
Séminaire Lotharingien de Combinatoire 80B (2018) Proceedings of the 30th Conference on Formal Power
Article #73, 12 pp. Series and Algebraic Combinatorics (Hanover)

P-Partition Generating Function Equivalence of
Naturally Labeled Posets

Ricky Ini Liu∗1 and Michael Weselcouch†1

1Department of Mathematics, North Carolina State University

Abstract. The P-partition generating function of a (naturally labeled) poset P is a qua-
sisymmetric function enumerating order-preserving maps from P to Z+. Using the
Hopf algebra of posets, we give necessary conditions for two posets to have the same
generating function. In particular, we show that they must have the same number of
antichains of each size and the same shape (as defined by Greene). We also discuss
which shapes guarantee uniqueness of the P-partition generating function and give
a method of constructing pairs of non-isomorphic posets with the same generating
function.
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1 Introduction

For a finite poset P (labeled with the ground set [n] = {1, 2, . . . n}), the P-partition gener-
ating function KP(x) is a quasisymmetric function enumerating certain order-preserving
maps from P to Z+. The question of when two distinct posets can have the same P-
partition generating function has been studied extensively in the case of skew Schur
functions [2, 9, 10], by McNamara and Ward [8] for general labeled posets, and by
Hasebe and Tsujie [7] for rooted trees. The goal of this paper is to consider the naturally
labeled case, that is, to give necessary and sufficient conditions for when two naturally
labeled posets have the same P-partition generating function. (We say that P is naturally
labeled if x �P y implies x ≤ y as integers.)

In general, it is not true that a poset can be distinguished by its P-partition generating
function. The smallest case in which two distinct naturally labeled posets have the
same P-partition generating function is the two 7-element posets shown below. We will
explore this example further in Section 5, where we give a general construction for non-
isomorphic posets with the same generating function.
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We will use tools from the combinatorial Hopf algebra structure on posets due to
Schmitt [11] (see also [1]) to prove that if KP(x) = KQ(x), then for all triples (k, i, j),
P and Q must have the same number of k-element order ideals that have i maximal
elements and whose complement has j minimal elements. As a result of our proof, one
can compute certain coefficients in the fundamental quasisymmetric function expansion
of KP(x) explicitly in terms of the number of such ideals.

We will also show that if KP(x) = KQ(x), then P and Q must have the same shape.
Here, the shape of a finite poset, denoted sh(P), is the partition λ whose conjugate parti-
tion λ′ satisfies

λ′1 + λ′2 + · · ·+ λ′i = ai,

where ai is the largest number of elements in a union of i antichains of P. In fact,
we will prove a stronger statement, namely that if the support of KP(x) and KQ(x) in
the fundamental quasisymmetric function basis is the same, then P and Q must have the
same shape. This suggests the following question: for which partitions λ does sh(P) = λ

guarantee that P is uniquely determined by KP(x)?
We show that if sh(P) has at most two parts, is a hook shape, or has the form sh(P) =

(λ1, 2, 1, . . . , 1), then KP(x) = KQ(x) implies P ∼= Q. Conversely, we show that if sh(P)
contains (3, 3, 1) or (2, 2, 2, 2), then KP(x) = KQ(x) does not necessarily imply P ∼= Q
by constructing two distinct posets of this shape with the same generating function. It
remains to be answered what happens when sh(P) = (λ1, 2, 2, 1, . . . , 1).

In Section 2 we will give some preliminary information; in Section 3 we state some
necessary conditions for two posets to have the same generating function; in Section 4
we discuss when the shape of a poset ensures that its generating function is unique; and
in Section 5 we give a general construction for pairs of posets with the same generating
function.

2 Preliminaries

We begin with some preliminaries about posets, quasisymmetric functions, and Hopf
algebras. For more information, see [6, 8, 12].

2.1 Posets and P-partitions

Let P = (P,≺) be a finite poset. A labeling of P is a bijection ω : P→ {1, 2, . . . , n}.
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Definition 2.1. For a labeled poset (P, ω), a (P, ω)-partition is a map σ : P → Z+ that
satisfies the following:

(a) If x � y, then σ(x) ≤ σ(y).

(b) If x � y and ω(x) > ω(y), then σ(x) < σ(y).

Definition 2.2. The (P, ω)-partition generating function K(P,ω)(x1, x2, . . . ) for a labeled
poset (P, ω) is given by

K(P,ω)(x1, x2, . . . ) = ∑
(P,ω)-partition σ

x|σ
−1(1)|

1 x|σ
−1(2)|

2 . . . ,

where the sum ranges over all (P, ω)-partitions σ.

A labeled poset (P, ω) is equivalent to a poset P with ground set [n]. Hence we may
refer to the generating function K(P,ω)(x1, x2, . . . ) as KP(x1, x2, . . . ) or KP(x) if the choice
of ω is implicit.

In this paper, we will usually restrict our attention to the case when P is naturally
labeled, that is, when ω is an order-preserving map. In this case, KP(x) does not depend
on our choice of natural labeling but only on the underlying structure of P.

A linear extension of a poset P with ground set [n] is a permutation σ of [n] that
respects the relations in P, that is, if x � y, then σ−1(x) ≤ σ−1(y). The set of all linear
extensions of P is denoted L(P).

2.2 Compositions

A composition α = (α1, α2, . . . , αk) of n is a finite sequence of positive integers summing
to n. The compositions of n are in bijection with the subsets of [n− 1] in the following
way: for any composition α, define

D(α) = {α1, α1 + α2, . . . , α1 + α2 + · · ·+ αk−1} ⊆ [n− 1].

Likewise, for any subset S = {s1, s2, . . . , sk−1} ⊆ [n− 1] with s1 < s2 < · · · < sk−1, we
can define the composition

co(S) = (s1, s2 − s1, s3 − s2, . . . , sk−1 − sk−2, n− sk−1).

2.3 Quasisymmetric Functions

A quasisymmetric function in the variables x1, x2, . . . (with coefficients in C) is a formal
power series f (x) ∈ C[[x]] of bounded degree such that, for any composition α, the



4 Ricky Ini Liu and Michael Weselcouch

coefficient of xα1
1 xα2

2 · · · x
αk
k equals the coefficient of xα1

i1
xα2

i2
· · · xαk

ik
whenever i1 < i2 <

· · · < ik. We denote the algebra of quasisymmetric functions by QSym.
The fundamental quasisymmetric function basis {Lα} is indexed by compositions α and

is given by
Lα = ∑

i1≤···≤in
is<is+1 if s∈D(α)

xi1 xi2 · · · xin .

For any labeled poset P (on the ground set [n]), KP(x) is a quasisymmetric function,
and we can express it in terms of the fundamental basis {Lα} using the linear extensions
of P. For any linear extension σ ∈ L(P), define the descent set of σ to be des(σ) = {i |
σ(i) > σ(i + 1)}. We abbreviate co(des(σ)) by co(σ).

Theorem 2.3 ([4, 12]). Let P be a (labeled) poset on [n]. Then

KP(x) = ∑
σ∈L(P)

Lco(σ).

In other words, the descent sets of the linear extensions of P determine its P-partition
generating function.

If KP(x) = ∑α cαLα, then we define the support of KP(x) to be

supp(KP(x)) = {α | cα 6= 0}.

2.4 Antichains and Shape

An antichain is a subset A of a poset P such that any two elements of A are incomparable.
The width of P is the size of its longest antichain.

The following Duality Theorem due to Greene allows one to associate to any poset a
partition called its shape. For k ≥ 0, let ak (resp. ck) denote the maximum cardinality of a
union of k antichains (resp. chains) in P. Let λk = ck− ck−1 and λ̃k = ak− ak−1 for k ≥ 1.

Theorem 2.4 (Greene [5], [3]). For any finite poset P, the sequence λ = (λ1, λ2, . . . ) and
λ̃ = (λ̃1, λ̃2, . . . ) are weakly decreasing and form conjugate partitions of the number n = |P|.

The partition λ is called the shape of P. Note that the number of nonzero parts in
sh(P) equals the width of P.

2.5 Poset of Order Ideals

An order ideal of a poset P is a subset I such that x ∈ I implies y ∈ I for y ≤ x. The
set of all order ideals of P, ordered by inclusion, forms a poset that we will denote J(P).
In fact, J(P) is a finite ranked distributive lattice. The rank of an ideal is the number of
elements in the ideal.
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Each ideal I in J(P) covers a number of elements equal to the number of maximal
elements of I, and I is covered by a number of elements equal to the number of minimal
elements of P \ I. Let antik,i,j(P) be the number of k-element ideals I of P such that I has
i maximal elements and such that P \ I has j minimal elements. Equivalently, antik,i,j(P)
is the number of rank k elements of J(P) that cover i elements and are covered by j
elements.

If there is only one element of a certain rank in J(P), then P can be expressed as
P = Q⊕ R, where ⊕ is ordinal sum. (By definition, in the ordinal sum P = Q⊕ R, x �P y
if and only if x �Q y, x �R y, or x ∈ Q and y ∈ R.)

Definition 2.5. A finite poset P is irreducible if P = Q⊕ R implies that either Q ∼= P or
R ∼= P.

Each poset has a unique (up to isomorphism) ordinal sum decomposition, P = P1 ⊕
P2 ⊕ · · · ⊕ Pk with Pi irreducible and |Pi| = ni for i = 1, . . . , k. The ranks in which J(P)
has exactly one element are 0, n1, n1 + n2, . . . , n1 + n2 + · · ·+ nk. Linear extensions of P
can be broken up into k parts: the first n1 elements form a linear extension of P1, the
next n2 elements form a linear extension of P2 and so on. In the case when P is naturally
labeled, if elements a and b form a descent in a linear extension of P, then a and b must
both be in Pi for some i. This means that no linear extension of P has a descent in the
locations n1, n1 + n2, . . . , and n1 + n2 + · · ·+ nk.

Lemma 2.6. Suppose P has an ordinal sum decomposition P = P1 ⊕ P2 ⊕ · · · ⊕ Pk and Q has
an ordinal sum decomposition Q = Q1 ⊕ Q2 ⊕ · · · ⊕ Qj. If KP(x) = KQ(x) then k = j and
KPi(x) = KQi(x) for i = 1, . . . , k.

Proof. This follows immediately from the fact that linear extensions can only have de-
scents in their irreducible parts.

2.6 Hopf Algebra

Let J denote the set of all finite distributive lattices up to isomorphism. The free C-
module, C[J ], whose basis consists of isomorphism classes of distributive lattices [J] ∈
J , can be given a Hopf algebra structure known as the reduced incidence Hopf algebra [11].
Multiplication and comultiplication are defined as follows:

∇([J1]⊗ [J2]) := [J1 × J2],

∆[J] := ∑
x∈J

[0̂, x]⊗ [x, 1̂]

where [a, b] = {x ∈ J | a ≤ x ≤ b}. In fact, the reduced incidence Hopf algebra can
be made into a combinatorial Hopf algebra after choosing an appropriate character. A
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combinatorial Hopf algebra H is a graded connected Hopf algebra over a field k equipped
with a character (multiplicative linear function) ζ : H → k [1]. We define the character
of the reduced incidence Hopf algebra to be the map ζ : C[J ] → C defined on basis
elements by ζ([J]) = 1 for all J and extended linearly.

These functions can similarly be defined on the free C-module, C[P ], whose basis
consists of isomorphism classes of posets P in P , the set of all finite posets:

∇([P1]⊗ [P2]) := [P1 ∪ P2],
∆[P] := ∑

I
[I]⊗ [P \ I],

where the sum runs over all order ideals I of P. The corresponding character of C[P ]
is ζP : C[P ] → C defined by ζP (P) = 1 for all P, extended linearly. These functions all
commute with the map J that sends P to J(P), so J is a Hopf isomorphism.

We can define the graded comultiplication ∆k,n−k[P] by

∆k,n−k[P] := ∑
I⊆P
|I|=k

[I]⊗ [P \ I].

The map K : P → QSym that sends P to the P-partition generating function KP(x) is
the unique Hopf morphism that satisfies ζP = ζQ ◦ K, where the character ζQ for QSym
is the linear function that sends Ln to 1 and all other Lα to 0.

3 Necessary Conditions

In this section, we will describe various necessary conditions for two naturally labeled
posets to have the same partition generating function.

3.1 Order ideals and antichains

Recall that antik,i,j(P) is defined to be the number of k-element order ideals of P that
cover i elements in J(P) and are covered by j elements.

Theorem 3.1. If KP(x) = KQ(x) then antik,i,j(P) = antik,i,j(Q) for all triples k, i, j.

Proof sketch. There exists a linear function maxi : QSym→ Z such that

maxi(KP(x)) =
{

1 if P has exactly i maximal elements,
0 otherwise.

Explicitly, on the fundamental basis {Lα},

maxi(Lα) =

 (−1)(k−i+1)( k
i−1) if α = (n− k, 1, 1, . . . , 1︸ ︷︷ ︸

k

),

0 otherwise.
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Similarly, there exists a linear function mini : QSym→ Z satisfying mini(KP(x)) = 1 if P
has exactly i minimal elements, and 0 otherwise.

Then
antik,i,j(P) = ((maxi⊗minj) ◦ ∆k,n−k)(KP(x)),

which depends only on KP(x).

This shows that antik,i,j(P) can be expressed as a linear combination of the coefficients
of the fundamental basis expansion of KP(x). In fact, if we order the compositions in
lexicographic order, then the leading coefficient of antik,i,j(P) is cα(k,i,j)(P), where

α(k, i, j) = co([k− i + 1, k + j− 1] \ {k})
= (k− i + 1, 1, . . . , 1︸ ︷︷ ︸

i−2

, 2, 1, . . . , 1︸ ︷︷ ︸
j−2

, n− k− j− 1),

and all coefficients contributing to any antik,i,j(P) have this form. One can then deduce
the following result.

Corollary 3.2. Let cα(P) and cα(Q) denote the coefficient of Lα in KP(x) and KQ(x), re-
spectively. Then antik,i,j(P) = antik,i,j(Q) for all triples (k, i, j) if and only if cα(k,i,j)(P) =
cα(k,i,j)(Q) for all triples (k, i, j).

It follows that an easily counted property of J(P) determines many of the coefficients
in the fundamental basis expansion of KP(x).

We also obtain as a corollary the following result, conjectured by McNamara and
Ward [8].

Corollary 3.3. If KP(x) = KQ(x), then P and Q have the same number of antichains of size i
for all i.

Proof. The number of antichains of size i in P is ∑k,j antik,i,j(P).

3.2 Shape

Next, we show that the shape of the poset P is determined by KP(x), or more specifically,
by its support.

Theorem 3.4. If supp(KP(x)) = supp(KQ(x)), then sh(P) = sh(Q).

Proof sketch. Since P is naturally labeled, elements i < j form an antichain in P if and
only if there exists a linear extension of P in which j appears immediately before i. This
means that every descent in a linear extension of P is formed by a 2-element antichain,
and similarly, if there is a linear extension of P that has i consecutive descents, then these
elements form an (i + 1)-element antichain in P. Hence P has k disjoint antichains of
total size ak if and only if there is a linear extension of P that has k decreasing runs of
total size ak, which can be determined from supp(KP(x)).
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Corollary 3.5. If KP(x) = KQ(x), then sh(P) = sh(Q).

Proof. Follows directly from the previous theorem.

3.3 Jump

Let the jump of an element x, denoted jump(x), be the maximum number of relations in
a saturated chain from x down to a minimal element. McNamara and Ward [8] prove
that if two posets have the same partition generating function, then they must have the
same number of elements of jump i for any i using the following result.

Theorem 3.6 ([8, Corollary 5.3]). If P and Q have the same partition generating function, then
so do the induced subposets consisting of elements of jump at least i.

A similar argument gives the following result.

Theorem 3.7. If P and Q have partition generating functions with the same support, then so do
the induced subposets consisting of elements of jump at least i.

We define the upward jump of an element x, denoted up-jump(x), to be the maximum
number of relations in a saturated chain from x up to a maximal element. We then define
the jump pair of x to be (jump(x), up-jump(x)).

Theorem 3.8. If supp(KP(x)) = supp(KQ(x)), then P and Q have the same number of ele-
ments with jump pair (i, j) for all i and j.

Proof sketch. Let Pij be the induced subposet of P consisting of all elements with jump
at least i and up-jump at least j. By the previous theorem and its dual, supp(KPij(x)) is
determined by supp(KP(x)), hence so is |Pij|. This implies the result since the number
of elements with jump pair (i, j) is |Pij| − |Pi+1,j| − |Pi,j+1|+ |Pi+1,j+1|.

4 Uniqueness from shape

Since Theorem 3.4 shows that posets with the same generating function must have the
same shape, one can ask for which shapes is a poset of that shape uniquely determined
by its generating function. The next result shows that this is the case when λ has at most
two parts, that is, for posets of width 2.

Theorem 4.1. Let P and Q be width 2 posets. Then KP(x) = KQ(x) if and only if P ∼= Q.

Proof idea. It is enough to show that the result holds for irreducible width 2 posets. An
irreducible width 2 poset must have exactly 2 minimal elements. Suppose P has minimal
elements x0 and y0, and let P′ = P\{x0, y0}. Then KP′(x) is determined from KP(x), so
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P′ is determined up to isomorphism by induction. Thus it remains to determine how
the minimal elements of P compare to elements in P′.

To do this, we use the operations from the reduced incidence Hopf algebra. For
instance, if there is a unique order ideal I of P isomorphic to a chain of size a, then

KP\I(x) = (ζ ⊗ id)∆a,n−a(KP(x))− (ζ ⊗ id)∆a−2,n−a+2(KP′(x)),

so P \ I is determined up to isomorphism by induction. This is typically enough to
determine the entire structure of P since we can often choose a so that P \ I is the dual
order ideal generated by either x0 or y0. (The complete proof involves several cases of
this form.)

A partition λ is a hook if λ2 ≤ 1, i.e., λ = (λ1, 1, 1, . . . , 1). If sh(P) is a hook, then we
say that the poset P is hook-shaped.

Theorem 4.2. If sh(P) is a hook and supp(KP(x)) = supp(KQ(x)), then P ∼= Q.

Proof sketch. If P is hook-shaped, then it is completely determined by the jump pairs of
its elements.

Example 4.3. Consider the following two hook shaped posets.

P =

1
2
3
4 5 6 7 8 9

10
11
12
13

Q =

1
2
3
4 5 6 7 8 9

10
11
12
13

These posets have different generating functions because the element 9 ∈ P has jump 1
and upward jump 3, but no element of Q does.

We also consider posets P whose shape is nearly a hook, namely for which sh(P) =
(λ1, 2, 1, . . . , 1).

Theorem 4.4. Suppose sh(P) = sh(Q) = (λ1, 2, 1, . . . , 1). Then KP(x) = KQ(x) if and only
if P ∼= Q.

Although the posets in Theorem 4.4 are very similar to hook-shaped posets, this
theorem requires much more care to prove due to various subtleties. For instance,
Theorem 4.2 only requires that supp(P) = supp(Q) whereas Theorem 4.4 requires
that KP(x) = KQ(x). Indeed, there exist pairs of non-isomorphic posets of shape
(λ1, 2, 1, . . . , 1) whose generating functions have the same support (but which are neces-
sarily different).

For most of the remaining shapes, we present a negative result in the next section.
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5 Posets with the same P-partition generating function

In this section, we give a method for constructing distinct posets with the same generat-
ing function.

Given a poset P and a pair of incomparable elements (x, y), write P + (x ≺ y) for the
poset obtained by adding the relation x ≺ y to P (and taking the transitive closure).

Lemma 5.1. Suppose R is a finite poset with an automorphism φ : R→ R. Let e = (e1, e2) and
f = ( f1, f2) be two pairs of incomparable elements of R such that in R + ( f2 ≺ f1), both e1 ≺ e2
and φ(e1) ≺ φ(e2). Then KP(x) = KQ(x), where

P = R + ( f1 ≺ f2) + (e1 ≺ e2), and
Q = R + ( f1 ≺ f2) + (φ(e1) ≺ φ(e2)),

assuming both are naturally labeled.

Proof sketch. The linear extensions of P are precisely those of R + (e1 ≺ e2) except for
those of R + (e1 ≺ e2) + ( f2 ≺ f1) = R + ( f2 ≺ f1). Similarly, the linear extensions of Q
are those of R+ (φ(e1) ≺ φ(e2)) ∼= R+ (e1 ≺ e2) except for those of R+ ( f2 ≺ f1). Hence
KP(x) and KQ(x) are both equal to the difference of KR+(e1≺e2)(x) and KR+( f2≺ f1)

(x)
(taking care that R + ( f2 ≺ f1) is not naturally labeled).

(One can also formulate a more general version of this result in which more relations
are added.)

Example 5.2. Consider the following 7-element posets. The posets P7 and Q7 are not
isomorphic but they are K-equivalent.

P7 =

1 2

3 4 5

6 7

Q7 =

1 2

3 4 5

6 7

R =

1 2

3 4 5

6 7

We can express P7 and Q7 in terms of the poset R with a nontrivial automorphism
along with some additional covering relations.

The automorphism φ is the map that fixes 3 and swaps the two chains, e = (3, 6),
and f = (1, 3). Note that φ(e) = (3, 7), and adding the relation 3 ≺ 1 to R makes both
3 ≺ 6 and 3 ≺ 7. By Lemma 5.1, we have KP7(x) = KQ7(x).

Example 5.3. Consider the following 8-element posets.

P8 =
1 2 3 4

5 6 7 8
Q8 =

1 2 3 4

5 6 7 8
R =

1 2 3 4

5 6 7 8
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The automorphism φ is the permutation (1234)(5678), e = (1, 6), φ(e) = (2, 7), and
f = (3, 5). Adding the relation 5 ≺ 3 to R implies both 1 ≺ 6 and 2 ≺ 7, so once again,
Lemma 5.1 implies KP8(x) = KQ8(x).

Observe that the posets in Example 5.2 have shape (3, 3, 1), and the posets in Example
5.3 have shape (2, 2, 2, 2). We can generalize these examples to make pairs of posets of
larger shapes that are K-equivalent.

Theorem 5.4. For all partitions λ with λ ⊃ (3, 3, 1) or λ ⊃ (2, 2, 2, 2), there exist posets P and
Q such that P � Q, sh(P) = sh(Q) = λ, and KP(x) = KQ(x).

Proof sketch. We base our construction off of the posets P7 and Q7 from Example 5.2
and posets P8 and Q8 from Example 5.3. Observe that if sh(P) = µ = (µ1, . . . , µk) and
sh(Q) = ν = (ν1, . . . , νl), then

sh(P⊕Q) = µ + ν = (µ1 + ν1, µ2 + ν2, . . . ),
sh(P ∪Q) = µ ∪ ν = (µ′1 + ν′1, µ′2 + ν′2, . . . )′,

(where µ′ and ν′ are the conjugate partitions of µ and ν, respectively).
Suppose first that λ = (λ1, λ2, . . . , λk) is a partition that contains (3, 3, 1). Consider

the following posets:

P′ =

λ3 λ2

λ1 − λ2

Q′ =

λ3 λ2

λ1 − λ2

Since λ2 ≥ 3, P′ � Q′. It follows from Lemma 5.1 that P′ and Q′ are K-equivalent.
Note that sh(P′) = sh(Q′) = (λ1, λ2, λ3). Taking the disjoint union of either P′ or Q′

with disjoint chains of lengths λ4, λ5, . . . gives the result.
If λ ⊃ (2, 2, 2, 2), then we can take the ordinal sum of either P8 or Q8 with a union of

chains of sizes λ1− 2, . . . , λ4− 2, and then take the disjoint union with a union of chains
of sizes λ5, λ6, . . . .

The only remaining shapes for which it is not known whether there exist non-
isomorphic K-equivalent posets are those of the form (λ1, 2, 2, 1, 1, 1, . . . ).

Question 5.5. Do there exist non-isomorphic posets of shape λ with λ2 = λ3 = 2 and
λ4 < 2 that are K-equivalent?
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