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The Canonical Join Complex of the Tamari lattice
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Abstract. In this paper, we study a simplicial complex on the elements of the Tamari
lattice in types A and B called the canonical join complex. The canonical join repre-
sentation of an element w in a lattice L is the unique lowest expression

Ž

A for w.
We abuse notation and also say that the set A is a canonical join representation (when
we mean

Ž

A is a canonical join representation). The collection of all such subsets is
an abstract simplicial complex called the canonical join complex of L. We realize the
canonical join complex of the Tamari lattice as a complex of noncrossing arc diagrams,
give a shelling order on its facets, and show that it is homotopy equivalent to a wedge
of Catalan-many spheres.

Résumé. Dans cet article, nous étudions un complexe simplicial sur les éléments du
Treillis de Tamari en types A et B appelé complexe sup-canonique. Nous caractérisons
le complexe sup-canonique du Treillis de Tamari comme un complexe de diagrammes
d’arcs non croisés, donnons un ordre d’épluchage sur ses facettes, et montrons qu’il
est homotope á un “wedge” de plusieurs sphéres de type Catalan.

1 Introduction

In this paper, we study a certain simplicial complex on the elements of the Tamari lattice
arising from a lattice-theoretic “factorization” called the canonical join representation.
Informally, the canonical join representation of an element w is the unique lowest irre-
dundant expression

Ž

A for w. An expression
Ž

A is irredundant if for each A1 Ĺ A,
the join

Ž

A1 is strictly smaller than
Ž

A. In Section 2.1, we make the notion of “lowest”
precise by comparing the order ideal generated by A under containment, for each such
expression. For example, the canonical join representation of an element in the boolean
lattice is the join of the atoms below it. In the Tamari lattice shown in Figure 2, the
top element 1̂ has three irredundant join representations:

Ž

t1̂u,
Ž

tx, zu, and
Ž

tx, yu.
The canonical join representation is the lowest among these, the join of the atoms tx, yu.
When

Ž

A is the canonical join representation for some element w P L, we will abuse
notation and say that the set A is a canonical join representation (when, more precisely,
we mean that the expression

Ž

A is a canonical join representation).
In a finite lattice L, each element admits a canonical join representation if and only

if L satisfies a certain weakening of the distributive law called join-semidistributivity.
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(For a non-example, see Example 2.2 and Figure 4.) In this case, we say that L is join-
semidistributive. We define the canonical join complex of L to be the abstract simplicial
complex whose faces are the subsets A of L such that A is a canonical join representation.
(By [11, Proposition 2.2] this is indeed a complex.) In general, the canonical join complex
is not a pure complex. In particular, the canonical join complex of the Tamari lattice is
very different from the associahedron.
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Figure 1: The canonical join complex of the Boolean lattice is a simplex on its atoms.
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Figure 2: A Tamari lattice and its canonical join complex.

For each finite Coxeter group W and each orientation c of its associated Coxeter
diagram, there is a lattice quotient of the weak order on W called the c-Cambrian lat-
tice. The canonical join representation of its elements is closely related to the associated
cluster algebra and to the noncrossing partition lattice NCpW, cq [12]. In type A, each
c-Cambrian lattice is a lattice quotient of the weak order on Sn, consisting of certain pat-
tern avoiding permutations. In particular, when c is a linear orientation – an orientation
in which all of the arrows point in the same direction – the corresponding c-Cambrian
lattice is a Tamari lattice. For one choice of linear orientation, the elements of this quo-
tient are the 312-avoiding permutations. Throughout, we write Tn for this realization
of the Tamari lattice. That is, Tn is the subset of the weak order on Sn induced by
the set of 312-avoiding permutations. (For the opposite orientation, the elements of the
corresponding c-Cambrian lattice avoid the pattern 231.)

As with the classical Tamari lattice, the type-B Tamari lattice can be realized as a par-
tial order on certain triangulations of a fixed convex polygon or certain bracket vectors.
We realize the type-B Tamari lattice Ts

n as a c-Cambrian lattice for the type-B Coxeter
group Bn where c is a linear orientation for the type-B Coxeter diagram. See [10, Sec-
tion 7] and [13].

In the following theorems and throughout this abstract, we do not distinguish be-
tween an abstract simplicial complex and its geometric realization. In the statements,
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CatpAr´1q “
1

r`1

`2r
r
˘

is the classical Catalan number, CatpBrq “
`2r

r
˘

is the type-B ana-
logue, and Cat`pBrq “

`2r´1
r´1

˘

is the type-B positive Catalan number.

Theorem 1.1. The canonical join complex of the Tamari lattice Tn is shellable. It is contractible
when n is even and homotopy equivalent to a wedge of CatpAr´1q many spheres, all of dimension
r´ 1, when n “ 2r` 1.

Theorem 1.2. The canonical join complex of the type-B Tamari lattice Ts
n is shellable.

1. When n “ 2r, the canonical join complex is homotopy equivalent to a wedge of CatpBrq

many spheres all of dimension r´ 1.

2. When n “ 2r´ 1 for r ą 1, the canonical join complex is homotopy equivalent to a wedge
of Cat`pBrq´CatpAr´2q “ 2

`2r´2
r´2

˘

many spheres, equally distributed in dimensions r´ 1
and r´ 2.

Canonical join representations have played a key role in Coxeter–Catalan combina-
torics [12, Section 8] and in Coxeter-biCatalan combinatorics [4]. More recently, canonical
join representations have appeared in the study of the lattice of torsion classes over a fi-
nite dimensional associative algebra [3]. The topology of a join-semidistributive lattice
is closely related the combinatorics of its canonical join complex. For example, see [1,
Theorem 1.2 and Corollary 1.3].

The canonical join complex was first defined in [11], and studied in depth in [1]. In
[11], Reading considered the canonical join complex of the symmetric group Sn (ordered
according to the weak order) and its connections to enumerative problems involving
pattern avoiding-permutations. The canonical join representation of a permutation is
encoded by a noncrossing arc diagram, a generalization of the bump diagram for a
noncrossing partition. Each diagram consists of a collection of curves, called arcs, that
satisfy certain compatibility relations. For example, no two arcs may intersect in their
interiors. (See Section 2.2 for the complete definition.) Each arc corresponds to a vertex
of the canonical join complex, and a collection of arcs corresponds to a face if and only
if each pair of arcs is compatible. (This is [11, Corollary 3.5].) Figure 3 shows the
noncrossing arc diagrams that correspond to the faces in the canonical join complex of
the weak order on S3.

Figure 3: The faces in the canonical join complex of the weak order on S3.

Like the h-complex of the Coxeter complex defined in [8], the entries of the f -vector
of the canonical join complex of the weak order on the symmetric group are equal to the
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Eulerian numbers. (However, in general, the canonical join complex of the symmetric
group is not isomorphic, or even homotopy-equivalent, to the h-complex of the Coxeter
complex.) Similar statements hold for the canonical join complex of the Tamari lattice
and each c-Cambrian lattice: The entries of the f -vector of the canonical join complex
of the Tamari lattice (in both types A and B) are equal to the Narayana numbers (of
type A and B respectively). As an immediate consequence of Theorems 1.1 and 1.2, the
alternating sum of the Narayana numbers is either zero or a signed Catalan number. For
n even, the alternating sum of type-B Narayana numbers is the type-B Catalan number.
These identities are well-known and also appear as specializations of Coker’s identities.
See [7], or [6, Equation 1.1] for the type-A case and [6, Equation 2.1] for the type-B case.

We conclude this introduction by considering the topology the canonical join complex
of the more general c-Cambrian lattices in type A.

Theorem 1.3. For each orientation c of the type-A Coxeter diagram, the canonical join complex
of the corresponding c-Cambrian lattice is vertex decomposable.

Since vertex decomposability implies shellability, and the Tamari lattice is an exam-
ple of a c-Cambrian lattice, Theorem 1.3 implies the shellability assertion in Theorem 1.1.
(We highlight Theorem 1.1 here because its proof is more approachable, and it will mo-
tivate the proof of the analogous type-B result.) The particularly nice topological results
for the Tamari lattice and the Tamari-like c-Cambrian lattices in type A do not extend to
other finite Coxeter groups. For example, for each orientation c, the c-Cambrian lattice
in the type-D5 Coxeter group is not shellable.

2 Background

2.1 Lattice-theoretic background

In this section, we briefly review the necessary lattice-theoretic terminology. Throughout,
we assume that L is a finite lattice. A join representation for an element w P L is an
expression

Ž

A that evaluates to w, where A is a subset of L. A join representation
Ž

A
is a irredundant if

Ž

A1 ă
Ž

A for each proper subset A1 Ĺ A. Observe that if
Ž

A is
irredundant, then A is an antichain. We write ijrpwq for the collection of irredundant
join representations of w. We partially order ijrpwq as follows: A! B whenever the order
ideal generated by A is contained in the order ideal generated by B. (This relation is also
sometimes called join-refinement [9, Section I.3].) The canonical join representation of
w is the unique minimal element of ijrpwq, when such an element exists.

Example 2.1. Recall that j is join-irreducible if, whenever j “
Ž

A, we have j P A. (Equiv-
alently, j is join-irreducible if and only if it covers precisely one element in L.) Thus, if j is
join-irreducible then

Ž

tju is its canonical join representation. On the other hand, if
Ž

A is a
canonical join representation, then each element a P A is join-irreducible.
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Figure 4: The canonical join representation of the top element does not exist.

Example 2.2. Let w be the top element of the lattice shown in Figure 4. Each pair of atoms is a
minimal join representation for w. Thus, w does not have a canonical join representation.

When L is finite and each element admits a canonical join representation, we say that
L is join-semidistributive. If the dual lattice is also join-semidistributive, then we say
that L is semidistributive. (There is an equivalent definition that involves a weakening
of the distributive law. See [9, Theorem 2.24].)

Suppose that L is a finite join-semidistributive lattice. We define the canonical join
complex of L to be the collection of subsets A such that A is a canonical join repre-
sentation. Observe that the vertex set for the canonical join complex is just the set of
join-irreducible elements in L. Since L is join-semidistributive, the number of faces in
the canonical join complex is equal to the number of elements in L. The next proposi-
tion is [11, Proposition 2.2], and it implies that the canonical join complex is indeed a
simplicial complex.

Proposition 2.3. Suppose L is a finite lattice and A is a canonical join representation in L. Then
each subset of A is a canonical join representation.

2.2 The noncrossing arc complex

In this section, we review the definition of a noncrossing arc diagram, establish some
useful notation, and review the connection to canonical join representations. The def-
initions here are based on [11], where the reader will find additional examples. For
the remainder of the paper, we write rns for the set t1, 2, . . . , nu and ri, ks for the set
ti, i` 1, . . . , ku when i ă k.

A noncrossing arc diagram consists of n nodes arranged vertically and labeled in in-
creasing order from bottom to top, together with a (possibly empty) collection of curves
called arcs. Each arc connects two distinct nodes and travels monotonically upward from
its lower endpoint to its higher endpoint, passing either to the left or to the right of each
node in between. In addition, each pair of arcs α and α1 must satisfy:

(C1) α and α1 do not share the same top endpoint or the same bottom endpoint;

(C2) α and α1 do not intersect in their interiors.
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The support of an arc α, written supppαq, with endpoints i ă l is the set of numbers
ti, i` 1, . . . , lu. We write supppαq˝ for the set ti` 1, . . . , l ´ 1u. When supppαq˝ is empty,
we say that α is a simple arc. We say that the arcs α and α1 are combinatorially equivalent
if α and α1 have the same endpoints and for each k P supppαq˝, α and α1 pass on the
same side (either left or right) of k. Each arc is considered only up to combinatorial
equivalence. Two arcs are compatible if there is a noncrossing arc diagram that contains
them. The next proposition is [11, Proposition 3.2].

Proposition 2.4. Given any collection of pairwise compatible arcs, there is a noncrossing arc
diagram whose arcs are combinatorially equivalent to the given arcs.

Figure 5: Nonempty faces of the noncrossing arc complex on seven nodes.

The noncrossing arc complex on n nodes is the simplicial complex whose faces are
the collections of pairwise compatible arcs. We view each collection of compatible arcs
as a noncrossing arc diagram. For example, Figure 5 depicts some of the nonempty faces
in the noncrossing arc complex on seven nodes. To avoid confusion, we will only use the
word vertex to refer to a vertex of the noncrossing arc complex; that is, a diagram that
contains precisely one arc. The endpoint of an arc will always be referred to as a node.

The next theorem is [11, Corollary 3.4].

Theorem 2.5. The canonical join complex of the weak order on Sn is isomorphic to the noncross-
ing arc complex on n nodes.

Restricting to the set of 312-avoiding permutations, we obtain the canonical join com-
plex of the Tamari lattice Tn. In the statement below, a right arc is an arc that does not
pass to the left of any node between its endpoints. For example, the left-most noncross-
ing arc diagram in Figure 5 contains only right arcs. (See also [11, Example 4.9].)

Corollary 2.6. The canonical join complex of the Tamari lattice Tn is isomorphic to the subcom-
plex of the noncrossing arc complex on n nodes induced by the set of right arcs.

Recall that a complex is flag if each of its minimal non-faces has size 2. As an im-
mediate consequence of Proposition 2.4 and Corollary 2.6, the canonical join complex of
the Tamari lattice Tn is flag. (Indeed, the canonical join complex of any finite semidis-
tributive lattice is flag. This is one direction of [1, Theorem 1.1].)
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We write αi,k for the right arc with endpoints i ă k. (Observe that there is precisely
one right arc for each pair of nodes i, k P rns.) Throughout the remainder of the paper, we
write ∆pnq for the complex of compatible right arcs on n nodes. At times it is convenient
to restrict the node set of an arc diagram to a contiguous subset of rns. We write ∆pri, ksq
for the subcomplex of ∆pnq induced by restricting to the nodes ri, ks.

3 Shellability of the Tamari lattices

3.1 The Tamari lattice in type A

In this section we prove a more detailed version of Theorem 1.1. Before we begin, we
recall some terminology. A d-complex is a simplicial complex in which the maximal di-
mension of the faces is equal to d. A d-complex is pure if each of its facets has dimension
d. For each n ą 2, the complex of compatible right arcs ∆pnq is not pure.

A (not necessarily pure) complex is shellable if its facets can be arranged in a linear
order F1, . . . , Fm so that the subcomplex

´

Ťk´1
i“1 Fi

¯

X Fk is a pure simplicial complex of

dimension dimpFkq ´ 1 for all k P r2, ms. (We write Fk for the collection of faces in Fk.)
Such a linear order is called a shelling. A facet F is a homology facet if

´

Ťk´1
i“1 Fi

¯

X Fk

is equal to the entire boundary of Fk. The following theorem is a combination of [5,
Theorem 3.4 and Theorem 4.1].

Theorem 3.1. Suppose that ∆ is a shellable complex. Then ∆ is homotopy equivalent to a wedge
of spheres where each r-dimensional sphere corresponds to an r-dimensional homology facet.

Suppose that L “ F1, F2, . . . , Fm is a shelling of the facets for a non-pure simplicial
complex. The rearrangement lemma [5, Lemma 2.6], says that L can be rearranged so
that it satisfies the following condition. (We write pDDq for “decreasing dimension”.)

For facets F and F1, if |F| ą |F1| then F precedes F1 in L. (DD)

We will see that this condition is sufficient for shelling the facets of ∆pnq.
Fix some non-simple right arc αi,k P ∆pnq. Suppose that α1 is a right arc that is

compatible with αi,k. Note that α1 does not have i as its bottom endpoint, nor i ` 1 as
its top endpoint (otherwise the two arcs share bottom endpoints or they cross). Also,
since α1 is a right arc, it does not pass between i and i` 1. Thus, tα1, αi,i`1u is a face in
∆pnq. Similarly, tα1, αk´1,ku P ∆pnq. Since ∆pnq is a flag complex, we obtain the following
lemma.

Lemma 3.2. Suppose that αi,k is a right arc in ∆pnq with 1 ď i ă k´ 1 ď n´ 1. Then, for each
face FY tαi,ku in ∆pnq, the set FY tαi,i`1, αk´1,ku is in ∆pnq.
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For each arc α in ∆pnq write Spαq for the set of simple arcs that are compatible with it.
In the next lemma we show that the degree of a face J is determined by the set

Ş

αPJ Spαq.
Recall that the degree of F, denoted degpFq, is maxt|F1| : F1 Ě Fu.

Lemma 3.3. Suppose that J is a face in ∆pnq, and write S1 “
Ş

αPJ Spαq. Then, S1Y J is a facet of
∆pnq, and every other face F that contains J has size strictly smaller than |J Y S1|. In particular,
degpJq “ |J Y S1|.

Proof. Observe that S1 is the unique maximal set of simple arcs that are compatible with
each arc in J. Since any two simple arcs are compatible, S1 Y J is in ∆pnq. Suppose that
αi,k is a non-simple right arc satisfying: the set JY S1Ytαi,ku is in ∆pnq. (In particular, αi,k
is compatible with each arc in S1.) Then Lemma 3.2 implies that J Y S1 Y tαi,i`1, αk´1,ku

is also in ∆pnq. The maximality of S1 implies that tαi,i`1, αk´1,ku P S1. But αi,k is not
compatible with either αi,i`1 or αk´1,k because, for example, αi,k and αi,i`1 share a bottom
endpoint. We have reached a contradiction.

Suppose that F is a face in ∆pnq containing J, and F Ę J Y S1. Thus, F contains some
non-simple arc that does not belong to J. Applying Lemma 3.2, we replace each such
non-simple arc (not in J) with a pair of simple arcs and obtain a chain of faces that is
strictly increasing in size. This chain terminates in a face of the form J Y S2, where S2 is
a collection of simple arcs. Thus S2 Ď S1, and we conclude that |F| ă |J Y S1|.

Finally, we prove a more detailed version of Theorem 1.1.

Theorem 3.4. Let L “ F1, . . . , Fm be a linear ordering of the facets of ∆pnq satisfying (DD).
Then L is a shelling for ∆pnq, and Fk is a homology facet if and only if it contains no simple arcs.
Moreover,

• when n “ 2r, each facet contains a simple arc;

• and when n “ 2r ` 1, each homology facet has precisely r arcs and maps bijectively to a
noncrossing perfect matching on r2rs.

Proof of Theorem 3.4 and Theorem 1.1. Let F1, . . . , Fm be a linear ordering of the facets of
∆pnq satisfying (DD), and consider the complex Fk

Ş

´

Ťk´1
i“1 Fi

¯

, where k ranges over the
set r2, ms. We write J for the set of non-simple arcs in Fk and S1 for the set of simple
arcs in Fk. Lemma 3.3 implies that every other facet containing J occurs after Fk in this
linear ordering. So, each face of Fk

Ş

´

Ťk´1
i“1 Fi

¯

is contained in pJ Y S1qztαu, for some α

belonging to J. Lemma 3.2 says that we can swap out α in J for a pair of simple arcs,
and obtain a face with strictly larger size. We conclude that pJ Y S1qztαu is a facet of
Fk
Ş

´

Ťk´1
i“1 Fi

¯

for each α P J. We have proved that F1, . . . , Fm is a shelling of ∆pnq, and
Fk is a homology facet if and only if it contains no simple arcs. We write Hpnq for the set
of noncrossing arc diagrams that are facets in ∆pnq and that do not contain any simple
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arcs. In general, we write Hpri, ksq for the set of noncrossing arc diagrams that are facets
in ∆pri, ksq and that do not contain any simple arcs.

Suppose that n “ 2r, and F is a facet of ∆pnq. We prove by induction on r that
F contains a simple arc. Since F is a facet, there is some arc that has 1 as its bottom
endpoint and l ď n as its top endpoint. If l is equal to 2, then we are done; assume that l
is greater than 2. We remove this arc and both of its endpoints. If some other arc α1 in F
had l as its bottom endpoint, then we shift α1 down so that it now has a bottom endpoint
at the node l ´ 1. (No other arc in F has l ´ 1 as a bottom endpoint. Otherwise it would
either cross the arc α1,l or share a top endpoint with it.) We obtain a facet of ∆pn´ 2q.
Since this procedure preserves the size of the support of each arc in Fztα1,lu, we are done
by induction.

Pull apart Delete isolated
nodes

Figure 6: A demonstration of the map µ.

When n “ 2r ` 1, we define a map µ from Hpnq to the set of noncrossing perfect
matchings on the set rn ´ 1s as follows: Each pair of arcs in a homology facet F that
share an endpoint are pulled apart, and isolated nodes are deleted. See Figure 6.

3.2 The Tamari lattice in type B

We now turn to the type-B Tamari lattice. Throughout, we write r˘ns for the set
t´n, . . . ,´1, 1, . . . , nu and S˘n for the symmetric group on r˘ns. A signed permutation
(in full one-line notation) is a permutation w´n . . . w´1w1 . . . wn satisfying w´i “ ´wi.
We realize Bn, the type-B Coxeter group of rank n, as the subposet of the weak order
on S˘n induced by the set of signed permutations. The type-B Tamari lattice Ts

n is the
subposet of the weak order on Bn induced by the set of signed permutations that avoid
the 312-pattern where the “2” is positive.

Consider the noncrossing arc diagram of a permutation w P S˘n, with nodes labeled
´n, . . . ,´1, 1, . . . , n from bottom to top. A noncrossing arc diagram that is fixed by a
half-turn rotation that sends each node i to ´i is called a symmetric noncrossing arc
diagram. A symmetric arc is either a pair of arcs that are related by this half-turn
rotation or a single arc this is fixed by this rotation. See Figure 7 for some examples. The
next corollary is [2, Proposition 3.2.10].
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Figure 7: Each diagram contains two symmetric arcs.

Corollary 3.5. The canonical join complex of the type-B Tamari lattice Ts
n is isomorphic to the

subcomplex of symmetric noncrossing arc diagrams on r˘ns induced by set of symmetric arcs
which do not pass to the left of any positive node or to the right of any negative node.

We write ∆spnq for the canonical join complex of the type-B Tamari lattice Ts
n. There

is precisely one symmetric arc for each pair of nodes in r˘ns. Given a pair of arcs αi,k
and α´k,´i that together comprise a symmetric arc in ∆spnq, we write αs

i,k for the corre-
sponding symmetric arc, where k ą i and k ą ´i. When the endpoints of a symmetric
arc are not specified, we simply write αs. To distinguish the arc αi,k from the symmetric
arc αs

i,k, we sometimes refer to the former as an ordinary arc. A simple symmetric arc
is either a pair of simple arcs fixed by the half-turn rotation through the center of the
diagram, or the ordinary simple arc with endpoints ´1 and 1.

Theorem 3.6. Let L “ F1, . . . , Fm be a linear ordering of the facets of ∆spnq satisfying (DD)
and the following condition: If Fi and Fk are facets with the same size and if the number of simple
symmetric arcs in Fi is greater than the number of simple symmetric arcs in Fk, then i ă k. Then
L is a shelling of ∆spnq, and Fi is a homology facet if and only if it does not contain any simple
symmetric arcs.

To conserve space, we will not prove Theorem 3.6. (See [2, Theorem 3.3.8] for the
complete proof.) Instead, we sketch how to count the homology facets for ∆spnq, when
n “ 2r. Let Hspnq denote the set of symmetric noncrossing arc diagrams that are facets
in ∆spnq and that contain no simple symmetric arcs. We define a map µs from Hspnq to
the set of symmetric noncrossing perfect matchings on r˘ns. A symmetric noncrossing
perfect matching on r˘ns is a noncrossing perfect matching M that satisfies ta, bu P M if
and only if t´a,´bu P M. The following proposition is [2, Proposition 3.2.13].

Proposition 3.7. There are CatpBrq “
`2r

r
˘

many symmetric noncrossing perfect matchings on
the set r˘p2rqs.

Suppose that F P Hspnq. We would like to use the map µ (defined at the end of the
proof for Theorem 3.4) whenever possible. To that end, we write PpFq for the set of arcs
αs

i,k P F with 0 ă i ă k, and NpFq for the set of arcs αs
i,k P F with i ă 0 ă k. Observe that

the set PpFq decomposes into a collection of smaller noncrossing arc diagrams, each of
which is either a maximal collection of non-simple ordinary right arcs or, symmetrically,
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a maximal collection of non-simple ordinary “left arcs”. We will apply the map µ to each
collection of right arcs and, by symmetry, to each collection of left arcs. That leaves us
with one main challenge: how to pair off the endpoints of the arcs in NpFq. We visualize
a simplified version of this “pairing off” below. (The technical details can be found in [2,
Section 3.3.2].)

First step. Cut every arc in NpFq where it passes between ´1 and 1. We call the resulting
curves, each of which have precisely one endpoint, arc segments. We write αa for the arc
segment whose endpoint is a. Reflect the negative half of the diagram about the vertical
column of the nodes, so that each arc and arc segment passes to the right of each node.

Second step. Write NpFq “ tαs
i1,k1

, αs
i2,k2

, . . . , αs
il ,kl
u where k1 ă ¨ ¨ ¨ ă kl. After cutting the

arcs in the step above, ´il is the top endpoint of the arc segment closest to the node
1. Anchor this arc segment to 1 and symmetrically anchor αil to ´1, unless il “ ´1. If
il “ ´1, then we glue the segments α´il and αil together between ´1 and 1. We glue each
remaining arc segment αa to the corresponding negative segment α´a. See Figure 8 and
Figure 9.

Figure 8: An illustration of the map µs when il ‰ ´1.

Figure 9: An illustration of the map µs when il “ ´1.

Proposition 3.8. The map µs is a bijection from Hspnq to the set of symmetric noncrossing
perfect matchings on r˘ns.
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