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Abstract. We exhibit a bijection between reduced prographs and families of three-
dimensional colored lattice paths. By a classical study of the lattice paths, we obtain
recurrence relations and closed formulas for reduced prographs.

Résumé. Nous exhibons une bijection entre les prographes réduits et des familles de
chemins tridimensionnels colorés. Par une étude classique des chemins, nous obtenons
des relations de récurrence et des formules closes pour les prographes réduits.
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Introduction

Prographs are planar assemblies of abstract operators with multiple inputs and outputs.
They can model electronic circuits, algebraic computations, or rewriting systems [9]. We
also proved thanks to computer experiments and the OEIS [7] that prographs made of
only one sort of operator with two inputs and three outputs can model the biological
notion of tandem duplication trees [5].

We wish to count, according to their number of operators, all prographs having a
fixed number of inputs and outputs and using only operators belonging to a given
set. The main difficulty in enumerating prographs arises from their definition. Indeed,
prographs are defined as objects obtained from base operators and two building opera-
tions [3, 10]. However, there exist relations between these operations, implying that the
natural grammar for generating the prographs is ambiguous.

In order to circumvent this ambiguity, we present a canonical expression of any re-
duced prograph in the grammar, where reduced prographs are prographs made of op-
erators with at least one input and one output. These canonical expressions are inspired
from a reduced prograph traversal introduced by Borie in [1]. By a direct encoding of
canonical expressions into paths, we obtain a bijection between reduced prographs and
families of three-dimensional colored paths. The classical combinatorial study of these
paths yields recurrence relations and closed formulas for reduced prographs.

In Section 1, we recall basic definitions about prographs and set our combinatorial
problem. Section 2 is devoted to the bijection between reduced prographs and families of
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three-dimensional colored paths. Finally, in Section 3, we compute recurrence relations
and closed formulas for the paths and thus for reduced prographs.

1 Prographs

A generator is an operator with a fixed number of inputs and outputs. We represent a
generator x with e inputs and s outputs by

x
· · ·
· · ·

s

e
.

Remark 1.1. In the cases we consider, generators always have at least one input and one output.

Let us see how we build prographs from a set of generators. First of all, the wire | is
a prograph with one input and one output and a generator with e inputs and s outputs
is a prograph with e inputs and s outputs. Then, given two prographs

P
· · ·

· · ·

s

e

and P′
· · ·

· · ·

s′

e′

,

we have two binary operations, denoted by ? and ◦, to build another prograph. The
operation ? performs a concatenation as follows:

P
· · ·

· · ·

s

e

? P′
· · ·

· · ·

s′

e′

:= P
· · ·

· · ·
P′
· · ·

· · ·

s + s′

e + e′

hence building a third prograph with e + e′ inputs and s + s′ outputs. The operation ◦ is
a partial operation, P ◦ P′ is defined as follows if and only if s = e′:

P
· · ·

· · ·

s = e′

e

◦ P′
· · ·

· · ·

s′

e′ = s

:=
P
· · ·
· · ·
e

P′
· · ·
s′

.

Thus we get a prograph with e inputs and s′ outputs, where the first output of P is
connected to the first input of P′ and so on.
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Remark 1.2. We restrict ourselves to prographs made of generators with at least one input and
one output. We might call them reduced prographs but we simply call them prographs.

Definition 1.3. For a set of generators G and a triple (e, s, n) ∈ N3, we write PGe,s,n(G) the
set of prographs with e inputs, s outputs and using exactly n generators from G.

Example 1.4. The set

PG6,7,6

({
� , ♦ , ♠ , ♣ , ♥ , �

})
contains the prograph

♠ ♦
♥

♣
♥

�

(1.1)

that can be built by the expression(
? ♠ ? ♦ ? ? �

)
◦
(

? ♥ ?

)
◦
(

4
? ♣

)
◦
(

2
? ♥ ?

)
where for any n ≥ 0, |n := | ? · · · ? |︸ ︷︷ ︸

n

.

Problem. Given a set of generators G and a triple (e, s, n) ∈ N3, our goal is to count the
prographs of PGe,s,n(G).

The main difficulty in counting prographs is that the grammar provided by their
definition is ambiguous. Indeed, the operations ? and ◦ are associative and are related
by two relations, called unitary and rectangle relations.

The unitary relation states that for a prograph P with e inputs and s outputs,

P ◦ |s = P = |e ◦ P.

This formalizes the fact that connecting a wire does not change anything.
Rectangle relation states that for prographs P1, P2, Q1 and Q2 be such that P1 ◦ P2 and

Q1 ◦Q2 are well-defined,

(P1 ◦ P2) ? (Q1 ◦Q2) = (P1 ? Q1) ◦ (P2 ? Q2) .

This exhibits two ways to construct the prograph

P1

· · ·

· · ·

P2

· · ·

Q1

· · ·

· · ·

Q2

· · ·
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from the prographs P1, P2, Q1 and Q2.

Example 1.5. Here is a small example of ambiguity:(
?
)
◦
(

?
)
=
(

?
)
◦
(

?
)
= ? .

To overcome this difficulty, we propose a canonical expression of any prograph in
their grammar and use it to build a bijection.

2 Bijection between prographs and some lattice paths

2.1 Canonical expressions

For a prograph P, we denote by ↓(P) its number of inputs and by ↑(P) its number of
outputs. Let a prograph P, a generator x and i ∈N≥1 such that i + ↓(x)− 1 ≤ ↑(P) then
we define a new operation ◦i as follows:

P ◦i x :=
P
· · ·

...1 i
x
· · · ...
· · ·

. (2.1)

A similar operation is used in [9].

Theorem 2.1. For e, s, n ∈ N and P ∈ PGe,s,n(G), there exists a unique pair of sequences
((x1, . . . , xn), (i1, . . . , in)) ∈ Gn ×Nn

≥1 such that

P =
(
· · ·
((
|e ◦i1 x1

)
◦i2 x2

)
· · ·
)
◦in xn. (2.2)

and for all k ∈ [n− 1], ik < ik+1 + ↓(xk+1). Such a decomposition is called canonical.

Sketch of proof. We just show how to compute the canonical decomposition.
In [1], Borie introduces a prograph traversal for the prographs of PG1,1,n

({
,
})

,
where n ∈ N. It is a depth-left first numbering of generators with the additional condi-
tion that a generator can be numbered only if all the generators connected to its inputs
are already numbered.

His traversal naturally runs on any prograph. For example, the generators of the
prograph (1.1) are numbered like this

1♠ 2♦

3♥

5♣

6♥

4�

. (2.3)



Enumerative Combinatorics of Prographs 5

A generator appears in the canonical decomposition at the position given by the num-
bering. Then the index of the operation (2.1) corresponding to the generator is uniquely
determined as the number of wires on its left plus one.

In our example (1.1/2.3), the prograph (1.1) is canonically decomposed as(
· · ·
(
|6 ◦2 ♠

)
◦3 ♦

)
◦2 ♥

)
◦6 �

)
◦5 ♣

)
◦3 ♥.

Remark 2.2. We deduce from Theorem 2.1 a simple algorithm to generate prographs of PGe,s,n(G):
we just have to generate their canonical decompositions.

The canonical decompositions are mostly sequences of inequalities and this type of
constraints can be encoded by some lattice paths.

2.2 Lattice paths

Definition 2.3. A path is a pair (pi, w1 · · ·wn) ∈ Z3 ×
(
Z3 ×N

)n, where pi is the origin of
the path and w1 · · ·wn is the sequence of three-dimensional colored steps.

For a step v ∈ Z3×N, we denote by γ1, γ2, γ3 and γc respectively the abscissa, the ordinate,
the applicate and the color of the step v. Formally, v = (γ1(v), γ2(v), γ3(v), γc(v)). We also
write for any v ∈ Z3, v = (γ1(v), γ2(v), γ3(v)). For any set X, we denote by X∗ the set

⊔
k≥0

Xk

where t denotes the disjoint union.

Definition 2.4. For M ⊂
(
Z3 ×N

)∗ and pi, pf ∈ Z3, we denote by L(M, pi, pf) the set of
paths (pi, w1 · · ·wn) such that

1. w1 · · ·wn ∈ M;

2. γj(pi) +
n
∑
`=1

γj(w`) = γj(pf) for any j = 1, 2, 3;

3. for k ∈ [0, n], 1 ≤ γ2(pi) +
k
∑
`=1

γ2(w`) ≤ γ3(pi) +
k
∑
`=1

γ3(w`).

In other words, L(M, pi, pf) is the set of paths from pi to pf whose sequence of steps
belongs to M and such that in any point of the paths the ordinate is between 1 and the
applicate.

Example 2.5. We draw the color 0 with red (simple line) and the color 1 with blue (double lines).
The set

L





0
1
0
0

 ,


1
−1
−1
0

 ,


1
0
0
0

 ,


1
0
0
1

 ,


1
−2
1
0

 ,


1
−1
0
0



∗

,

0
1
6

 ,

6
7
7
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contains the path
0

1
6

 ,


0
1
0
0


2

1
−1
−1
0




0
1
0
0




1
0
0
0




0
1
0
0




1
−2
1
0




0
1
0
0


4

1
0
0
1




1
−1
0
0




1
−2
1
0




0
1
0
0


4 (2.4)

drawn as

x

y

z

0

1

1

1

. (2.5)

The canonical decompositions are encoded by particular lattice paths, called propaths.

2.3 Propaths

We denote by G the set of generators 1
· · ·
· · ·

β1

α1

, . . . , m1
· · ·
· · ·

β1

α1

, . . . , 1
· · ·
· · ·

βd

αd

, . . . , md
· · ·
· · ·

βd

αd

 .

where α1, . . . , αd, β1, . . . , βd, m1, . . . , md ∈N≥1 and we define ω by

ω : G −→ Z3 ×N

j
· · ·

· · ·

βi

αi

7→ (1, 1− αi, βi − αi, j)

We denote by U the step (0, 1, 0, 0), by D the step (0,−1, 0, 0) and by W the set of steps
{ω(x) | x ∈ G}.

Definition 2.6. We call PPe,n,k,s(G) the set L((U +W)∗, (0, 1, e), (n, k, s)). Its elements are
called propaths.
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Propaths are refinements of prographs.

Theorem 2.7. For (e, s, n) ∈N3, we have |PPe,n,s,s(G)| = |PGe,s,n(G)|.

Sketch of proof. Let P ∈ PGe,s,n(G), according to Theorem 2.1 P as a unique canonical
decomposition of the form:

P =
(
· · ·
((
|e ◦i1 x1

)
◦i2 x2

)
· · ·
)
◦in xn.

Then our bijection maps this decomposition to the propath(
(0, 1, e), Ui1+↓(x1)−1−i0ω(x1) · · ·Uin+↓(xn)−1−in−1ω(xn)Us−in

)
∈ PPe,n,s,s(G)

where i0 = 1. Intuitively, the propath abscissa encodes the number of generators, its
ordinate encodes the indexes of the operations (2.1) in the decomposition, its applicate
encodes the number of outputs and its colors allow to distinguish generators with the
same number of inputs and outputs.

For example, our bijection maps the (decomposition of the) prograph (1.1) to the
propath (

(0, 1, 6), U2 ω(♠)U ω(♦)U ω(♥)U4 ω(�)ω(♣)ω(♥)U4
)

which is equal to the path (2.4).
Lattice paths are classical objects in combinatorics (see [8] for a summary). Let us

now study propaths in order to obtain, thanks to Theorem 2.7, recurrences and closed
formulas for prographs.

3 Recurrences and closed formulas

3.1 Recurrences formulas

In order to simplify notation, we denote by p(n, k, s) the number |PPe,n,k,s(G)|, where
e ∈N≥1 is fixed.

Proposition 3.1. The number of propaths satisfies the following recurrence relation:

p(n, k, s) =


1 if n = 0, k = 1 and s = e;

p(n, k− 1, s) +
d
∑

i=1
mi p(n− 1, k− 1 + αi, s− βi + αi)

if n ≥ 0 and 1 ≤ k ≤ s;
0 otherwise.

Proof. The recurrence relation is a direct translation of the following unambiguous gram-
mar that generates the propaths: a propath belonging to PPe,n,k,s(G) is

• either the path reduced to the point (0, 1, e),
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• or a path belonging to PPe,n,k−1,s(G) concatenated to a step U,

• or a path belonging to PPe,n−1,k−1+αi,s−βi+αi(G) concatenated to a step
(1, 1− αi, βi − αi, c) where c is one of the mi colors.

According to Theorem 2.7, it is enough to specialize k to s in order to obtain a recur-
rence relation satisfied by prographs. The following theorem gets rid of the refinement
parameter k, so it provides a recurrence relation directly on the prographs.

Theorem 3.2. Let an,s := |PPe,n,s,s(G)| = |PGe,s,n(G)|. It satisfies the recurrence relation:

an,s=


1 if n = 0 and s = e;

n
∑
`=1

(−1)`+1 ∑
c1+···+cd=`

(
`

c1, . . . , cd

)s + `−
d
∑

i=1
ciβi

`

mc1
1 . . . mcd

d a
n−`, s−

d
∑

i=1
ci(βi−αi)

if n, s≥ 1;

0 otherwise.

Proof. Let n, s ≥ 1. For ` ∈ [0; n], we denote by A` the set

L
(
(U∗W)n−` (DD∗W)` U∗, (0, 1, e), (n, s, s)

)
.

We have |An| = 0, an,s = |A0| and |A`| = |A` t A`+1| − |A`+1| for all 0 ≤ ` ≤ n − 1.
Thus by iteration, we obtain

an,s =
n

∑
`=1

(−1)`+1|A`−1 t A`|.

Moreover, for ` ∈ [n], A`−1 t A` is equal to

L
(
(U∗W)n−`(U∗ + DD∗)W(DD∗W)`−1U∗, (0, 1, e), (n, s, s)

)
.

So |A`−1 t A`| decomposes into

∑
j≥0

an−`,j

∣∣∣L (D∗W(DD∗W)`−1D∗, (n− `, j, j), (n, 1, s)
)∣∣∣ .

Let us compute ∣∣∣L (D∗W(DD∗W)`−1D∗, (n− `, j, j), (n, 1, s)
)∣∣∣ . (3.1)

To build the paths belonging to (3.1), we choose at first ` steps in W . For a composition
c1 + · · ·+ cd = ` we take ci steps (1, 1− αi, βi − αi, c) where c is one of the mi colors. So
there are (

`

c1, . . . , cd

)
mc1

1 . . . mcd
d

ways to choose the steps from W . We now have to add the steps D. Let us denote
by b the number of steps D that we have to add to obtain a path of (3.1). Necessarily,
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j = s−
d
∑

i=1
ci(βi − αi) and b = `− 1 + s−

d
∑

i=1
ciβi. The `− 1 first steps from W in (3.1)

are followed by a step D, so we just have to place s−
d
∑

i=1
ciβi steps D in `+ 1 zones; so

there are

s + `−
d
∑

i=1
ciβi

`

possibilities. Thus |A`−1 t A`| is equal to

∑
c1+···+cd=`

(
`

c1, . . . , cd

)s + `−
d
∑

i=1
ciβi

`

mc1
1 . . . mcd

d a
n−`,s−

d
∑

i=1
ci(βi−αi)

,

hence the formula.

Application. The number of outputs of the prographs made of generators
{

,
}

are de-

termined by their number of inputs and their number of generators. Indeed, when we add a
generator, we increase the number of outputs by one. Thus, the enumeration of these prographs
with a single input amounts to studying the number

an :=
∣∣∣∣PG1,n+1,n

({
,

})∣∣∣∣ ,

where n ≥ 0.
The sequence (an)n≥0 is equal to Heinz’s sequence, entry A224776 of [7]. Indeed, they satisfy

the same recurrence relation and the same initial case (see Proposition 3.1 and A224776 of [7]).
According to Theorem 3.2, we can add that Heinz’s sequences satisfies

an =


1 if n = 0;

n
∑

k=1
(−1)k+1q(n, k)an−k if n ≥ 1;

0 otherwise.

where q(n, k) =
k
∑
`=1

(n+1+`−2k
k )(k

`). The sequence (q(n + 2k− 1, k))k≥0 is known as the crystal

ball sequence for the n-dimensional cubic lattice [4].

3.2 Closed formulas

In this section, we restrict ourselves to the case d = 1. Which means that the set of
generators G is  1

· · ·

· · ·

β

α

, . . . , m
· · ·

· · ·

β

α
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In this case the number of outputs of a prograph is determined by the other parameters.
Indeed, the prographs with e inputs and n generators from the set G necessarily have
e + (β − α)n outputs, because a generator from G removes α outputs and creates β

outputs. So in this section we study the terms

an :=
∣∣∣PPe, n, e+(β−α)n, e+(β−α)n(G)

∣∣∣ = ∣∣∣PGe, e+(β−α)n, n(G)
∣∣∣ .

Example 3.3. We discovered thanks to the OEIS [7] that for m = 1, α = 2, β = 3 and e = 2
the prographs are in bijection with tandem duplication trees [5]. Precisely, for all n ≥ 0,∣∣∣∣PG2,2+n,n

({ })∣∣∣∣
is equal to the number of rooted tandem duplication trees on n + 1 gene segments. Indeed, they
satisfy the same recurrence relation and the same initial case (see Proposition 3.1 and [6]).

Theorem 3.4. an = mndet
(
(e−i(α−1)+(j−1)(β−1)

i−j+1 )
(i,j)∈[n]2

)
.

Proof. In the particular case d = 1, Theorem 3.2 can be reformulated in terms of matrices
as follows: A[a0, . . . , an]t = [1, 0, . . . , 0]t, where Ai,j = (−1)i−jm(e+(i+1)(α−1)+j(β−1)

i−j ).

According to Cramer’s rule, an = An+1
det(A)

, where An+1 is the matrix A whose last col-
umn is replaced by the vector [1, 0, . . . , 0]. Knowing that det(A) = 1, by developing
according to the last column we get an = (−1)nB, where B is the determinant of(
(−1)i−jm(e−i(α−1)+(j−1)(β−1)

i−j+1 )
(i,j)∈[n]2

)
. Multiplying all odd index lines and all even

index columns of the determinant B by −1 gives the formula.

Theorem 3.5. an = mn ∑
k≥1

(−1)n+k ∑
t1+···+tk=n

ti 6=0

k
∏
j=1

(
(β−α)(t1+···+tj−1)+e−(α−1)tj

tj
).

Proof. For i ∈ [n− 1] we denote by Ai the set

L
(
((D∗ + U∗)W)i DD∗W ((D∗ + U∗)W)n−i−1 U∗, (0, 1, e), (n, s, s)

)
and by E the set

L
(
((D∗ + U∗)W)n U∗, (0, 1, e), (n, s, s)

)
.

We have an =

∣∣∣∣n−1⋂
i=1

Ai

∣∣∣∣ = |E| − ∣∣∣∣n−1⋃
i=1

Ai

∣∣∣∣ and according to the inclusion–exclusion principle∣∣∣∣∣n−1⋃
k=1

Ak

∣∣∣∣∣ = n−1

∑
k≥1

(−1)k−1Ωk,

where Ωk is the cardinality of the k-tuple-wise intersection of sets A1, . . . , An−1.
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If for k ∈ [n− 1] we denote by At1,...,tk the set

L
(
U∗ [W , DD∗]t1 (DD∗ + U∗) [W , DD∗]t2 · · · [W , DD∗]tk U∗, (0, 1, e), (n, s, s)

)
where for v ∈N≥1, [W , DD∗]v is (WDD∗)v−1W , then Ωk can be rewritten as

∑
t1+···+tn−k=n

ti 6=0

|At1,...,tn−k |

and E as A1, . . . , 1︸ ︷︷ ︸
n

. Moreover, by the change of variable k← n− k, we obtain

an =
n

∑
k=1

(−1)n+k ∑
t1+···+tk=n

ti 6=0

|At1,...,tk |.

But |At1,...,tk | is equal to
k

∏
j=1

∣∣L (D∗[W, DD∗]tj D∗, p(j), p(j + 1)
)∣∣

where p(j) =

(
j−1
∑
`=1

t`, e +
j−1
∑
`=1

t`(β− α), e +
j−1
∑
`=1

t`(β− α)

)
so with a computation similar

to (3.1) we obtain that |At1,...,tk | equals
k

∏
j=1

(
e + (β− α)

(
t1 + · · ·+ tj−1

)
− (α− 1)tj

tj

)
.

Conclusion and perspectives

We believe that prographs can encode or model structures that are not captured by
the classical combinatorics on trees. To measure the expressive power of prographs,
we propose to study their generating series. Formally, given a set of generators G, we
wonder in which class (rational, algebraic, D-finite, D-algebraic,. . . [11]) the series

ϕ(G) := ∑
e,n,s≥0

|PGe,s,n(G)| xnyezs = ∑
e,n,s≥0

|PPe,n,s,s(G)| xnyezs (3.2)

belongs to. We noticed that the families of paths in bijection with prographs are part
of the paths studied by [2] and we computed a functional equation satisfied by (3.2). A
study of the singularities of (3.2) might conclude that it is not D-finite in most cases.

Another generalization that we have not explored is the extension of the combinato-
rial study to prographs made of generators without inputs or outputs.
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