. In fact, it is not well covered with respect to
any total order on {r, s, t, u, v, w}.

Proposition 4.13. Let ≺ be a total order of Ac. If Pc is totally well covered with respect to ≺,
then Pc is totally chain-connected.

We proceed with the announced observation that Pc is totally well covered with
respect to a c-compatible order ≺ if and only if λc is an EL-labeling with respect to ≺.

Theorem 4.14. Let ≺ be a total order of Ac. Then λc is an EL-labeling of Pc if and only if ≺ is
c-compatible and Pc is totally well covered with respect to ≺.

We thus obtain the following equivalent statement of Conjecture 4.7.

Conjecture 4.15. If Pc is totally chain-connected, then it is totally well covered with respect to
any c-compatible order of Ac.

Remark 4.16. The well-covered property is modeled after Condition (ii) in [4, Definition 3.1],
which introduces the concept of a recursive atom order of a bounded graded poset. Most of
the statements in this section can be proven analogously to the corresponding statements in [4,
Section 3] and are therefore omitted.

In particular, if Conjecture 4.15 were true, any c-compatible order of Ac in a totally chain-
connected factorization poset would be a recursive atom order.

We conclude this extended abstract with the proof of Theorem 1.1 and a remark.

Proof of Theorem 1.1. Suppose that Pc admits a c-compatible order of Ac and that it is
totally well-covered. Proposition 4.13 implies that Pc is (totally) chain-connected. More-
over, Theorem 1.2 implies that it is Hurwitz-connected, and Theorem 4.14 implies that it
is shellable.
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Remark 4.17. In the full article, we prove a special case of Conjecture 1.3, see [9, Theorem 6.8].
To do so, we introduce a directed, labeled graph whose vertex set is Ac; the cycle graph. This
graph essentially encodes the Hurwitz orbits of the elements of length 2 in Pc(G, A). We then
rephrase the existence of a compatible order of Ac and the well-covered property of Pc(G, A) in
graph-theoretical terms, and use it to verify Conjecture 1.3 under particular assumptions. See [9,
Section 6] for the details.

References

[1] C.A. Athanasiadis, T. Brady, and C. Watt. “Shellability of Noncrossing Partition Lattices”.
Proc. Amer. Math. Soc. 135.4 (2007), pp. 939–949. DOI: 10.1090/S0002-9939-06-08534-0.

[2] D. Bessis. “Finite Complex Reflection Arrangements are K(π, 1)”. Ann. of. Math. (2) 181.3
(2015), pp. 809–904. DOI: 10.4007/annals.2015.181.3.1.

[3] A. Björner. “Shellable and Cohen-Macaulay Partially Ordered Sets”. Trans. Amer. Math. Soc.
260.1 (1980), pp. 159–183. DOI: 10.2307/1999881.

[4] A. Björner and M.L. Wachs. “On Lexicographically Shellable Posets”. Trans. Amer. Math.
Soc. 277.1 (1983), pp. 323–341. DOI: 10.2307/1999359.

[5] A. Björner and M.L. Wachs. “Shellable and Nonpure Complexes and Posets I”. Trans. Amer.
Math. Soc. 348.4 (1996), pp. 1299–1327. DOI: 10.1090/S0002-9947-96-01534-6.

[6] T. Brady. “A Partial Order on the Symmetric Group and new K(π, 1)’s for the Braid
Groups”. Adv. Math. 161.1 (2001), pp. 20–40. DOI: 10.1006/aima.2001.1986.

[7] P. Deligne. “Letter to E. Looijenga”. Available at http : / / homepage . univie . ac . at /
christian.stump/Deligne_Looijenga_Letter_09-03-1974.pdf. 1974.

[8] H. Mühle. “EL-Shellability and Noncrossing Partitions Associated with Well-Generated
Complex Reflection Groups”. European J. Combin. 43 (2015), pp. 249–278. URL.

[9] H. Mühle and V. Ripoll. “Connectivity Properties of Factorization Posets in Generated
Groups”. 2017. arXiv: 1710.02063.

[10] V. Reiner, V. Ripoll, and C. Stump. “On Non-Conjugate Coxeter Elements in Well-Generated
Reflection Groups”. Math. Z. 285.3-4 (2017), pp. 1041–1062. DOI: 10.1007/s00209-016-1736-
4.

[11] A. Vince and M.L. Wachs. “A Shellable Poset that is not Lexicographically Shellable”. Com-
binatorica 5.3 (1985), pp. 257–260. DOI: 10.1007/BF02579370.

[12] J. W. Walker. “A Poset which is Shellable but not Lexicographically Shellable”. European J.
Combin. 6.3 (1985), pp. 287–288. DOI: 10.1016/S0195-6698(85)80040-8.

https://doi.org/10.1090/S0002-9939-06-08534-0
https://doi.org/10.4007/annals.2015.181.3.1
https://doi.org/10.2307/1999881
https://doi.org/10.2307/1999359
https://doi.org/10.1090/S0002-9947-96-01534-6
https://doi.org/10.1006/aima.2001.1986
http://homepage.univie.ac.at/christian.stump/Deligne_Looijenga_Letter_09-03-1974.pdf
http://homepage.univie.ac.at/christian.stump/Deligne_Looijenga_Letter_09-03-1974.pdf
https://doi.org/10.1016/j.ejc.2014.09.002
https://arxiv.org/abs/1710.02063
https://doi.org/10.1007/s00209-016-1736-4
https://doi.org/10.1007/s00209-016-1736-4
https://doi.org/10.1007/BF02579370
https://doi.org/10.1016/S0195-6698(85)80040-8

	Introduction
	Three Notions of Connectivity
	Poset Terminology
	Factorization Posets in Generated Groups
	Shellability of Posets

	Interaction of Different Types of Connectivity
	Compatible A-Orders
	Definition and Properties of Compatible Orders
	The Well-Covered Property and EL-Labelings


