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Bijective proof of the rationality
of the generating series of higher-genus maps

Mathias Lepoutre∗1
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Abstract. Bender and Canfield proved in 1991 that the generating series of maps in
higher genus is a rational function of the generating series of planar maps. In this
paper, we give the first bijective proof of this result. Our approach starts with the
introduction of a canonical orientation that enables us to construct a bijection between
4-valent bicolorable maps and a family of unicellular blossoming maps.
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1 Introduction

A map of genus g is a proper embedding of a graph in Sg, the torus with g holes. Planar
maps (or maps of genus 0) have been studied extensively since the pioneering work of
Tutte in the sixties [23]. In a series of work, Tutte obtained remarkable formulas for many
families of maps. His techniques rely on some recurrence relations for maps and some
clever manipulations of generating series. They were extended in the late eighties to the
case of maps of higher genus by Bender and Canfield, who first obtained the asymptotic
number of maps on any orientable surface of genus g [3] and then obtained in [2] the
following stronger result:

Theorem 1.1 (Bender and Canfield [2]). For any g ≥ 0, the generating series Mg(z) of maps
of genus g enumerated by edges is a rational function of z and

√
1− 12z.

Since then, many other approaches have been developed, illustrating deep connec-
tions of maps with various fields of algebra and mathematical physics (e.g. [22, 16, 13]).

The main purpose of this paper is to provide the first bijective proof of Theorem 1.1,
for g ≥ 2. Our proof starts with the well-known bijection between general maps and so-
called 4-valent bicolorable maps. In the planar case, Schaeffer exhibits in [20] a constructive
bijection between 4-valent planar maps and some so-called blossoming trees. The blossom-
ing tree associated to a map is one of its spanning trees, decorated by some stems that
enable to reconstruct the “missing edges”. In genus g > 0, the natural counterpart of
trees are unicellular maps (i.e. maps with only one face) and we obtain in this work the
following generalization of Schaeffer’s result (see Section 3.1 for the terminology):
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Theorem 1.2. There exists a constructive bijection between rooted maps of genus g with n edges
and well-rooted well-labeled well-oriented 4-valent unicellular blossoming maps with n vertices.

The enumeration of maps now boils down to the much easier enumeration of this
family of unicellular maps. As a byproduct we obtain a bijective proof of Theorem 1.1.

Let us now put our work in context of the existing literature. In the planar case,
there are numerous bijections between maps and some families of decorated trees. Two
main trends emerge in these bijections. Either the decorated trees are some blossoming
trees as already described (e.g. [20, 8, 18]) or the trees are decorated by some integers
that capture some metric properties of the maps (e.g. [21, 9]). Bijections of the latter
type have been successfully extended to higher genus [11, 10, 17]. Part of our work is in
fact directly inspired by the paper of Chapuy, Marcus and Schaeffer [11]. In particular,
the analysis of the unicellular maps obtained by our bijection is very similar to theirs.
Unfortunately, with their bijection the generating series of maps can be expressed as
a rational function of some auxiliary functions whose degree of algebraicity is higher
than the known enumerative results. The case of bijections with blossoming trees is
much different and apart from the recent work [12] which treats simple triangulations of
genus 1, there was, previously to our work, no other extension of the existing bijections
in higher genus.

Let us end with an important connection to our work. As shown by Bernardi [4] in
the planar case and generalized by Bernardi and Chapuy [5], a map endowed with a
spanning unicellular embedded graph (whose genus can be smaller than the genus of
the initial surface) can also be viewed as a map endowed with an orientation of its edges
with specific properties. The general theory of α-orientations developed by Felsner in
the planar case [14] has been successfully combined with the result of [4] to give general
bijective schemes in the planar case [6, 7, 1], which enables to recover the previously
known bijections. It would be highly desirable to obtain systematic bijective schemes
in higher genus by combining Bernardi and Chapuy’s result together with the theory
of c-orientations introduced by Propp [19] or its extension by Felsner and Knauer [15].
The main difficulty to tackle is to characterize the orientations that produce spanning
unicellular embedded graph whose genus matches the genus of the original surface.
Our work, presented here only in the case of bicolorable 4-valent maps for lack of space,
but which can be extended straightforwardly to all bicolorable maps, can also be seen
as an important first step in that direction and we hope to be able to extend to other
families of maps in some future work.

Notation: In this article, combinatorial families are named with calligraphic letters,
their generating series is the corresponding capital letter, and an object of the family, is
usually denoted by the corresponding lower case letter. The size being denoted by |�|,
we therefore have for a combinatorial family S : S(z) = ∑

s∈S
z|s|.
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(a) A rooted map of genus 1
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(b) The same map (grey) and
its dual (black)

(c) An oriented planar map
(black) with its dual (grey).

Figure 1: Examples of maps. The root corner is indicated by a double-arrow.

2 Orientations in higher genus

2.1 General

We begin with some definitions about maps. An embedded graph is an embedding of
a connected graph into a given compact surface, taken up to orientation-preserving
homeomorphism of the surface. An embedded graph is cellularly embedded if all its
faces (connected component of the complement) are homeomorphic to discs. A map is a
cellularly embedded graph. The set of maps, counted by number of edges, is denotedM.
In this paper we only consider maps embedded on orientable surfaces. General maps have
no other restriction, and in particular, can have loops or multiple edges. The genus of a
map is the genus of its underlying surface. All families of maps can be refined by their
genus; we denote this refinement by an index indicating the genus, so that for instance
M0 is the set of planar maps. See Figure 1a for an example of a map of genus 1.

An adjacency between a face and a vertex is called a corner. Note that a single pair
vertex-face can give rise to several distinct corners. The degree of a face (resp. vertex)
is the number of adjacent corners. To get rid of automorphisms, maps are rooted at a
distinguished root corner (whose vertex and face are called root vertex and root face).

The set of vertices (resp. edges, faces) of m is denoted Vm (resp. Em, Fm). The number
of vertices (resp. edges, faces) of m is denoted vm (resp. em, fm). The genus of m is
denoted gm. We recall Euler’s formula: vm − em + fm = 2− 2gm.

Since an edge connects two vertices and separates two faces, we can define the dual
map m? of m by exchanging the role of vertices and faces, and swapping the connection
and separation induced by each edge (see Figure 1b). The root corner remains the same
(but its vertex and its face are exchanged). Note that duality is involutive: (m?)? = m.

A map is unicellular if it has only one face. A tree is a map whose underlying graph
has no cycle. A map is 4-valent if all its vertices are of degree 4. Dually, a map is a quad-
rangulation if all its faces are of degree 4. A map is bipartite if its underlying graph is
bipartite, which means that its vertices can be properly colored black and white. In par-
ticular, a bipartite map has no loop. Dually, a map is bicolorable if its faces can be properly
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(a) A map (dashed black) with its (4-valent
bicolorable) radial map (full blue), with
dual-geodesic orientation.
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(b) A map (dashed black) with its (bipartite
quadrangulation) quadrangulated map (full
red), with geodesic orientation.

Figure 2: Classical constructions on a toroidal map.

colored black and white. The set of bipartite quadrangulations (resp. bicolorable 4-valent
maps), counted by number of faces (resp. number of vertices), is denoted BQ (resp. BF ).

A map is Eulerian if all its vertices have even degree. In the sphere, Eulerian is
equivalent to bicolorable. It is not the case anymore in higher genus, where bicolorability
is more relevant. Indeed, in addition to having a nicer dual property, it also appears in
the following well-known bijection, illustrated in Figure 2a:

Proposition 2.1. Maps of genus g with n edges are in bijection with 4-valent bicolorable maps
of genus g with n vertices, or dually, with bipartite quadrangulations of genus g with n faces.

The 4-valent bicolorable map corresponding to a given map is called its radial map,
while the bipartite quadrangulation is its quadrangulated map.

2.2 Structure of orientations of a graph

An orientation of a map is an orientation of each of its edges. The dual orientation of
an orientation r of a map m is the orientation of m? where all dual edges are oriented
from the face to the right of the primal edge toward the face to its left (see Figure 1c).
Note that applying duality twice reverses the orientation. A face is called clockwise (resp.
counterclockwise) if it is to the right (resp. left) of all its adjacent edges.

Orientations provides additional structural properties to maps, useful for algorithmic
purposes. However, since our final purpose is to study maps without an orientation, it
is convenient to assign a canonical orientation to maps. Such a canonical orientation is
obtained as the minimum of a lattice of orientations, as described below.
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The geodesic orientation of a bipartite rooted map is the orientation whose edges are
all oriented toward the root in terms of graph distance. Along any cycle, forward
(resp. backward) edges in this orientation correspond to a distance to the root increasing
(resp. decreasing) by 1. The geodesic orientation thus belongs to the set of bipartite ori-
entations, in which there are as many forward edges as backward edges along any cycle.
This set is endowed with the vertex-push operation, that changes a sink distinct from the
root into a source, by reversing all adjacent edges. Dually, we call bicolorable orientation
the dual of a bipartite orientation, and face-flip the dual of a vertex-push. The next result
follows from [19, Theorem 1].

Theorem 2.2. The set of bipartite orientations of a fixed map is a distributive lattice whose cover
relation is the vertex-push operation, and whose minimum is the geodesic orientation.

Dually, the set of bicolorable orientations of a fixed map is a distributive lattice whose cover
relation is the face-flip operation, and whose minimum is the dual of the geodesic orientation.

Corollary 2.3. The dual of the geodesic orientation (called dual-geodesic orientation for short,
see Figure 3) is the unique bicolorable orientation with no clockwise face except for the root-face.

3 Closing and opening maps

3.1 The closure of a blossoming map

A blossoming oriented map b is an oriented map with stems attached to its corners. These
stems are oriented; an outgoing stem is called a bud and an ingoing stem is called a leaf.
A blossoming map must have as many buds as leaves. The size of a blossoming map
is the total number of stems. Blossoming maps are rooted on a bud. A stem is called
rootable if it is either a leaf or the root bud.

In a blossoming oriented map, the interior degree (resp. blossoming degree, resp. degree)
of a vertex is the number of edges adjacent to the vertex (resp. the number of half-edges
attached to the vertex, resp. the sum of the interior and blossoming degrees). These can
be refined into ingoing and outgoing degrees.

A blossoming oriented map is said to be well-labeled if its corners are labeled so that:
• the labels of two corners adjacent around a vertex differ by 1, in which case the

higher label is to the left of the separating edge or stem,
• the labels of two corners adjacent along an edge coincide, and
• the root bud has labels 0 and 1.

In particular, the orientation of a well-labeled map is Eulerian (which means that the
indegree of each vertex is equal to its outdegree).

Let b be a unicellular blossoming map. The contour word of b is defined as follows:
when doing a clockwise tour of the unique face (which means that the face is to the
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Figure 3: Example of the bijections between a unicellular blossoming map of O (left)
and a 4-valent bicolorable map of BF with its dual-geodesic orientation (right).

right), starting from the root bud, write U (for up-step) for each bud and D (for down-
step) for each leaf. We say that b is well-rooted if its contour word is a Dyck path.

The map b is well-oriented if in a tour of the face starting from the root, each edge
is first followed backward and then forward. Note that this does not depend on the
direction of the tour. In the case of a tree, this means that it is oriented toward the root.

Unicellular blossoming maps are interesting because they are easier to analyse than
maps, but still can encode a map, thanks to the closing algorithm, defined hereafter. Let
b be a well-rooted unicellular blossoming map. We write the contour word of b and
match its steps into pairs up-step/down-step; each up-step U going from height i to
i + 1 is matched to the first down-step D after U going from height i + 1 to i. The half-
edges corresponding to matched steps are then merged into a single oriented edge. An
example of the closing algorithm is given in Figure 3, from left to right.

Lemma 3.1. The closure of a well-rooted well-labeled well-oriented 4-valent unicellular blossom-
ing map of genus g is a rooted 4-valent bicolorable map of genus g with dual-geodesic orientation.

To prove that the resulting orientation is indeed the dual-geodesic orientation, we
prove that it is bicolorable and has no clockwise face (see Corollary 2.3). The set of well-
rooted well-labeled well-oriented 4-valent unicellular blossoming maps is denoted O.

3.2 The opening of a map

In this section, we prove that the closing operation can actually be turned into a bijection
and describe its inverse: the opening algorithm.

Given a rooted oriented map, we define the opening algorithm as follows. We explore
the corners and edges of the map, starting from the root ones, by following or crossing
the edges. In particular, when we meet an edge for the first time:
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• if the edge is ingoing, we follow it without changing side, clockwise around the
adjacent face.
• if the edge is outgoing, we cut it and replace it by a bud and a leaf on the corners

corresponding to the former ingoing and outgoing halfedges. We then cross the
former edge and move to the next one in clockwise direction around the vertex.

When we meet an edge for the second time, we follow it if it was followed the first time,
and cross it if it was crossed. An example of an execution of the opening algorithm is
given in Figure 3, from right to left.

Theorem 3.2. The opening algorithm for maps endowed with their (canonical) dual-geodesic
orientation induces a bijection from BF g to Og. Its inverse is the closing algorithm.

Proof (sketch). Applying the opening algorithm on the geodesic orientation of a bipartite
quadrangulation yields the rightmost breadth-first-search exploration tree, along with
its buds and leaves. A closer look at the definition of the opening algorithm reveals
a symmetry between the roles of faces and vertices, which implies that the opening
algorithm applied to a 4-valent bicolorable map yields the complement of the dual of the
leftmost breadth-first-search exploration tree, which, in particular, has the same genus
as the original map.

4 Enumeration and rationality

4.1 Reducing a map to a scheme

We saw that general maps are in bijection with well-rooted well-labeled well-oriented 4-
regular Eulerian unicellular map. However the analysis of such objects is made difficult
by the non-locality of a condition such as well-rootedness. The following lemma enables
to ignore that condition in the rest of the analysis. The set of rooted well-labeled well-
oriented 4-regular unicellular maps, counted by leaves, is denoted U . We call stem size
of an interior map (recall this means its stems and orientation are removed) the number
of leaves contained in a blossoming map which has this specific interior map.

Theorem 4.1. Let m◦ be an interior map of stem size n. There is a (n + 1)-to-2 application from
rooted well-labeled well-oriented 4-regular unicellular maps with interior map m, to well-rooted
well-labeled well-oriented 4-regular unicellular maps with interior map m.

Proof (sketch). A method similar to the cyclic lemma implies that there are exactly 2 cyclic
permutations of the contour word among n + 1 that yield a Dyck word. To prove The-
orem 4.1, we hence need to reroot a non-well-rooted map on one of the 2 special stems
corresponding to these permutations, by replacing the bud root by a leaf and the spe-
cial stem by a root bud. The main difficulty is to prove that there exists a unique di-
rected path from this special stem to the root, and that reversing it yields a well-labeled
map.
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Figure 4: An example of the pruning of a opened map (whose treelike parts are en-
compassed) with scheme vertices A and B; and rerooting on the scheme of the opened
map. Again the opposite sides are identified, so that the map is of genus 1.

Let u be a rooted well-labeled well-oriented 4-regular unicellular map. Define the
extended scheme as the unicellular map of genus g obtained by iteratively removing all
vertices of u with interior degree 1 along with all stems.

The map u is composed of an extended scheme upon which are attached some half-
edges and treelike parts. These treelike parts, with their leaves, are binary trees, oriented
towards the root of the map. Furthermore, on each interior vertex of these trees is
attached a bud. The set of such trees, counted by leaves, is denoted T . Its generating
series satisfies the recurrence relation T(z) = z + 3T(z)2.

The pruning procedure is defined as follows: each treelike part is replaced by a half-
edge: a root bud if it contains the root, a leaf otherwise (see Figure 4 left and middle).
The image of U by the pruning procedure, counted by leaves, is denoted P .

Lemma 4.2. The pruning algorithm yields: U(z) =
∂T
∂z
· P(T(z)).

All vertices of the pruned map are of interior degree 2, 3 or 4. We call v2, v3, and
v4 the number of such vertices. A quick calculation based on Euler formula gives:
v3 + 2v4 = 4g− 2. There are thus a finite number of vertices of degree 3 or 4, the other
ones being of degree 2. Vertices of interior degree at least 3 are called scheme vertices,
and a stem (resp. bud, leaf) attached on a scheme vertex (of interior degree 3) is called a
scheme stem (resp. bud, leaf ). Another calculation using Euler formula gives:

Lemma 4.3. Out of its v3 = 4g− 2v4 − 2 scheme stems, a pruned map p has exactly 2g− v4
rootable scheme stems. In particular v3 > 0.

We now proceed to reroot the pruned map on a rootable scheme stem. We therefore
choose one rootable scheme stem out of 2g − v4 and mark it. The rerooting is defined
similarly to the proof of Theorem 4.1 (see Figure 4 middle and right). The subset of P
composed of scheme-rooted maps is denoted R.
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Figure 5: Reducing a map of R to a labeled scheme.

Lemma 4.4. The rerooting-on-the-scheme algorithm yields: P(z) =
1

2g− v4(e)
· d(tR(t))

dt
(z).

Let r ∈ R. The sequence of edges encountered between two scheme vertices in a
tour of the face of r all have the same orientation. Such a sequence is called a branch.
We call merging the procedure that replaces each branch by a single edge with the same
orientation (see Figure 5).

The map we obtain is called the labeled scheme. It is not well-labeled because corners
adjacent along an edge do not necessarily have the same label, but the rule around a
vertex is respected (see Figure 5 right). The set of labeled schemes is denoted L.

4.2 Analyzing a scheme

For l ∈ L, we now want to determine which maps have l as labeled scheme. Each
edge of l should be replaced by a valid branch. However we need to be sure that after
replacement, the map is well-labeled, and agrees with the labeling of the scheme.

There are 6 types of vertices of interior degree 2. If the bud and leaf are on opposite
sides, the label of the corners either increases on both side or decreases on both sides.
In the 4 other cases, the half-edges are on the same side, and the label remains the same
before and after the vertex. Therefore each type of vertex of interior degree 2 can be
represented by a step, depending on the variation of the labels around it: an up-step if
the label increases, a down-step if it decreases, and 4 types of stay-steps if it stays the
same. These steps are called weighted Motzkin steps, and together they form a weighted
Motzkin path. An edge of the labeled scheme going from label i to label j can therefore
be replaced by a weighted Motzkin path going from height i to height j.

We denote by D the set of weighted Motzkin paths going from 0 to −1, that remain
non-negative before the last step, counted by length. It satisfies the decomposition equa-
tion: D = z(1 + 4D + D2). We denote by B the set of weighted Motzkin paths going from
0 to 0, counted by length. It satisfies the decomposition equation: B = 1 + 4zB + 2zDB.
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After combination with the previous equation, this equation is rewritten as a function of
D only: B = 1+4D+D2

1−D2 . The generating series of paths going from heigh i to j is: B · D|i−j|.

4.3 Rationality

We conclude by the bijective proof of Theorem 1.1 announced in the introduction. In fact,
we prove a refinement by unlabeled schemes. An unlabeled scheme is a scheme where we
forget all labels; their set is denoted S . We specialize our classes of maps depending on
their scheme, for instance by denoting Ms the set of maps that lead to the unlabeled
scheme s through the successive operations described in Sections 3 and 4.

Theorem 4.5. For any s in S , the generating series Ms(t) is a rational function of T(t).

Since Sg is finite for any fixed g, it implies that Mg(t) = ∑s∈Sg Ms(t) is rational in T(t),
and Theorem 1.1 follows directly.

Proof (sketch). We derive from Theorems 3.2 and 4.1 and Lemmas 4.2 and 4.4, that:

Ms(t) =
2t2g−2

2g− v4(s)

∫ t

0

d(uRs(u))
du

(T(z)) · dT
dz
· dz =

2t2g−2

2g− v4(s)
· T(t) · Rs(T(t)).

In order to prove that Ms is rational in T, we prove that Rs(z) is rational in z. We
apply the same strategy as in [11]; since z = 1

D−1+4+D , it is enough for that to prove that
Rs is rational and symmetric in D (a function Ψ is symmetric in D if Ψ(D) = Ψ(D−1)).

In a labeled scheme, the offset label of a corner is defined as the difference between its
label and the minimal label of the corners incident to the same vertex. Note that offset
labels belong to {0, 1, 2}. In fact, these labels only depend on the unlabeled scheme.
Hence, an unlabeled scheme has 2 different types of edges: if the offset labels are the
same (01 or 12) at both extremities, the edge is called level. If the offset labels are 01
at one extremity and 12 at the other, the edge is called offset toward the second one.
For instance, in Figure 5, the orange and green edges are level, while the purple edge
is offset toward B. We define the offset graph as the oriented sub-graph of the scheme
where only the offset edges are kept, along with their orientation. The offset graph can
be proved to be acyclic.

A first expression of Rs is obtained by summing the contribution of all labelled
scheme leading to the unlabelled scheme s:

Rs = ∑
h1···hnv∈N

min(h1,···,hnv )=0

∏
e=(vi ,vj)∈E

i<j

B · D|hi−hj|+εoff(e), (4.1)

where εoff(e) ∈ {−1, 0, 1} is a correction term that takes the offset into account.
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We look at the relative order of labels of the scheme vertices (defined as the minimum
label of a corner adjacent to this vertex), and encode this by an element o of S(nv), the set
of surjections from [1; nv] to an interval of the form [1; k], where k ≤ nv is the number
of distinct labels. We define the cut of a subgraph S ⊂ V as follows: Cut(S) = |{(u, v) ∈
E s.t. u ∈ S, v /∈ S}|, and Φo(i) = DCut(o−1([i]))

1−DCut(o−1([i]))
. A change of variable leads to:

Rs = Bne · ∑
o∈S(nv)

(
k(o)−1

∏
i=1

Φo(i)

)
· Dnoff(o), (4.2)

where noff(o) is an integer expressed as a sum of the εoff(e), that is equal to 0 if the offset
graph is empty. Using that Φ0(i)(D−1) = − (1 + Φ0(i)(D)), we obtain:

Rs(D−1) = (−1)ne · Bne · ∑
p∈S(nv)

k(p)−1

∏
i=1

Φp(i) · ∑
o�p

(
(−1)k(o)−1 · D−noff(o)

)
, (4.3)

where o � p means that o refines p, or in other words: ∀x, y; o(x) = o(y)⇒ p(x) = p(y).
Using an inclusion-exclusion argument, based on standard properties of surjections

and relying on the acyclicity of the offset graph, we obtain:

∑
o�p

(
(−1)k(o)−1 · D−noff(o)

)
= (−1)ne · Dnoff(p).

Note that when the offset graph is empty, this formula can be obtained as a direct
byproduct of the Euler–Poincaré formula applied to the permutahedron.

Combining Equations (4.1) to (4.3), we obtain that Rs(D) = Rs(D−1), which concludes
the proof that Ms(t) is rational in T(t).
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