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Combinatorics of orbit configuration spaces
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Abstract. From a group action on a variety, define a variant of the configuration space
by insisting that no two points inhabit the same orbit. When the action is almost free,
this “orbit configuration space” is the complement of an arrangement of subvarieties
inside the cartesian product, and we use this structure to study its topology.

We give an abstract combinatorial description of its poset of layers (connected com-
ponents of intersections from the arrangement) which turns out to be of much in-
dependent interest as a generalization of partition and Dowling lattices. The close
relationship to these classical posets is then exploited to give explicit cohomological
calculations akin to those of (Totaro ’96).

Lastly, the wreath product of the group acts naturally. We study the induced action on
cohomology using the language of representation stability: considering the sequence
of all such arrangements and maps between them, the sequence of representations
stabilizes in a precise sense. This is a consequence of combinatorial stability at the
level of posets.

Keywords: orbit configuration space, Dowling lattice, subspace arrangement, repre-
sentation stability

1 Orbit configuration spaces

A fundamental topological object attached to a topological space X is its ordered config-
uration space Confn(X) of n distinct points in X. Analogously, given a group G acting
freely on X one defines the orbit configuration space by

ConfG
n (X) = {(x1, . . . , xn) ∈ Xn | Gxi ∩ Gxj = ∅ for i 6= j}.

These spaces were first defined in [18] and come up in many natural topological contexts,
including:

• Universal covers of Confn(X) when X is a manifold with dim(X) > 2 [18].
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• Classifying spaces of well studied groups, such as normal subgroups of surface
braid groups with quotient Gn [18].

• Arrangements associated with root systems [2, 12].

• Equivariant loop spaces of X and Confn(X) [17].

A fundamental problem is thus to compute the cohomology H∗(ConfG
n (X)). This has

been previously studied e.g. by [3, 6, 9].
The current literature typically requires the action to be free, with main results relying

on this assumption. For an action that is not free, one could simply throw out the set of
“bad” points and consider ConfG

n (X \ S), where

S =
⋃

g∈G\{e}
Xg,

the set of points fixed by a nontrivial group element. However, the excision can create
more harm than good: e.g. when X is a smooth projective variety, removing S destroys
the projective structure and causes mixing of Hodge weights in cohomology. In particu-
lar, having a projective structure makes a spectral sequence calculation more manageable
(see Theorem 3.4). Furthermore, one is often interested in allowing orbit configurations
to inhabit S (see Remark 3.5).

We propose an alternative approach: observe that inside Xn, the space ConfG
n (X \ S)

is the complement of an arrangement An(G, X) consisting of the following subspaces:

• Hij(g) := {(x1, x2, . . . , xn) ∈ Xn | g.xi = xj}, where 1 ≤ i < j ≤ n and g ∈ G, and

• Hs
i := {(x1, x2, . . . , xn) ∈ Xn | xi = s}, where 1 ≤ i ≤ n and s ∈ S.

The cohomology H∗(ConfG
n (X \ S)) can then be computed from the combinatorics of this

arrangement and from H∗(X). Furthermore, the natural action of the wreath product
Gn = G oSn on the space Xn induces an action on the set An(G, X) and its complement
ConfG

n (X \ S). The induced action on H∗(ConfG
n (X \ S)) can also be traced through the

combinatorial computation.

Example 1.1. As a running example, let us consider the case of G = Z2 acting on X = S1,
where the nontrivial group element acts by eθi 7→ e−θi. Here, the set of “bad” points,
which are the points fixed by the nontrivial group element, is S = {1,−1}. The resulting
arrangement An(Z2, S1) corresponding to n = 2 is depicted in Figure 1. The orbit
configuration space in question ConfZ2

2 (S1 \ {1,−1}) is the complement of the thickened
lines inside the torus (S1)2.

The picture in Figure 1 is the real analog of the complex arrangementAn(Z2, C×) that
arises by considering the Z2-complex inversion action on S1 ⊆ C×. While this particular
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Figure 1: The arrangement A2(Z2, S1) inside the torus (S1)2.

real subspace may not be topologically interesting, it captures the combinatorics of the
complex arrangement. Note, however, that the picture does not portray the topology of
ConfZ2

n (C× \ {1,−1}), since at the very least this orbit configuration space is connected.
This example is a special case of a more general type of arrangement: Z2 acting on

an algebraic group using the group inversion, where the set of “bad” points is the set
of two-torsion points. In the case that X = C, C×, or a complex elliptic curve E, the
arrangement An(Z2, X) naturally arises from a type C root system. Their combinatorics
and cohomology representations were studied by the first author in [2].

For our study, we from hereon assume that G and S are finite sets, so that the arrange-
ment An(G, X) is finite. Moreover, we assume that X is a smooth connected oriented
manifold of dimension d > 1. While much of what we say will hold for more general
spaces, we make this last assumption for the purpose of simplifying the exposition.

2 Combinatorics

The combinatorics at play is the poset of layers: connected components of intersections
from An(G, X), ordered by reverse inclusion. This poset admits an abstract combinato-
rial description, that does not in fact depend on X (only depending on the G-set S) and
it is of much independent interest. For example,

• In the case of classical configuration spaces (G trivial), the poset is the lattice of set
partitions of n = {1, 2, . . . , n}.

• In the case that G is a cyclic group acting on X = C via multiplication by roots of
unity, the poset is an instance of the Dowling lattice, described in [7] as an analogue
of the partition lattice which consists of partial G-partitions of n.

In what follows we define an abstract poset Dn(G, S) which specializes to these clas-
sical examples.

Definition 2.1 (see [7]). A partial G-partition β̃ of n consists of a partition β of some subset
of n, along with a projective G-coloring on each block B ∈ β, i.e. a function b : B → G
defined up to the equivalence: b ∼ bg for every g ∈ G. The zero block of a partial
G-partition β̃ of n is the set Z := n \ ∪B∈βB, i.e. the elements not included in β.
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Definition 2.2. The poset Dn(G, S) consists of pairs (β̃, z) where β̃ is a partial G-partition
of n and z : Z → S is an S-coloring of its zero block. The following covering relations
determine the partial order on Dn(G, S):

(merge): (β̃ ∪ {Ã, B̃}, z) ≺ (β̃ ∪ {C̃}, z) where C = A ∪ B with function c = a ∪ bg for
some g ∈ G, and

(color): (β̃ ∪ {B̃}, z) ≺ (β̃, z′) where z′ is the extension of z to Z′ = B ∪ Z given on B by
a composition f ◦ b : B→ G → S for some G-equivariant function f .

The poset Dn(G, S) has a natural action of the wreath product Gn = G oSn given as
follows: for g = (g1, . . . , gn, σ) ∈ Gn and (β̃, z) ∈ Dn(G, S) define g.(β̃, z) = (β̃′, z′) where

• β′ = {σB | B ∈ β} with zero block σZ,

• b′ : σB→ G is given by b′(σ(j)) = gjb(j), and

• z′ : σZ → S is given by z′(σ(j)) = gj.z(j).

Example 2.3. As said before, the classical examples are specializations of our poset.
Indeed, the partition lattice arises by taking G to be trivial and S the empty set; the
Dowling lattice arises by taking S = {0}. In fact, the classical terminology of the zero
block is fitting in our context: it is the block colored by 0.

Example 2.4. Recall the arrangement An(Z2, C×) from Example 1.1. Associated to this
arrangement was the set S = {1,−1}, on which G = Z2 acts trivially. In Figure 2, we
depict the poset D2(Z2, S) consisting of partial Z2-partitions of 2 = {1, 2} whose zero
block (in red) is colored by S (the blue subscripts). The representative maps b : B → G
for each block B in a partial Z2-partition are represented by the cyan subscripts.

Even though Dn(G, S) is not in general a lattice, it supports a myriad of properties
that have been fundamental in the modern study of posets, since it is essentially built
out of partition and Dowling lattices as indicated in the following theorem:

Theorem 2.5 (Local structure). For any A, B ∈ Dn(G, S) with A < B, the interval [A, B] is
isomorphic to a product

Πn1 × . . .×Πnd ×Dm1(G1)× . . .×Dmk(Gk)

where Πni denotes a partition lattice and Dmj(Gj) denotes a Dowling lattice. In particular, every
interval is a geometric lattice and has the homology of a wedge of spheres.

Example 2.6. In Example 2.4 and Figure 2 one finds, for example,[
1e|2e|∅ , ∅|1121

]
∼= D2(Z2)

and [
1e|2e|∅ , 1e|2−1

]
∼= Π1 ×D1(Z2).
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1e|2e|∅

2e|11 1e|21 1e2e|∅ 1e2ι|∅ 1e|2−1 2e|1−1

∅|1121 ∅|112−1 ∅|1−121 ∅|1−12−1

Figure 2: D2(Z2, S) for Z2 = {e, ι} acting on C×, so that the zero block is colored by
S = {1,−1}.

3 Topology

As mentioned above, the poset Dn(G, S) defined in Definition 2.2 arises naturally in the
study of orbit configuration spaces, when we take S to be the set of “bad” points for
the action of G on X. Recall that the poset of layers of the arrangement An(G, X) is the
collection of connected components of intersections from An(G, X), ordered by reverse
inclusion. This poset encodes subtle aspects of the topology of ConfG

n (X \ S), as we shall
see below.

Theorem 3.1 (Poset of layers). The poset of layers of the arrangement An(G, X) is naturally
isomorphic to the poset Dn(G, S).

Proof sketch. Every tuple of points (x1, . . . , xn) ∈ Xn gives a partition of n according to
which points belong to the same orbits. If a point falls inside the set S then it is put
in the zero block and colored by the corresponding element in S. Otherwise, the orbits
disjoint from S are free, and on them a projective G-coloring is well defined by insisting
that it describes the relations between any two points belonging to the orbit.

This association gives a function Xn → Dn(G, S) (which is in fact continuous with
respect to the natural poset topology), and it induces a bijection between the elements of
Dn(G, S) and the layers of An(G, X).

Example 3.2. Returning to our running example A2(Z2, C∗), consider its poset of layers.
Figure 3 depicts the collection of layers in the real analogue A2(Z2, S1) and the inclusion
relations between them. One can think of this illustration as a schematic depiction of the
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Figure 3: The poset of layers for A2(Z2, S1). Note the isomorphism with the poset in
Figure 2.

layers in C∗, whose descriptions and relations are completely identical. The isomorphism
with D2(Z2, {1,−1}) of Figure 2 is apparent, with the natural bijection given e.g. by

1e2ι|∅←→ .

With this, the description of intervals in Dn(G, S) given by Theorem 2.5 translates
back to topology, as we now explain. Since each element of Dn(G, S) could be thought of
as a subspace of Xn, the incidence relation attaches to every point p ∈ Xn the downward
closed subposet

Dn(G, S)p = {B ∈ Dn(G, S) | p ∈ B}

This subposet clearly has a maximum Bp and a minimum 0̂ = Xn, and is thus the
interval [0̂, Bp] described by Theorem 2.5. Geometrically, this gives the local picture of
the arrangement in Xn: it is well known that since X is a smooth manifold, the restriction
of the arrangement An(G, X) to a small ball centered at p is isomorphic to a linear
subspace arrangement Ap, whose intersection poset is the interval [0̂, Bp]. Theorem 2.5
thus translates to the following.

Theorem 3.3 (Local arrangements). For every p ∈ Xn the complement of the local arrange-
ment Ap is isomorphic to a product of (free) orbit configuration spaces of points in Rd. Equiva-
lently, the restriction of ConfG

n (X \ S) to any sufficiently small ball is isomorphic to a product of
such orbit configuration spaces.
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This observation opens the door to cohomology calculations: considering the Leray
spectral sequence for the inclusion ConfG

n (X \ S) ↪→ Xn, one obtains a description of the
E2 page in terms of the above mentioned local arrangements (see [15, 1, 8, 13]). The E2
page decomposes as

Ep,q
2
∼=

⊕
Hp(B; Q)⊗Hq(MB; Q)

where the sum is over the layers B of codimension qd/(d− 1), and MB is the comple-
ment of the local arrangement Ap near a generic point p ∈ B. In particular, one observes
by the work of Goresky–MacPherson [11] that Hq(MB; Q) is trivial unless (d− 1)|q, thus
Epq

2 is trivial unless (d− 1)|q. Furthermore, our work complements [11] and allows the
substantial simplification, that for a layer B of codimension qd/(d− 1),

Hq(MB; Q) ∼=
⊕

A∈[0̂,B]

H̃codim(A)−q−2(0̂, A) ∼= H̃rank(B)−2(0̂, B).

The latter isomorphism follows from the fact that codim(A) = d rank(A) along with
Theorem 2.5: (0̂, A) has the homology of a wedge of spheres in degree rank(A)− 2, thus
it is trivial unless A = B.

Lastly, when X is a smooth projective algebraic variety over C, a Hodge theory ar-
gument guarantees that there could only be one non-zero differential. Thus, in this case
one is closer to getting a hand on the rational cohomology. We summarize this explicit
description of the spectral sequence machinery in the following theorem.

Theorem 3.4 (Leray spectral sequence description). The Leray spectral sequence for the
inclusion ConfG

n (X \ S) ↪→ Xn decomposes as

Ep,(d−1)q
2 =

⊕
B∈Dn(G,S)q

Hp(B; Q)⊗ H̃q−2(0̂, B) =⇒ Hp+(d−1)q(ConfG
n (X \ S); Q)

while terms Ep,q
2 with (d− 1) 6 | q vanish.

Here, the summands are indexed by the layers B of rank q. The H̃q−2(0̂, B) denotes the
reduced homology of the order complex for the interval (0̂, B) ⊂ Dn(G, S), and is therefore
described explicitly by Theorem 2.5.

When X is a smooth complex projective variety, there is at most one non-zero differential in
the above spectral sequence, defined on the d’th page.

Remark 3.5. Our handle on the combinatorics of these arrangements can be exploited
to understand what happens when one removes from X a set T other than the set of
bad points S. For example, let T be a G-invariant subset of S so that G acts (not freely)
on X \ T, and consider the space ConfG

n (X \ T). This is the complement in Xn of a
subarrangement of An(G, X), defined by only including the subvarieties Hs

i when s ∈ T.
The new poset of layers is a subposet of Dn(G, S) which inherits many properties from
Dn(G, S) to which our study applies.
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These types of arrangements arise naturally, as follows. Recall the exampleAn(Z2, X)
of a type C root system arrangement, when X is one of C, C×, or a complex elliptic
curve. The type B and D root system arrangements manifest as subarrangements of this,
by removing from X only a proper subset of bad points.

4 Representation stability

The wreath product Gn = G o Sn acts naturally on Xn, respecting the arrangement
An(G, X), its complement ConfG

n (X \ S), and its poset of layers Dn(G, S). It is therefore
natural to study the rational cohomology H∗(ConfG

n (X \ S); Q) as a linear representation
of Gn. We go about this task using the following seemingly unrelated observation.

As the parameter n varies, the arrangements An(G, X) with their corresponding Gn-
actions assemble into a functorial sequence. Briefly, the projections Xn+k → Xn induce
maps

ConfG
n+k(X \ S)→ ConfG

n (X \ S)

which suitably intertwine the Gn+k and Gn actions. This structure is succinctly charac-
terized by saying that ConfG

• (X \ S) is a functor from a certain category FIG to spaces,
where FIG serves as a means of collating the various Gn into one object. In the classi-
cal case that G is trivial, this is the category FI used by Church–Ellenberg–Farb [5] in
their formulation of representation stability; the categories FIG have been studied first
for G = Z2 by Wilson [16] and later for general G in [14, 3].

The functoriality of the aforementioned spectral sequence makes the E2 page a repre-
sentation of FIG, and thus much of the actions on the sequence n 7→ H∗(ConfG

n (X \ S))
can be understood from the induced FIG action on the posets of layers. There, it turns
out that studying the entire sequence of Dn(G, S) along with the induced intertwining
maps is easier and more informative than the study of any individual poset separately.

Theorem 4.1 (Combinatorial stability). The sequence of posets D•(G, S) is combinatorially
stable in the sense of [10]. Explicitly,

• Finite generation: in every fixed rank q there are finitely many elements xi ∈ Dni(G, S)q

whose images under the intertwining maps cover Dm(G, S)q for all m.

• Downward stability: for every intertwining map f∗ : Dn(G, S) → Dn+k(G, S) and for
every x ∈ Dn(G, S) the induced map on intervals

f∗ : [0̂, x]→ [0̂, f∗(x)]

is an isomorphism.

Qualitatively, the theorem states that the various Dn(G, S) are built from finitely
many types of identical intervals, which are merely permuted by the intertwining maps.
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Proof sketch. The poset maps Dn(G, S) → Dn+k(G, S) extend partitions of n to ones of
n + k by adding all remaining elements (n + k) \n as singleton blocks. Therefore down-
ward stability is trivial: every covering relation in Dn+k(G, S) involves a refinement of
partitions, but when refining a given partition singleton blocks must be ignored since
they can not be refined further. It follows that a refinement is possible in Dn+k(G, S) if
and only if it was already possible in Dn(G, S).

As for finite generation, fixing a rank q has the effect of bounding the number of
elements i ∈ n that are not in singleton non-zero blocks: there can be at most 2q such
elements. It is therefore expected that for large n, almost all i ∈ n are partitioned
into singletons. Once those are removed, one is left with a small partition that already
appeared in Dr(G, S) for some r ≤ 2q. Thus every element in Dn(G, S)q is in the image
of Dr(G, S) for a finite list of r’s.

Combinatorial stability implies that, for each i, understanding the sequence of Gn-
representations Hi(ConfG

n (X \ S); Q) reduces to a finite problem, as the following shows.

Theorem 4.2 (Representation stability). Let T be a G-invariant subset (possibly empty and
possibly S). For every i ≥ 0 the sequence Hi(ConfG

n (X \ T)) of Gn-representations exhibits
representation stability in the sense of [3]. Explicitly, for all n � 1 and every intertwining map
f∗ : Hi(ConfG

n (X \ T))→ Hi(ConfG
n+k(X \ T)) one finds,

1. Injectivity: f∗ in injective.

2. Surjectivity: the image of f∗ generates Hi(ConfG
n+k(X \ T)) as a Gn+k-representation.

3. Stable decomposition: the multiplicities of irreducible representations are the same1 in both
representations.

This theorem generalizes many previous representation stability results:

• When G = {e}, one gets representation stability for cohomology of configuration
spaces of manifolds, as proved by Church [4].

• When G = Z2, one recovers a result of Wilson [16] for complements of root systems
in X = C and of Bibby [2] for the analogous complements in X = C∗ and in a
complex elliptic curve.

• When T = S, one recovers a theorem of Casto [3], which addressed the case of free
G-manifolds. In contrast, our Theorem 4.2 applies to non-free G-spaces, and gives
representation stability e.g. for ConfG

n (X) for complete X.

• Lastly, it follows from Theorem 4.2 that the cohomology stabilizes as representa-
tions of Sn; this stability was shown by Petersen [13].

1There is a compatible way to name irreducible representations of Gn for all n. The claim is that the
multiplicity of irreducibles with the same name does not depend on k.
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