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Topology of Posets with Special Partial Matchings
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Abstract. Special partial matchings (SPMs) are a generalisation of Brenti’s special
matchings. Let a pircon be a poset in which every non-trivial principal order ideal is
finite and admits an SPM. Thus pircons generalise Marietti’s zircons. We prove that
every open interval in a pircon is a PL ball or a PL sphere. It is then demonstrated
that Bruhat orders on certain twisted identities and quasiparabolic W-sets constitute
pircons. Together, these results extend a result of Can, Cherniavsky, and Twelbeck,
prove a conjecture of Hultman, and confirm a claim of Rains and Vazirani.

Résumé. Les couplages partiels distingués (SPMs) forment une généralisation des
couplages distingués définis par Brenti. Un pircon est un EPO (ensemble partiellement
ordonné) dans lequel tout idéal ordonné principal et non-trivial est fini et admet un
SPM. Ainsi les pircons généralisent les zircons définis par Marietti. On montre que tout
intervalle ouvert d’un pircon est une PL-boule ou une PL-sphère (où PL signifie linéaire
par morceaux). Ensuite on montre que l’ordre de Bruhat sur certaines identités tordues
et W-ensembles quasiparaboliques forment des pircons. Ces résultats généralisent
un résultat de Can, Cherniavsky et Twelbeck, montre une conjecture de Hultman et
confirme une réclamation de Rains et Vazirani.

Keywords: Special partial matching, PL topology, pircons, twisted identities, quasi-
parabolic sets

1 Introduction

A special matching on a poset is a complete matching of the Hasse diagram satisfying
certain extra conditions. The concept was introduced by Brenti [6]. For eulerian posets,
an equivalent notion was also independently introduced by du Cloux [9]. Their main
motivation was to provide an abstract framework in which to study the Bruhat order on
a Coxeter group. Namely, every non-trivial lower interval in the Bruhat order admits
a special matching. Thus, Bruhat orders provide examples of zircons, posets in which
every non-trivial principal order ideal is finite and has a special matching. Beginning
with Marietti [18], zircons have been the focal point of a lot of attention; see, e.g., [8, 11,
17]. Notably, (the order complex of) any open interval in a zircon is a PL sphere; this is
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essentially a result of du Cloux [9, Corollary 3.6], which is based on results from Dyer’s
thesis [10]. Reading [20] provided a different proof.1

In [2], two of the present authors generalised the special matching concept to special
partial matchings (SPMs), which are not necessarily complete matchings satisfying sim-
ilar conditions. Generalising zircons, let us say that a pircon is a poset in which every
non-trivial principal order ideal is finite and admits an SPM. These notions, too, are origi-
nally motivated by Coxeter group theory: the dual of the Bruhat order on the fixed point
free involutions in the symmetric group is a pircon [2]. This is generalised considerably
in Section 4, where it is demonstrated that the Bruhat order on the twisted identities
ι(θ) is a pircon whenever the involution θ has the so-called NOF property. Moreover,
Bruhat orders on Rains and Vazirani’s [19] quasiparabolic W-sets (under a boundedness
assumption) form pircons. In particular, this applies to all parabolic quotients of Coxeter
groups.

We investigate the topology of posets with SPMs. Our first main result roughly states
that an SPM provides a way to “lift” the PL ball or sphere property from a subinterval;
this is Theorem 3.4. It follows that every open interval in a pircon is a PL ball or a PL
sphere, which is our second main result. In particular, this proves a conjecture from
[12] on Bruhat orders on twisted identities, and confirms a claim from [19] about quasi-
parabolic W-sets.

The overall proof strategy is inspired by that of Reading’s aforementioned proof in
[20]. Roughly, if P is a poset with minimum 0̂, maximum 1̂, and an SPM M, we prove that
P can be obtained from the interval [0̂, M(1̂)] using modifications (including a version of
Reading’s “zippings”) that preserve PL balls or spheres. Investigating the effect of these
modifications on the poset topology forms the technical backbone of the paper.

The remainder of the extended abstract is structured in the following way. In the
next section, we recall basic definitions and review useful results from the literature. We
introduce pircons and study ways to locally modify posets, including Reading’s zippings
from [20]. These modifications turn out to preserve PL balls and spheres. Section 3 gives
our main results. We explain how a poset which admits an SPM can be obtained from
one which in some sense is easier to understand, using the modifications studied in the
previous section. In Section 4, we explain how examples of pircons are provided by
Bruhat orders, first on twisted identities and second on quasiparabolic W-sets in Coxeter
groups. The implications of our second main result in these contexts are discussed.
Finally, in the last section, we raise some open questions.

The details that are omitted in this extended abstract will appear in the complete
work [1].

1Although Reading worked in the context of Bruhat orders, his proof is valid in the more general zircon
setting.
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2 Background

Posets Let P be a poset (partially ordered set). If P contains an element denoted 0̂ or 1̂,
it is assumed to be a minimum or a maximum, respectively, i.e., x ≥ 0̂ and x ≤ 1̂ for all
x ∈ P. The proper part of P is then P = P− {0̂, 1̂}.

Standard interval notation is employed for posets. Thus, if x, y ∈ P, then

[x, y] = {z ∈ P | x ≤ z ≤ y},

with the induced order from P, and similarly for open and half-open intervals.
An order ideal J ⊆ P is an induced subposet closed under going down, i.e., x ≤ y ∈

J ⇒ x ∈ J. An order ideal is principal if it has a maximum. For principal order ideals,
the notation P≤y = {x ∈ P | x ≤ y} is convenient.

Suppose every principal order ideal in P is finite. If, for any y ∈ P, all maximal chains
(totally ordered subsets) in P≤y have the same number of elements, P is called graded. In
this case, there is a unique rank function, i.e., a function rk : P → {0, 1, . . .} such that
rk(x) = 0 if x is minimal, and rk(y) = rk(x) + 1 if y covers x.

Suppose π : P → P′ is an order-preserving map of posets. Then π is called an order
projection if for every ordered pair x′ ≤P′ y′ in P′ there exist x ≤P y in P such that
π(x) = x′ and π(y) = y′. In particular, any order projection is surjective. We construct
the quotient Fπ as follows. The elements of Fπ are the fibres π−1(x′) = {x ∈ P | π(x) =
x′} for x′ ∈ P′. A relation on Fπ is given by F1 ≤Fπ

F2 if x ≤P y for some x ∈ F1 and
y ∈ F2. This is a partial order if π is an order projection. We then call Fπ the fibre poset.
It is isomorphic to P′ (see [20, Proposition 1.1]).

Special Partial Matchings On a poset P we define a matching concept which gener-
alises the special matchings defined by Brenti in [6].

Definition 2.1 ([2]). Suppose P is a finite poset with 1̂, and let C denote its cover relation.
A special partial matching, or SPM, on P is a function M : P→ P such that

• M2 = id,

• M(1̂) C 1̂,

• for all x ∈ P, M(x) C x, M(x) = x, or x C M(x), and

• if x C y and M(x) 6= y, then M(x) < M(y).

An SPM without fixed points is precisely a special matching.
A poset with an SPM is isomorphic to a certain fibre poset. We describe below the

fundamental construction that gives this isomorphism. This extends Reading’s corre-
sponding construction for Bruhat intervals [20, Section 5].
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Let P be a finite poset with 0̂ and 1̂, and let 2 denote the totally ordered two-element
poset {α, β} with α < β. Assume M is an SPM on P, and define π : [0̂, M(1̂)]× 2→ P by

(p, γ) 7→
{

M(p) if γ = β and p C M(p),
p otherwise.

It is readily checked that the fibres of π are as follows:

π−1(p) =


{(M(p), β)} if p 6≤ M(1̂),
{(p, α)} if p < M(p),
{(p, α), (p, β)} if p = M(p),
{(p, α), (M(p), β), (p, β)} if M(p) < p ≤ M(1̂).

(2.1)

Lemma 2.2. The map π is an order projection. In particular, P is isomorphic to the fibre poset
Fπ.

Pircons A zircon is a poset in which for every non-minimal element x the order ideal
P≤x is finite and admits a special matching. The original definition given by Marietti
([18]) is actually slightly different but it is equivalent to the definition given here (see [11,
Proposition 2.3]). Zircons can be extended to pircons as follows:

Definition 2.3. A poset P is a pircon if, for every non-minimal element x ∈ P, the order
ideal P≤x is finite and admits an SPM.

Zippings and Removals In [20], Reading introduced the concept of a zipper in a poset
P. We restrict his definition somewhat, and we introduce a special class of zippers that
we call clean zippers.

Definition 2.4. Let P be a finite poset with 0̂ and 1̂, and distinct elements x, y, z ∈ P. Call
(x, y, z) a zipper if

(i) z covers only x and y,

(ii) z = x ∨ y, where ∨ denotes join (supremum), and

(iii) [0̂, x) = [0̂, y).

The zipper is proper if z 6= 1̂.
A zipper (x, y, z) is called clean if it is proper, and for some coatom c there is a poset

isomorphism ϕ : [x, 1̂]→ [x, c]× 2 such that ϕ(z) = (x, β).

Reading proved in [20] that one can construct a new poset P′ by identifying the
elements in a zipper.
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Definition 2.5. Given P with a partial order ≤ and a proper zipper (x, y, z), let P′ =
(P− {x, y, z})⊎{x′}, and define a partial order ≤′ on P′ by

• a ≤′ b if a ≤ b,

• x′ ≤′ a if x ≤ a or y ≤ a,

• a ≤′ x′ if a ≤ x (or, equivalently, a ≤ y), and

• x′ ≤′ x′,

for all a and b in P− {x, y, z}. We say that the poset P′ is obtained from P by zipping.

In addition to zippings, we need another way to modify posets.

Definition 2.6. Let P be a finite poset with 0̂ and 1̂. An element z 6= 1̂ is removable if
z covers exactly one element x, and for some coatom c there is a poset isomorphism
ϕ : [x, 1̂]→ [x, c]× 2 such that ϕ(z) = (x, β).

If z ∈ P is removable, we shall refer to P−{z} as obtained by a removal. Alternatively,
in analogy with zippings, we may consider P− {z} as being obtained by identifying x
and z.

Simplicial Complexes and PL Topology Throughout the present abstract, all simplicial
complexes are finite. By convention, the empty set is considered to be a simplex of every
non-void simplicial complex. Given an abstract simplicial complex ∆, we shall denote
its geometric realisation (defined up to linear homeomorphism) by ‖∆‖, a polyhedron
in some real euclidean space. The simplices of ∆ are sometimes called its faces, and
maximal faces are referred to as facets.

Suppose ∆ and ∆′ are (abstract) simplicial complexes. A continuous map f : ‖∆‖ →
‖∆′‖ is piecewise linear, or PL, if its graph is a euclidean polyhedron. This is equivalent to
asserting that there are simplicial subdivisions ∆̃ and ∆̃′ of ∆ and ∆′, respectively, with
respect to which f is a simplicial map of the corresponding triangulations of ‖∆‖ and
‖∆′‖.

Say that ∆ and ∆′ are PL homeomorphic if there exists a PL homeomorphism f : ‖∆‖ →
‖∆′‖ (it follows that f−1 is also PL).

A PL d-ball is a simplicial complex which is PL homeomorphic to the simplicial com-
plex ∆d whose only facet is the d-dimensional simplex. A PL (d− 1)-sphere is a simplicial
complex which is PL homeomorphic to the simplicial complex obtained by removing the
facet from ∆d.

Given a finite poset P, its order complex ∆(P) is the abstract simplicial complex whose
faces are the chains in P. In order to prevent proliferation of brackets when taking order
complexes of poset intervals, we shall write ∆(x, y) instead of ∆((x, y)).



6 Nancy Abdallah, Mikael Hansson, and Axel Hultman

3 Topology of pircons

The aim of this section is to show that open intervals in pircons are PL balls or spheres.
Lemma 2.2 shows that every principal order ideal in a pircon is isomorphic to a fibre
poset Fπ. The next result is proven by passing to Fπ by identifying the elements of
one non-trivial fibre at a time in a suitable order. Such an identification is either a clean
zipping or a removal, depending on the cardinality of the fibre. Recall that the fibres are
given in Equation 2.1. This is analogous to Reading’s [20, Theorem 5.5].

Theorem 3.1. Let P be a finite poset with 0̂ and 1̂. If M is an SPM on P, then P can be obtained
from [0̂, M(1̂)]× 2 by a sequence of clean zippings and removals.

Reading proved that proper zipping preserves PL spheres ([20, Theorem 4.7]). Fur-
thermore, clean zippings and removals preserve PL balls, as the next two theorems state.
They form the foundation of our work.

Theorem 3.2. If P′ is obtained from P by zipping a clean zipper (x, y, z) and ∆(P) is a PL d-ball,
then so is ∆(P′).

The main proof idea is to obtain ∆(P′) by removing a PL ball from ∆(P) (which corre-
sponds to the simplicial complex whose facets are the maximal chains passing through
x or y) and adding another PL ball (which corresponds to the simplicial complex whose
facets are the maximal chains passing through x′). It turns out that this modification
preserves PL balls under certain conditions on their boundaries, which are satisfied in
the context of Theorem 3.2.

Using a similar argument and the fact that one gets a PL ball by deleting a vertex
from a PL sphere, we also prove the following result.

Theorem 3.3. Suppose z ∈ P is removable. If ∆(P) is a PL d-ball or a PL d-sphere, then
∆(P− {z}) is a PL d-ball.

Combining the aforementioned results, we obtain strong topological statements about
posets with special partial matchings. These are our main results.

Theorem 3.4. Let P be a finite poset with 0̂ and 1̂, and suppose M is an SPM on P. If ∆(0̂, M(1̂))
is a PL d-ball, then ∆(P) is a PL (d + 1)-ball. If ∆(0̂, M(1̂)) is a PL d-sphere, then ∆(P) is
a PL (d + 1)-ball or a PL (d + 1)-sphere; the latter holds if and only if M is actually a special
matching.

Applying Theorem 3.4 on the principal order ideals of a pircon and using an induc-
tive argument on the cardinality of a longest chain in the ideal, we deduce our second
main theorem, which in particular characterizes zircons among pircons.

Theorem 3.5. Suppose P is a pircon and x < y in P. Then ∆(x, y) is a PL ball or a PL sphere.
Moreover, there exist x < y in P such that ∆(x, y) is a ball if and only if P is not a zircon.
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4 Applications in Coxeter Groups

In this section, we demonstrate how Theorem 3.5 can be applied to certain posets appear-
ing in Coxeter group theory. Acquaintance with the basics of this theory, as explained
for example in [4] or [13], is assumed.

4.1 Twisted identities

As a first application, we prove [12, Conjecture 6.3], see Corollary 4.3 below. The reader
may consult [12] for context. Here we only describe the necessary ingredients for the
statement.

Let (W, S) be a Coxeter system with an involutive automorphism θ. Define two
subsets of W as follows. The set of twisted involutions is

I(θ) = {w ∈W | θ(w) = w−1},

and the set of twisted identities is

ι(θ) = {θ(w)w−1 | w ∈W}.

It is clear that ι(θ) ⊆ I(θ).
Say that θ has the no odd flip, or NOF, property if sθ(s) has even or infinite order for

every s ∈ S with s 6= θ(s).2 For any X ⊆ W, let Br(X) denote the subposet of the Bruhat
order on W which is induced by X. The identity element e ∈ W is the minimum in
Br(W), hence in Br(ι(θ)).

When W is of type A2n+1 and θ is the unique non-trivial involution, [2, Theorem 4.3]
shows that Br(ι(θ)) is a pircon. This is generalised substantially in the next result.

Theorem 4.1. If θ has the NOF property, then Br(ι(θ)) is a pircon.

Remark 4.2. In general, Theorem 4.1 is false without the NOF assumption. For example, suppose
W is of type A4 with generating set S = {s1, s2, s3, s4} such that s1s2, s2s3, and s3s4 have order
3, and all other generator pairs commute. Let θ be the unique non-trivial involution of (W, S),
mapping si to s5−i. Define w = s2s1s3s2s4s3. One readily checks that Br(I(θ))≤w is isomorphic
to the rank 3 boolean lattice, and that Br(ι(θ))≤w is obtained from Br(I(θ))≤w by removing the
rank 2 element s2s3s2. The resulting poset does not admit an SPM, hence Br(ι(θ)) cannot be a
pircon.

In light of Theorem 3.5, Theorem 4.1 immediately implies the following result, which
is the previously mentioned conjecture.

2This means that θ does not flip any edges with odd labels in the Coxeter graph.
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Corollary 4.3 ([12, Conjecture 6.3]). Suppose θ has the NOF property and let I be an open
interval in Br(ι(θ)). Then ∆(I) is a PL ball or a PL sphere.

Remark 4.4.
1. Can, Cherniavsky, and Twelbeck [7] established Corollary 4.3 for W of type A2n+1 using

shellability methods.
2. It follows from [12, Theorem 4.12] that ∆(I) is a sphere precisely when I is full, meaning

that it coincides with an interval in Br(I(θ)), i.e., I = {x ∈ ι(θ) | u < x < w} = {x ∈ I(θ) |
u < x < w} for some u, w ∈ ι(θ).

3. Remark 4.2 shows that Br(ι(θ)) is not a pircon if W is of type A2m, m ≥ 2, with θ 6= id.
It is, however, an open question whether the open intervals are PL balls or spheres. This is not
true for arbitrary W and θ. For example, as shown in [12, Example 4.7], if W is of type Ã2 with
θ 6= id, there are intervals in Br(ι(θ)) which are not even graded.

4.2 Quasiparabolic W-sets

Our second application concerns quasiparabolic W-sets as introduced by Rains and Vazi-
rani [19] as a context to which many nice properties of parabolic quotients extend. Let
us recall some crucial definitions and results from [19]. The reader should consult the
original source for much more background and motivation.

Again (W, S) denotes a Coxeter system. Say that X is a scaled W-set if X is a (left)
W-set equipped with a function ht : X → Z such that |ht(sx)− ht(x)| ≤ 1 for all x ∈ X
and all s ∈ S. An element x ∈ X is called W-minimal if ht(sx) ≥ ht(x) for all s ∈ S. Say
that X is bounded from below if the function ht is bounded from below.

Let T = {wsw−1 | w ∈W, s ∈ S} denote the set of reflections.

Definition 4.5 ([19, Definition 2.3]). A scaled W-set is called quasiparabolic if it satisfies
the following two properties.

1. For all t ∈ T and x ∈ X, if ht(tx) = ht(x), then tx = x.

2. For all t ∈ T, x ∈ X, and s ∈ S, if ht(tx) > ht(x) and ht(stx) < ht(sx), then tx = sx.

Lemma 4.6 ([19, Corollary 2.10]). Each orbit of a quasiparabolic W-set contains at most one
W-minimal element.

Suppose now that X is quasiparabolic with a W-minimal element x0. Assume, with-
out loss of generality, that ht(x0) = 0. If y ∈ X with ht(y) = k and y = s1 · · · skx0 for
some s1, · · · , sk ∈ S then we call s1 · · · skx0 a reduced expression for y. All elements in the
orbit of x0 have reduced expressions [19]. Rather than taking the original definition of
Rains and Vazirani, we use the following result as our definition of the Bruhat order ≤
on X.
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Definition 4.7 ([19, Theorem 5.15]). Let y = s1 · · · skx0 be a reduced expression. Then

x ≤ y ⇐⇒ x = si1 · · · sij x0 for some 1 ≤ i1 < · · · < ij ≤ k.

In particular, elements in different W-orbits are incomparable. Although not obvious
from Definition 4.7, the Bruhat order is indeed a partial order on X, which we denote
by Br(X); it is graded with rank function ht [19, Section 5]. In particular, W-minimal
elements are minimal in the Bruhat order.

Quasiparabolic W-sets have a lifting property:

Lemma 4.8 ([19, Lemma 5.7]). Suppose x, y ∈ X and s ∈ S. If x ≤ y and sx 6≤ sy, then
sx ≤ y and x ≤ sy.

For every non-minimal z in a quasiparabolic W-set bounded from below, there exists
a unique minimal element x0 < z. Let s1 · · · skx0 be a reduced expression of z. Using the
lifting property one can prove that the function M : X → X given by M(x) = s1x gives
an SPM on Br(X)≤z = [x0, z]. This proves the following theorem:

Theorem 4.9. If X is a quasiparabolic W-set which is bounded from below, then Br(X) is a
pircon. In particular, the order complex of every open interval in Br(X) is a PL ball or a PL
sphere.

The topological conclusion of Theorem 4.9 is implied by [19, Theorem 6.4], which
claims CL-shellability of the intervals. Unfortunately, the proof of that result has turned
out to be flawed; see the discussion in [7].

A familiar example of a quasiparabolic W-set is the parabolic quotient W J , J ⊆ S,
which consists of the minimal length representatives of the left cosets of the parabolic
subgroup WJ in W. In this setting, the topological conclusion of Theorem 4.9 was estab-
lished by Björner and Wachs using shellability.

Other examples include several instances of ι(θ) (with W acting by twisted conjuga-
tion, i.e., the action of w on x is given by wxθ(w−1)), including the odd rank type A case.
In fact, it seems possible that ι(θ) is always a quasiparabolic W-set with this action when-
ever θ has the NOF property; if so, Theorem 4.1 would be a special case of Theorem 4.9.
We neither know of a proof nor of a counterexample.

5 Open questions

We conclude the paper with a couple of questions that suggest themselves naturally.
Clearly, all zircons and pircons have rank functions. Indeed, the rank of an element

x equals the dimension of the ball or sphere ∆(0̂, x) plus two, where 0̂ is the unique
minimal element below x.
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Let Z be a zircon with rank function rk. For a non-minimal element z ∈ Z, let Mz
denote a fixed special matching of Z≤z. Given an induced subposet P ⊆ Z and p ∈ P,
let us define

M′p(x) =

{
Mp(x) if Mp(x) ∈ P,
x otherwise.

Suppose M′p is an SPM on P≤p for every non-minimal element p ∈ P. If, moreover, the
restriction of rk to P is a rank function of P, call P an induced pircon of Z.

Whenever Br(ι(θ)) is graded, it has the induced rank function of Br(I(θ)) [12]. In
fact, it follows from the proof of Theorem 4.1 that every pircon of the form Br(ι(θ)) is
an induced pircon of the corresponding zircon Br(I(θ)). Similarly, Br(W J) is an induced
pircon of Br(W) for any J ⊆ S.

Question 5.1. Is every pircon an induced pircon of some zircon?

A common way to establish topological consequences such as those of Theorem 3.5
is to prove shellability. Since Björner [3], there are several variations of lexicographic
shellability; see, e.g., Wachs’ survey [21]. Under this umbrella are gathered several simi-
larly flavoured combinatorial methods that can be used to establish shellability of order
complexes by means of certain labellings of the posets.

Concerning zircons, the following question is known to have an affirmative answer
for Br(W) in arbitrary type [5], as well as for Br(I(θ)) in types A, B, and D [16, 15, 14].
For other pircons, it has been established for Br(W J) [5] and for Br(ι(θ)) in type A of
odd rank [7].

Question 5.2. Is every interval in every pircon lexicographically shellable?

In case both the previous questions turn out to have affirmative answers, one may
speculate that even more could be true. The aforementioned result from [7] can be
interpreted in the following way. For W of type An, Incitti [16] established lexicographic
shellability of Br(I(θ)) by producing an EL-labelling of this poset. When n is odd and
θ 6= id, Can, Cherniavsky, and Twelbeck proved that the restriction of this labelling to
the induced pircon Br(ι(θ)) is an EL-labelling, too.

Question 5.3. Is it true that every induced pircon has an EL-labelling which is induced
from an EL-labelling of the corresponding zircon?
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