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A parking function interpretation for ∇mn,1k
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Abstract. The modified Macdonald polynomials introduced by Garsia and Haiman
(1996) have many remarkable combinatorial properties. One such class of properties
involves applying the ∇ operator of Bergeron and Garsia (1999) to basic symmetric
functions. The first discovery of this type was the Shuffle Conjecture of Haglund,
Haiman, Loehr, Remmel, and Ulyanov (2005), which relates the expression ∇en to
parking functions. A refinement of this conjecture, called the Compositional Shuffle
Conjecture, was introduced by Haglund, Morse, and Zabrocki (2012) and proved by
Carlsson and Mellit (2015).

We give a symmetric function identity relating hook monomial symmetric functions
to the operators used in the Compositional Shuffle Conjecture. This implies a parking
function interpretation for nabla of a hook monomial symmetric function, as well as
LLT positivity. We show that our identity is a q-analog of the expansion of a hook
monomial into complete homogeneous symmetric functions given by Kulikauskas and
Remmel (2006). We use this connection to conjecture a model for expanding ∇mλ in
this way when λ is not a hook.
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1 Introduction

In 1988, Macdonald [15] introduced a new basis for the ring of symmetric functions.
(See Macdonald [16] for an introduction to symmetric function theory.) Later Garsia
and Haiman [5] modified this basis to form the modified Macdonald polynomial basis
{H̃µ[X; q, t]}. They sought a representation-theoretic interpretation for this basis, which
led them to study a number of remarkable Sn bi-modules. Among these was the module
of Diagonal Harmonics. They conjectured a formula for its Frobenius characteristic
DHn[X; q, t] and Haiman [10] later proved their conjecture using algebraic geometry.
However, this formula is not obviously Schur positive or even polynomial.

Bergeron and Garsia [1] noted that the formula of Garsia and Haiman was very close
to the modified Macdonald expansion of en. Inspired by this similarity, they defined
the linear symmetric function operator ∇, which acts by ∇H̃µ = tn(µ)qn(µ′)H̃µ. In this
language, DHn[X; q, t] = ∇en. In [9], Haglund, Haiman, Loehr, Remmel and Ulyanov
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discovered a combinatorial interpretation for ∇en in terms of parking functions (defined
below). Their conjecture is known as the Shuffle Conjecture, and was only recently
proved.

In 1966, Konheim and Weiss [11] introduced parking functions to study a combinato-
rial problem involving cars parking on a one-way street. While they thought of parking
functions as functions, for our purposes it is more helpful to follow the interpretation
introduced by Garsia and Haiman [4]. A Dyck path in the n× n lattice is a path (0, 0) to
(n, n) of North and East steps which stays weakly above the line y = x. A parking func-
tion is a Dyck path with labels {1, 2, . . . , n} on North steps which are column-increasing.
We write the labels of a parking function in the cell just East of each North step. The
labels of a parking function are known as cars. For example, see Figure 1.
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Figure 1: A parking function with 8 cars.

The symmetric function ∇en is a weighted sum of parking functions involving three
statistics. The most natural of these statistics is the area - the number of full cells between
the main diagonal y = x and the underlying Dyck path. In Figure 1, the area is 6. The
other two statistics use the notion of diagonals. Let the k-diagonal be the set of cells cut
by the line y = x + k. In particular, the main diagonal or 0-diagonal consists of the cells
cut by y = x. In Figure 1, there are 3 cars in the 0-diagonal, 4 cars in the 1-diagonal, and
1 car in the 2-diagonal.

The word σ of a parking function is the permutation obtained by reading cars from
highest to lowest diagonal and right to left within each diagonal. In Figure 1, σ =
7 6 5 8 3 1 4 2. Recall that the ides of a permutation σ is the descent set of σ−1. Alter-
natively, it is the set of i so that i + 1 occurs left of i in σ. In the example, ides(σ) =
{2, 4, 5, 6}. Then each parking function PF is weighted by the quasi-symmetric func-
tion Fides(PF). Here if S ⊂ {1, 2, . . . , n − 1}, FS is the following degree-n fundamental
quasi-symmetric function defined by Gessel [6].

FS = ∑
0≤a1≤a2≤···≤an

i∈S⇒ai<ai+1

xa1 xa2 . . . xan

Finally, the dinv of a parking function counts certain inversions in σ. If two cars are
in the same diagonal and the larger occurs further right, we say they create a primary



A parking function interpretation for ∇mn,1k 3

diagonal inversion. If two cars are in adjacent diagonals so that the larger car is higher
and further left, they create a secondary diagonal inversion. The dinv of a parking
function is the total number of primary and secondary diagonal inversions. In Figure 1,
for example, cars 3 and 5 make a primary diagonal inversion, while cars 1 and 3 make
a secondary diagonal inversion. In total, there are five primary diagonal inversions and
four secondary diagonal inversions in our example. Hence dinv = 9.

Let PFn be the set of all parking functions on n cars. Then the classical Shuffle
Conjecture of Haglund, Morse and Zabrocki [9] states

∇en = ∑
PF∈PFn

tarea(PF)qdinv(PF)Fides(PF).

In [8], Haglund, Morse and Zabrocki refined the Shuffle Conjecture using the follow-
ing plethystic symmetric function operators, Ca for non-negative integers a. For any
symmetric function P,

Ca P[X] =

(
−1

q

)a−1

P
[

X− 1− 1/q
z

]
∑

m≥0
zmhm[X]

∣∣∣
za

where f |za is the coefficient of za when f is expanded as a formal power series in z. (For
an introduction to plethystic notation see Loehr and Remmel [14].) Their refinement of
the Shuffle Conjecture, which is stated below, was recently proved by Carlsson and Mellit
[2]. Here comp(PF) is the composition of n giving the distances between points (i, i) on
PF’s underlying path. For example, the parking function in Figure 1 has comp = (2, 4, 2).

Theorem 1.1 (Carlsson–Mellit). For all compositions ρ |= n,

∇Cρ1 · · ·Cρk 1 = ∑
PF∈PFn

comp(PF)=ρ

tarea(PF)qdinv(PF)Fides(PF).

We will use the shorthand Cα = Cα1 · · ·Cαk for a composition α = (α1, . . . , αk).
Haglund, Morse and Zabrocki showed that

en = ∑
α|=n

Cα 1.

This, together with the Compositional Shuffle Conjecture implies the classical Shuffle
Conjecture of Haglund, Haiman, Loehr, Remmel and Ulyanov. In fact, the Composi-
tional Shuffle Conjecture can be used as a tool for finding and proving combinatorial
interpretations of images under the ∇ operator. If some symmetric function f can be
expanded positively using the C operators applied to 1, then ∇ f can be interpreted as
a weighted sum of parking functions. Additionally, Haglund, Haiman, Loehr, Rem-
mel and Ulyanov showed that the weighted sum of all parking functions with the same
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supporting Dyck path can be interpreted as an LLT polynomial. These polynomials, in-
troduced by Lascoux, Leclerc and Thibon [13] are well-studied symmetric functions that
are believed to be Schur-positive. Indeed, Grojnowski and Haiman claim to have proved
the positivity conjecture in an unpublished manuscript [7]. (It is an open problem to
give the Schur expansion of an LLT polynomial.) Hence a positive “C expansion” of
f implies the Schur positivity of ∇ f . However, the family {Cα 1}α|=n does not form a
basis for the ring of symmetric functions – rather the subcollection {Cλ 1}λ`n does. But
simply expanding f in terms of this basis may not yield a positive or even polynomial
expansion, even when a nice expansion into the full collection does exist.

The remainder of this extended abstract is devoted to the problem of giving a pos-
itive polynomial C expansion for the monomial symmetric functions. We prove a nice
C expansion for mλ when λ is a hook shape. This formula interpolates between the
expansion of en above and the expansion

pn = ∑
α|=n

[αn]q Cα 1

proved by the author and Garsia (see [17]). We also show the connection between our
formula and the combinatorial expansion for monomial symmetric functions into the
complete homogeneous symmetric functions given by Kulikauskas and Remmel [12].
We conjecture that this connection can be expanded to all partitions λ, which gives a
combinatorial model for an expansion of all mλ into C operators.

2 A C expansion for hook monomials

In this section, we present a positive C expansion for mλ when λ is a hook shape. Here
the coefficient of each C operator is a polynomial in q computed algorithmically. We
prove this formula inductively. In the next section, we will see that this polynomial
enumerates the bi-brick permutations of Kulikauskas and Remmel [12].

Theorem 2.1. Let n ≥ 2 and k ≥ 1. Then

(−1)n−1mn,1k =
n

∑
a=1

(
k + 1 + ∑a−1

i=1 qn−i
)

∑
τ|=n−a

k

∑
b=0

∑
ρ|=k−b

Cτ Ca+b Cρ 1

Applying ∇ to this identity, together with the Compositional Shuffle Conjecture,
gives a parking function interpretation for (−1)n−1∇mn,1k .

Corollary 2.2. Let n ≥ 2 and k ≥ 1. Then

(−1)n−1∇mn,1k = ∑
PF∈PFn

qpolyn,k(PF) tarea(PF)qdinv(PF)Fides(σ(PF))
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where qpolyn,k(PF) is computed as follows. The constant term is k + 1. If PF is not touching
the main diagonal at (n− 1, n− 1), add qn−1. Otherwise stop. If PF is not touching the main
diagonal at (n− 2, n− 2), add qn−2. Otherwise stop. Continue in this way until you stop or
run out of points on the diagonal (this does not include the starting point).

For example, if n = 5 and k = 3, then the parking function PF in Figure 1 has
qpoly5,3(PF) = 4 + q3 + q4. This is because PF does not touch the main diagonal at
(4, 4) or (3, 3) but it does touch at (2, 2). Note that qpolyn,k(PF) does not depend on
the placement of the cars in PF, only on the underlying Dyck path. Hence Corollary 2.2
expresses ∇mn,1k as a positive sum of LLT polynomials.

Before we sketch the proof of our theorem, we need a lemma. In [8], the authors
observe that the C operators are closely related to the Bernstein operators. Let Sa be the
operator that send sλ1,...,λk to sa,λ1,...,λk for any partition λ = (λ1 ≥ · · · ≥ λk). Then for
any symmetric function P,

Sa P[X] = P
[

X− 1
z

]
∑

m≥0
zmhm[X]

∣∣∣
za

While they use this relationship to express the S operators in terms of the C operators,
the reverse can be accomplished in a similar way. Namely,

Cm = (−1)m−1 ∑
k≥0

Sm+k h⊥k
qm+k−1 .

Here h⊥k is the adjoint to multiplication by hk with respect to the usual scalar product.
We omit the proof of this identity here. Applying the above to a Schur function gives
the necessary lemma.

Lemma 2.3. For all m ≥ 0 and all partitions λ,

qm Cm sλ = ∑
µ

sm+|λ/µ|,µ

q|λ/µ|−1

where the sum is over all partitions µ ⊆ λ for which the diagram λ/µ is a horizontal strip (i.e.,
contains no two boxes in the same column).

Proof sketch for Theorem 2.1. Note that our identity is equivalent to

(−1)n−1mn,1k

= (k + 1)en+k +
n−2

∑
i=1

qi Ci

(
(−1)n−i+1mn−i,1k−(k+1)en−i+k

)
+ q [n− 1]q

n−k

∑
i=n

Ci en−i+k

= (k + 1)en+k +
n−2

∑
i=1

qi Ci

(
(−1)n−i+1mn−i,1k−(k+1)en−i+k

)
+ (−1)n−1 [n− 1]q

qn−2 sn,1k
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Induct on n with k fixed. The above clearly holds when n = 2. Now suppose N > 2
and that the identity holds for all n < N. A combinatorial expansion for any monomial
symmetric function into the Schur basis is given by Eğecioğlu and Remmel [3] in terms
of rim hook tabloids. However, we only use the special case of a hook here, which
appears in [16].

〈mn,1k , sµ〉 =


(−1)n+1(k + 1) if µ = 1n+k

(−1)n−l if µ = (l, 2j, 1i) for j + l ≤ n
0 otherwise.

This, together with the above lemma can be used to compute the Schur expansion of the
right hand side. It is then routine (but technical) to show that this matches the Schur
expansion of the left hand side. It is slightly easier to see that the right hand side is
independent of q. We will see in the next section that at q = 1 our identity collapses to
the complete homogeneous expansion of mn,1k .

3 Bi-brick permutations and a general model for mλ

We begin with a simple observation brought to our attention during a very productive
conversation with Adriano Garsia.

Lemma 3.1. For any composition α,

Cα 1
∣∣∣
q=1

= (−1)|α|−l(α) hα

Proof. Note that when q = 1, the plethystic shift in the definition of the C operators
disappears. Hence we are just left with

Ck f
∣∣∣
q=1

= (−1)k−1 hk f .

Hence a symmetric function f can only have a positive C-expansion if its expansion into
the h-basis f = ∑λ cλhλ has coefficients cλ with signs (−1)|λ|−`(λ). If f does have such a
C-expansion, then the coefficients of all α rearranging to λ sum to a q-analog of cλ.

Therefore we are interested in the h-expansion of monomial symmetric functions.
Kulikauskas and Remmel [12] give a combinatorial interpretation for the desired expan-
sion. The details are quite technical, but we give a brief overview here along will some
illustrative examples. Essentially, the coefficient of hµ in mλ counts (with the appropri-
ate sign) what Kulikauskas and Remmel call “bi-brick permutations.” These objects are
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Figure 2: A bi-brick permutation of size 14.

Figure 3: A cycle with rotational symmetry.

analogous to permutations written in cycle notation. They consists of products of cycles
decorated inside and outside with “bricks.” The lengths of the inner bricks form the
parts of λ, while the outer bricks form µ. Rotational symmetry is forbidden. For exam-
ple, the object in Figure 2 is a bi-brick permutation. The cycle shown in Figure 3, on the
other hand, is not allowed in any bi-brick permutation. This is because it is unchanged
when rotated 180 degrees.

Bi-brick permutations are in bijection with multisets of Lyndon words in the alphabet
{B < L < N < U}. The bijection is as follows: Consider each cycle individually.
Suppose the total length of the cycle is n. Start at any of the n segments with w initialized
to the empty word and work clockwise. At each segment, add a letter to the end of w
according to which kind of brick(s) start at that segment: B if both kinds start, L if only
an outer brick (contributing to λ) starts, U if only an inner brick (contributing to µ)
starts, and N if neither kind of brick starts. When the cycle is complete, w will be a word
of length n. Since the initial cycle has no rotational symmetry, w is not a power of a
shorter word. Hence there is exactly one Lyndon word in its rotational orbit. Take this
Lyndon word to the be image of the given cycle. This process is clearly invertible since
the letters of the word describe the starting cycle. Applying this process to each cycle of
the bi-brick permutation in Figure 2 gives {BUULUU, LLLU, BU, BU}. However, for the
cycle in Figure 3 we obtain LUULUU which has no Lyndon word in its rotational orbit.
This is due to the rotational symmetry of the starting cycle.

For any bi-brick permutation Π, let µ(Π) be the partition of the lengths of Π’s inner
bricks. We also associate a composition to Π whose parts are a reordering of the lengths
of Π’s outer bricks. That is, for a cycle C of length n whose Lyndon word contains a B,
let α(C) = (i2− i1, i3− i2, . . . , n+ i1− ik) where i1, i2, . . . , ik are the locations of all B’s and
L’s in C’s Lyndon word. (Note: i1 is always 1.) If C is a cycle whose Lyndon word does
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Figure 4: A bi-brick permutation with size 12.

not contain a B, rotate the inner blocks of C clockwise as many times as necessary until
the resulting cycle Ĉ has a B in its Lyndon word (i.e. until the ends of some inner and
outer bricks line up.) Let α(C) = α(Ĉ). Finally for a bi-brick permutation Π, let α(Π) be
the composition obtained by concatenating α(C) for all C ∈ Π in reverse lexicographic
order of Lyndon words. For example, the Lyndon word of the second cycle of Figure 2
does not contain a B. Rotating gives a new cycle with Lyndon word BLLN. Therefore
the cycles of Figure 2 have α equal to (3, 3), (1, 1, 2), (2), and (2), respectively, from
left to right. Sorting them according to the Lyndon words of the original cycles gives
α(Π) = (1, 1, 2, 3, 3, 2, 2).

It is important that when a cycle C’s Lyndon word does not contain B, the order of
α is read according to the Lyndon word of the rotated cycle Ĉ, yet C’s Lyndon word is
used for sorting. For example, in Figure 4, the first cycle C has Lyndon word LNLUNN
giving α = (4, 2) while Ĉ’s Lyndon word BNLNNN gives α = (2, 4). The Lyndon word
of the second cycle is BUULUU which lies lexicographically between the Lyndon words
of C and Ĉ. So for this bi-brick permutation Π, we have α(Π) = (2, 4, 3, 3).

Based on experimental data, we make the following conjecture.

Conjecture 3.2. Let µ be any partition. For each bi-brick permutation Π with µ(Π) = µ, there
is a composition α(Π) and a non-negative integer stat(Π) so that

(−1)|µ|−`(µ)mµ = ∑
µ(Π)=µ

qstat(Π) Cα(Π) 1.

Furthermore, it seems from the data that we can always do this in a way such that

• stat(Π) is the sum of stat(C) for the individual cycles C of Π (with multiplicity),

• stat(C) = 0 for a single cycle C if and only if the Lyndon word corresponding to C
contains the letter B, and

• stat(C) < n for every cycle C of length n.

We sketch the proof of this conjecture for the case when µ is a hook by showing that
qpoly from Section 2 enumerates certain bi-brick permutations.
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Figure 5: The bi-brick permutations corresponding to Figure 1 when n = 5 and k = 3.
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Suppose that µ = (n, 1k) and let α be any composition of size n + k. First we note
that (up to rotation) there is only one way to arrange the inner bricks of size µ along
a cycle of size n + k. Starting with this arrangement of inner bricks, choose any of
the k + 1 segments at which an inner brick starts. From this point, add outer bricks
of sizes α1, α2, . . . in a clockwise fashion. Now look at the word in the alphabet {B <
L < N < U} obtained by reading clockwise from the previously chosen starting point.
It may or may not be a Lyndon word. But we claim there is always a unique way to
chop it into Lyndon words so that the pieces are in reverse lexicographic order. Chop
it like so and take the bi-brick permutation corresponding to this multiset of Lyndon
words. For example, when µ = (5, 13) and α = (2, 4, 2), we obtain the first four bi-
brick permutations of Figure 5. Clearly each of these k + 1 bi-brick permutations Π have
α(Π) = α and µ(Π) = µ. Furthermore, each cycle’s Lyndon word contains a B. This is
because the original large cycle’s (not necessarily Lyndon) word started with B, each cut
was only made before another B.

We claim that these are the only bi-brick permutations Π satisfying α(Π) = α and
µ(Π) = µ in which each cycle’s Lyndon word contains a B. We also claim that all
the remaining bi-brick permutations Π with α(Π) = α and µ(Π) = µ are obtained by
rotating the inner bricks of a single bi-brick permutation. In particular, let r and s be as
small as possible so that ∑r

i=1 αi = n + s. Then the desired bi-brick permutation’s inner
brick of size n will lie on a cycle with outer bricks of size α1, . . . , αr, all of whose s inner
bricks of size 1 will be underneath the outer brick corresponding to αr. Call this the
main cycle. The remaining outer bricks of sizes αr+1, . . . , α`(α) will each have it’s own
cycle with inner bricks all of size 1. Then starting with this special bi-brick permutation,
we will rotate the inner bricks of the main cycle so that all s inner bricks of size 1 still
lie underneath the outer brick corresponding to αr. This gives the remaining terms of
qpolyn,k. Continuing our previous example, we obtain the last two bi-brick permutations
of Figure 5.

In the above algorithm, the implied value of stat is the number of segments covered
by the inner brick of size n before (clockwise) the outer brick corresponding to αr starts.
Various modifications of this statistic have been tried for non-hook shapes without suc-
cess. Already the shapes µ = (3, 2) and µ = (2, 2, 1) are troublesome.
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[3] Ö. Eğecioğlu and J.B. Remmel. “A combinatorial interpretation of the inverse Kostka ma-
trix”. Linear Multilinear Algebra 26.1-2 (1990), pp. 59–84. DOI: 10.1080/03081089008817966.

[4] A.M. Garsia and M. Haiman. “A remarkable q, t-Catalan sequence and q-Lagrange inver-
sion”. J. Algebraic Combin. 5.3 (1996), pp. 191–244. DOI: 10.1023/A:1022476211638.

[5] A.M. Garsia and M. Haiman. “Some Natural Bigraded Sn-Modules and q, t-Kostka Coeffi-
cients”. Electron. J. Combin. 3.2 (1996), 561–620 (The Foata Festschrift, paper R24). URL.

[6] I.M. Gessel. “Multipartite P-partitions and inner products of skew Schur functions”. Com-
binatorics and algebra (Boulder, Colorado, 1983). Vol. 34. Contemp. Math. Amer. Math. Soc.,
Providence, RI, 1984, pp. 289–317. DOI: 10.1090/conm/034/777705.

[7] I. Grojnowski and M. Haiman. “Affine Hecke algebras and positivity of LLT and Macdon-
ald polynomials”. Available at https://math.berkeley.edu/~mhaiman/. 2007.

[8] J. Haglund, J. Morse, and M. Zabrocki. “A compositional refinement of the shuffle conjec-
ture specifying touch points of the Dyck path”. Canad. J. Math. 64 (2012), pp. 822–844.

[9] J. Haglund, M. Haiman, N. Loehr, J.B. Remmel, and A. Ulyanov. “A combinatorial formula
for the character of the diagonal coinvariants”. Duke Math. J. 126.2 (2005), pp. 195–232. DOI:
10.1215/S0012-7094-04-12621-1.

[10] M. Haiman. “Vanishing theorems and character formulas for the Hilbert scheme of points
in the plane”. Invent. Math. 149.2 (2002), pp. 371–407. DOI: 10.1007/s002220200219.

[11] A.G. Konheim and B. Weiss. “An occupancy discipline and applications”. SIAM J. Appl.
Math. 14.6 (1966), pp. 1266–1274. DOI: 10.1137/0114101.

[12] A. Kulikauskas and J.B. Remmel. “Lyndon words and transition matrices between elemen-
tary, homogeneous and monomial symmetric functions”. Electron. J. Combin. 13.1 (2006),
R18, 30 pp. URL.

[13] A. Lascoux, B. Leclerc, and J.-Y. Thibon. “Ribbon tableaux, Hall-Littlewood functions, quan-
tum affine algebras, and unipotent varieties”. J. Math. Phys. 38.2 (1997), pp. 1041–1068. DOI:
10.1063/1.531807.

[14] N.A. Loehr and J.B. Remmel. “A computational and combinatorial exposé of plethystic
calculus”. J. Algebraic Combin. 33.2 (2011), pp. 163–198. DOI: 10.1007/s10801-010-0238-4.

[15] I.G. Macdonald. “A new class of symmetric functions”. Actes du 20e Séminaire Lotharingien
Publ. I.R.M.A. Strasbourg (1988), pp. 131–171.

[16] I.G. Macdonald. Symmetric functions and Hall polynomials. Second. Oxford Mathematical
Monographs. With contributions by A. Zelevinsky, Oxford Science Publications. The Claren-
don Press, Oxford University Press, New York, 1995, 475 pp.

[17] E. Sergel. “The Combinatorics of nabla pn and connections to the Rational Shuffle Conjec-
ture”. PhD thesis. University of California, San Diego, 2016.

https://doi.org/10.1080/03081089008817966
https://doi.org/10.1023/A:1022476211638
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v3i2r24
https://doi.org/10.1090/conm/034/777705
https://math.berkeley.edu/~mhaiman/
https://doi.org/10.1215/S0012-7094-04-12621-1
https://doi.org/10.1007/s002220200219
https://doi.org/10.1137/0114101
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v13i1r18
https://doi.org/10.1063/1.531807
https://doi.org/10.1007/s10801-010-0238-4

	Introduction
	A C expansion for hook monomials
	Bi-brick permutations and a general model for m

