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Abstract. We establish an isomorphism between the center EndHtw(1) of the twisted
Heisenberg category of Cautis and Sussan and Γ, the subalgebra of the symmetric
functions generated by odd power sums. We give a graphical description of Ivanov’s
factorial Schur P-functions as closed diagrams inHtw and show that the curl generators
of EndHtw(1) correspond to two sets of generators of Γ discovered by Petrov which
encode data related to up/down transition functions on the Schur graph. Our results
are a twisted analogue of those of Kvinge, Licata, and Mitchell, which related the center
of Khovanov’s Heisenberg category to the algebra of shifted symmetric functions.

Keywords: Symmetric functions, Heisenberg categorification, spin representation the-
ory of symmetric groups

1 Introduction

In [8], Khovanov describes a linear monoidal category H which conjecturally categori-
fies the Heisenberg algebra. The morphisms of H are governed by a graphical calculus
of planar diagrams. This category has connections to many interesting areas of repre-
sentation theory and combinatorics. The center of H, which is the algebra EndH(1) of
endomorphisms of the monoidal identity, was shown in [10] to be isomorphic to the
algebra of shifted symmetric functions Λ∗ of Okounkov and Olshanskii [12].

A twisted version of Khovanov’s Heisenberg category was defined in [3]. The twisted
Heisenberg category Htw is a C-linear additive monoidal category, with an additional
Z/2Z-grading. It conjecturally categorifies the twisted Heisenberg algebra. The center
of Htw, EndHtw(1), was studied in [13]. There it was shown that as a commutative C-
algebra, EndHtw(1)

∼= C[d0, d2, d4, . . . ] ∼= C[d̄2, d̄4, d̄6, . . . ], where d2k and d̄2k correspond
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to clockwise and counterclockwise curls respectively. While symmetric groups played
a central role for H in [8], finite Sergeev superalgebras {Sn}n≥0 (also known as finite
Hecke–Clifford algebras of type A) play the central role for Htw. In particular, Cautis
and Sussan construct a family of functors {FHtw

n }n≥0 from Htw to bimodule categories
of Sergeev algebras in order to categorify the Fock space representation of the twisted
Heisenberg algebra. When restricted to EndHtw(1), each FHtw

n can be interpreted as a
surjective algebra homomorphism FHtw

n : EndHtw(1) � Z(Sn)0 where Z(Sn)0 is the even
center of Sn.

In this paper, we study the combinatorial and representation theoretic properties of
EndHtw(1). Our main result (Theorem 6.2) is an isomorphism ϕ : EndHtw(1)

∼−→ Γ,
where Γ is a subalgebra of the algebra of symmetric functions Γ = C[p1, p3, p5, . . . ] (Γ
is sometimes known as the algebra of supersymmetric [5] or doubly symmetric [14]
functions). The construction of ϕ relies on the fact that there are embeddings of both
EndHtw(1) and Γ into the algebra of functions on strict partitions, Fun(SP , C). In our
proof of Theorem 6.2 we identify the images of certain algebraically independent gen-
erators of these algebras in Fun(SP , C) – the closures of n-cycles from EndHtw(1) and
inhomogeneous analogues of odd power sums p(n) in Γ. The latter were first investigated
by Ivanov in his study of the asymptotic behavior of characters of projective representa-
tions of symmetric groups [5].

In parallel to the surjective homomorphisms {FHtw
n }n≥0 from EndHtw(1) to

{Z(Sn)0}n≥0, for all n ≥ 0 one can also construct surjective homomorphisms FΓ
n : Γ �

Z(Sn)0 [5]. Our isomorphism ϕ is canonical in the sense that it intertwines the pair FHtw
n

and FΓ
n for each n ≥ 0.

EndHtw(1) Γ

Z(Sn)0

ϕ

FHtw
n FΓ

n

One interesting feature of the center of the non-twisted Heisenberg category H is
that as shifted symmetric functions, the curl generators are best understood in terms of
moments of Kerov’s transition and co-transition measures on Young diagrams [7]. These
are tools used to answer probabilistic questions related to the asymptotic representation
theory of symmetric groups. In this paper we show that this connection to probability
theory extends to the twisted Heisenberg category as well. We identify the clockwise
curl generators {d2k}k≥0 and counterclockwise curl generators {d̄2k}k≥1 with two sets
of generators for Γ discovered by Petrov [14], {g↓k}k≥0 and {g↑k}k≥0 respectively. The
functions {g↓k}k≥0 (respectively {g↑k}k≥0) encode the down (resp. up) transition kernels
for a Markov process on the graph of all strict partitions (also known as the Schur graph).
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Hence, flipping from up to down (and vice-versa) in the probabilistic setting corresponds
to flipping orientation of diagrams in EndHtw(1). This seems to be yet another indication
of the “planar nature” of structures arising from asymptotic representation theory.

2 Strict Young diagrams and the Schur graph

Let Pn be the set of all partitions of n and set P :=
⋃

n≥0 Pn. We freely identify a
partition λ with its corresponding Young diagram. If λ ∈ Pn then we write |λ| = n.
If λ = (λ1, λ2, . . . , λr) and µ = (µ1, µ2, . . . , µt) ∈ P then we write µ ⊂ λ when µi ≤ λi
for all i ≥ 1. A partition λ = (λ1, . . . , λr) ∈ P is called an odd partition if λi is odd
for all 1 ≤ i ≤ r. We denote the collection of odd partitions of n by OPn and set
OP :=

⋃
n≥0OPn.

We call a partition λ ∈ Pn strict if all its nonzero parts are distinct. Let SPn be the
set of all strict partitions of n and set SP :=

⋃
n≥0 SPn. To a strict partition λ we can

associate its shifted Young diagram S(λ) which is obtained from the usual Young diagram
(using English notation) by shifting all rows so that the ith row is shifted rightward by
(i− 1) cells.

Example 2.1. Let λ = (6, 5, 2, 1) ∈ SP14. Then the Young diagram and shifted Young diagram,
respectively, are given by

λ =

,

S(λ) =

.

For µ, λ ∈ SP , we write µ ↗ λ (respectively µ ↘ λ) when we can obtain λ from µ

by adding (resp. removing) a single cell . Define κ(µ, λ) so that κ(µ, λ) = 2 if µ ↗ λ

and `(λ) = `(µ), κ(µ, λ) = 1 if µ↗ λ and `(λ) = `(µ) + 1, and 0 otherwise.

Definition 2.2. The Schur graph G is the graded graph with vertex set equal to SP , nth graded
component equal to SPn, and the number of edges from µ to λ equal to κ(µ, λ).

The version of G that we consider here is the same as that studied in [14].
A standard shifted Young diagram of shape λ ∈ SPn is a bijective labeling of the cells

of S(λ) by the integers {1, . . . , n} such that entries increase from left to right across rows
and down columns. Let gλ be the number of standard shifted Young diagrams of shape
λ. gλ can be computed explicitly as

gλ =
n!

λ1!λ2! . . . λr! ∏
1≤i≤j≤`(λ)

λi − λj

λi + λj
.
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Following [14] we denote the number of paths from ∅ to λ in G by h(λ). We have
h(λ) = 2|λ|−`(λ)gλ.

In [2] Borodin and Olshanskii used coherent families of measures on partitions to
construct infinite-dimensional diffusion processes. Petrov studied analogous processes
on strict partitions [14]. We review some basic definitions from the latter below.

The down transition function p↓ : G×G→ Q on G is defined so that for λ, µ ∈ SP ,

p↓(λ, µ) :=
h(µ)
h(λ)

κ(µ, λ). (2.1)

In particular, when restricted to SPn the function p↓ gives a Markov transition kernel
from Gn to Gn−1.

To p↓ defined in (2.1) and the system of Plancherel measures on G (see [14]) one can
associate up transition functions which take the form

p↑(µ, λ) =
h(λ)

h(µ)(|µ|+ 1)

when µ↗ λ and p↑(µ, λ) = 0 otherwise.
In the next section we will make a connection between induction and restriction of

simple Sergeev modules and p↑, p↓.

3 The Sergeev algebra

Let Sn be the symmetric group on n elements with s1, s2, . . . , sn−1 the Coxeter generators
of Sn. Recall that the Clifford algebra C`n with n generators is the unital associative
algebra C`n := C〈c1, . . . , cn | c2

i = −1, cicj = −cjci for i 6= j〉.

Definition 3.1. The finite Sergeev algebra, (also known as the finite Hecke–Clifford algebra
of type A) is Sn ∼= C`n o C[Sn] where Sn acts on the Clifford generators by permuting indices,
i.e. sici = ci+1si, sici+1 = cisi, and sicj = cjsi for j 6= i, i + 1.

Sn is a superalgebra via the Z/2Z-grading in which the Sn generators are even and
the C`n generators are odd. For homogeneous element x ∈ Sn we write |x| for the degree
of x. The Sergeev algebras form a tower of superalgebras via the standard embedding
Sn−1 ↪→ Sn which sends si 7→ si and ci 7→ ci. Henceforth when we mention a module of
the Sergeev algebra, we mean a supermodule.

Sn has analogs to the classical Jucys–Murphy elements of C[Sn]. These elements
{Ji}n

i=1, which we also call Jucys–Murphy elements are defined by J1 := 0 and Jk :=
∑n−1

j=1 (1+ cjck)(j, k). They generate a commutative subalgebra of Sn and their spectra have
a combinatorial interpretation analogous to that of the classical Jucys–Murphy elements
[9]. The algebras {Sn}n≥0 are semi-simple with a well-studied representation theory
(see [9] and [15]).
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Theorem 3.2 ([9]). The set of simple Sn-modules are indexed by SPn.

Let δ : SP → {0, 1} be defined by δ(λ) = `(λ) mod 2.

Theorem 3.3. Let λ ∈ SPn. Then dim(Lλ) = 2n− `(λ)−δ(λ)
2 gλ.

We can now relate p↓(·, ·) and p↑(·, ·) to the representation theory of the algebras
{Sn}n≥0. If N and M are Sn-modules we write [M : N] := dim(HomSn(M, N)).

Proposition 3.4. Let λ ∈ SPn, µ ∈ SPn−1. Then

p↓(λ, µ) =
[ResSn

Sn−1
Lλ : Lµ]dim(Lµ)

dim(Lλ)
and 2δ(λ)−δ(µ)p↑(µ, λ) =

[IndSn
Sn−1

Lµ : Lλ]dim(Lλ)

dim(IndSn
Sn−1

Lµ)
.

For λ ∈ SPn, we write χλ for the character corresponding to the simple Sn-module
Lλ. The normalized character χ̃λ is defined such that for x ∈ Sn

χ̃λ(x) :=
χλ(x)
χλ(1)

.

3.1 The center of Sn

As a superalgebra the center of Sn breaks up into even and odd components of super-
commutative elements, Z(Sn) = Z(Sn)0 ⊕ Z(Sn)1. We will focus on Z(Sn)0, which cor-
responds to the center of Sn after the (Z/2Z)-grading has been forgotten. In [5], Ivanov
constructs a basis for Z(Sn)0 indexed by OPn, we denote this basis by {Cµ}µ∈OPn . These
elements are the analog of conjugacy class sums.

We now define a scaled version of Ivanov’s basis which naturally appears from the
Fock space representation of the twisted Heisenberg category. For µ = (µ1, . . . , µt) ∈
OP k and k ≤ n, define σµ;n ∈ Sn to be the permutation

σµ;n := ω0(s1 . . . sµ1−1)(sµ1+1 . . . sµ1+µ2−1) . . . (sk−µt+1 . . . sk−1)ω
−1
0 .

where ω0 is the longest permutation in Sn by Coxeter length.

Definition 3.5. For k ≤ n and µ ∈ OP k, define

Aµ;n := ∑
x∈LCn

n−k

xσµ;nx−1.

where LCn
n−k := { (sin . . . sn−1cεn

n )(sin−1 . . . sn−2cεn−1
n−1 ) . . . (sin−k+1 . . . sn−kcεn−k+1

n−k+1)
| 1 ≤ ij ≤ j, εj ∈ {0, 1} }.
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The set LCn
n−k consists of minimal left coset representatives of Sn−k in Sn multiplied

by additional Clifford generators.

Proposition 3.6. The set {Aµ;n | µ ∈ OPn} is a linear basis of Z(Sn)0.

For a simple representation Lλ of Sn, the corresponding normalized character χ̃λ is a
homomorphism when restricted to Z(Sn)0. We have the following formula for the values
of these characters on the above basis.

Proposition 3.7. Let µ ∈ OP k and λ ∈ SPn for k ≤ n. Then

χ̃λ(Aµ;n) = 2kn↓k
χλ(σµ;n)

χλ(1)
.

Another basis for Z(Sn)0 is given by the set of central idempotents {eλ | λ ∈ SPn}
of Sn corresponding to the simple Sn-modules.

Lemma 3.8. For λ ∈ SPn, the central idempotent eλ ∈ Sn corresponding to the simple repre-
sentation Lλ can be written as

eλ = 2
−`(λ)−δ(λ)

2
gλ

n! ∑
µ∈OPn

χλ(µ)Cµ.

3.2 Interlacing coordinates for strict partitions

In [14] Petrov showed that shifted strict Young diagrams can be parametrized via their
interlacing coordinates. For λ ∈ SP , and ∈ S(λ) with coordinates (i, j), the content of

is defined to be cont( ) := i− j. Note that when comes from a shifted diagram,
cont( ) is always nonnegative.

Let X(λ) be the set of contents for cells that we can add to S(λ) to get another shifted
strict partition and let Y(λ) be the set of contents for cells that we can remove from S(λ)
to get another shifted strict partition. The set (X(λ), Y(λ)) uniquely characterizes S(λ)
and is called the interlacing coordinates (or Kerov coordinates) of S(λ).

For i ∈ Z≥0, set s(i) := i(i + 1). In [14] Petrov defined functions

g↑k(λ) := ∑
x∈X(λ)

p↑(λ, λ + (x))s(x)k

and
g↓k+1(λ) := 2|λ| ∑

y∈Y(λ)
p↓(λ, λ− (y))s(y)k.

Note that g↑k(λ) and g↓k(λ) are the strict partition analogues to moments of Kerov’s
transition and co-transition measure [6], and will play a similar role to the one they
played in [10].
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We now give algebraic interpretations of g↑k(λ) and g↓k(λ) in the spirit of [1]. Let
prn−1 : Sn → Sn−1 be the linear map defined by projection onto the copy of Sn−1 ⊂ Sn
indexed by {1, . . . , n− 1}.

Proposition 3.9. If λ ∈ SPn, then we have χ̃λ(prn(J2k
n+1)) = g↑k(λ) and

χ̃λ
(

∑
LCn

n−1

(−1)|x|xJ2k
n x−1

)
= g↓k+1(λ).

4 The subalgebra Γ

We recall relevant facts about the algebra Γ following [11]. Let pk be the kth power sum
symmetric function, and for λ = (λ1, . . . , λr) ∈ P set pλ := ∏r

k=1 pλk . Define Γ to be the
subalgebra of the symmetric functions generated by {p2k+1}k≥0.

Elements of Γ can be evaluated on partitions in the following way. For f ∈ Γ and
λ ∈ P , set f (λ) = f (λ1, λ2, . . . , λ`(λ), 0, . . .). Then it is known that an element of Γ is
uniquely determined by its values on SP , giving an embedding of Γ into the algebra of
functions on strict partitions Fun(SP , C) (with pointwise multiplication).

The Schur P-functions {Pλ}λ∈SPn are an important basis of Γ. They are specializa-
tions of the Hall–Littlewood polynomials at t = −1. Define Xλ

ρ for λ ∈ SPn, ρ ∈ OPn,
via the expansion pρ = ∑λ∈SPn Xλ

ρ Pλ.
A “factorial” version of the Schur P-functions is defined in [4]. These elements of Γ

are indexed by SP and satisfy the following properties.

Proposition 4.1 ([5]). Let λ ∈ SP .

1. There exists g ∈ Γ of degree less than |λ| such that P∗λ = Pλ + g.

2. The collection {P∗λ}λ∈SP is a linear basis of Γ.

Let ψ be the linear map Γ→ Γ that sends Pλ 7→ P∗λ for all λ ∈ SPn. For any ρ ∈ OP ,
define pρ := ψ(pρ) ∈ Γ. These functions were first studied in [5] where Ivanov proves
that they satisfy the following properties.

Proposition 4.2 ([5]). The family {pρ}ρ∈OP forms a linear basis for Γ and for ρ ∈ OP k and
λ ∈ SPn

pρ(λ) = 2k−`(ρ)n↓k
χλ(σρ;n)

χλ(1n)

if k ≤ n and pρ(λ) = 0 otherwise. Further, (p2k+1)k≥0 is an algebraically independent generat-
ing set for Γ.

Identifying Γ with its image in Fun(SP , C) Petrov shows that {g↑k}k≥0 and {g↓k}k≥0
belong to Γ [14].



8 Henry Kvinge, Can Ozan Oğuz, and Michael Reeks

Proposition 4.3 ([14]). Both {g↑k}k≥0 and {g↓k}k≥0 are algebraically independent sets of gener-
ators of Γ.

5 The twisted Heisenberg category

The twisted Heisenberg category Htw was formulated by Cautis–Sussan in [3].The ob-
jects of Htw are generated by P and Q, so that a generic object in Htw is a direct sum
of sequences of P’s and Q’s. We denote the empty sequence, which is the unit object
of Htw, by 1. The morphisms of Htw are generated by oriented planar diagrams up to
boundary fixing isotopies, with generators

, , , , , , (5.1)

where the first diagram corresponds to a map P → P{1} and the second diagram cor-
responds to a map Q → Q{1}, where {1} denotes the Z/2Z-grading shift. These
generators satisfy the following relations:

=
,

=
,

=
,

(5.2)

= − −
,

= 1, = 0, (5.3)

= − = − (5.4)

= = − = 0 = − . (5.5)

Generators commute in all other situations (for instance, hollow dots commute with
crossings).

If we denote a right-twist curl by a dot := then we have the following

relations:

= − = = (5.6)
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We also have dot sliding relations making EndHtw(Pm) isomorphic to the degenerate
affine Hecke Clifford algebra of type A; see [13] for details.

Because of these relations, there are homomorphisms Tn : Sn → HomHtw(Pn) which
send

Tnsk

k-1 strands n-k-1 strands

. . . . . . Tnck .
k-1 strands n-k strands

. . . . . .

In order to simplify our diagrams we write the image of elements of Sn as

Tn(x) =:
···
x

.
n strands

5.1 Center of Htw

The center of a monoidal category C is defined to be the endomorphism algebra of the
monoidal identity object 1 of C, that is EndC(1). Thus EndHtw(1) is by definition the
commutative algebra of closed diagrams where multiplication of two closed diagrams
corresponds to placing them next to each other.

There is a natural generating set of EndHtw(1) consisting of bubbles. Let dk be the
clockwise-oriented bubble decorated with k solid dots (i.e., with k right twist curls), and
let dk be the counterclockwise-oriented bubbles with k dots, as follows:

dk := k and d̄k := k . (5.7)

Proposition 5.1 ([13]). The elements {d2k}k≥0 and {d2k}k≥1 are algebraically independent gen-
erators of EndHtw(1), i.e. there is an isomorphism

EndHtw(1)
∼= C[d0, d2, d4, . . . ] ∼= C[d̄2, d̄4, d̄6, . . . ].

Another natural set of diagrams in EndHtw(1) comes from the closure of permutations
under the maps Tn : Sn → HomHtw(Pn). For µ ∈ OPn and σµ an element of Sn of cycle
type µ, define

αµ := ···
σµ

.
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Set αn := α(n). One can impose a grading on EndHtw(1) by setting deg(d0) =
0 and deg(d2k) = 2k + 1.

Lemma 5.2. In terms of the grading defined above α2k+1 = d2k + l.o.t.. Furthermore, EndHtw(1)
is generated by {α2k+1}k≥0 and these elements are algebraically independent. Finally, the set
{αρ}ρ∈OP is a basis of EndHtw(1).

5.2 Closed diagrams as bimodule homomorphisms

Cautis and Sussan describe an action ofHtw on the category S whose objects are compo-
sitions of induction and restriction functors between finite dimensional Sn-modules [3,
Section 6.3]. The morphisms in S are certain natural transformations of these composi-
tions of functors (or, equivalently, certain bimodule homomorphisms). After passing to
the idempotent closure of Htw, this action becomes a categorified Fock space action of
Htw [3].

The action is defined via a family of functors {FHtw
n }n≥0. When restricted to

EndHtw(1), FHtw
n defines a homomorphism from EndHtw(1) to Z(Sn)0. We describe the

image of some of the generators of EndHtw(1) from Section 5.1.

Proposition 5.3. 1. For µ ∈ OP k, FHtw
n (αµ) =

{
Aµ;n if k ≤ n
0 otherwise.

2. For k ≥ 0, FHtw
n (d2k) = ∑

x∈LCn
n−1

(−1)|x|xJ2k
n x−1.

3. For k ≥ 2, FHtw
n (d̄2k) = prn(J2k

n+1).

6 An isomorphism between EndHtw(1) and Γ

In this section we will establish the isomorphism between EndHtw(1) and Γ. The key step
in the construction of this map is identifying the elements of EndHtw(1) with elements of
Fun(SP , C). To do this let λ ∈ SPn and x ∈ EndHtw(1); we define x(λ) = χ̃λ(FHtw

n (x)).
Because FHtw

n is a homomorphism on EndHtw(1) which maps into Z(Sn)0 and χ̃λ is a ho-
momorphism when restricted to Z(Sn)0, this defines a homomorphism into Fun(SP , C).

Proposition 6.1. For µ ∈ OP k and λ ∈ SPn we have

αµ(λ) =

2kn↓k χλ(σµ;n)

χλ(1) if k ≤ n

0 otherwise.
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Theorem 6.2. There is an isomorphism ϕ : EndHtw(1) → Γ which sends αµ 7→ 2`(µ)pµ for
µ ∈ OP k.

Proof. Proposition 6.1 and Proposition 4.2 show that 2−`(µ)αµ and pµ map to the same
function in Fun(SP , C). The homomorphisms Γ → Fun(SP , C) and EndHtw(1) →
Fun(SP , C) are both injective. By Lemma 5.2 EndHtw(1) is generated by the algebraically
independent elements {αk}k≥0 and by Proposition 4.2, Γ is generated by the algebraically
independent elements {pk}k≥0, it follows that the map that sends αµ 7→ 2`(µ)pµ is an
isomorphism.

Theorem 6.3. Let λ ∈ SPn. Under the isomorphism ϕ : EndHtw(1) → Γ, the central idempo-
tent eλ of Sn maps to 2ngλP∗λ .

Moving in the opposite direction, we can also identify the elements of Γ correspond-
ing to the generators {d2k}k≥0 and {d̄2k}k≥1.

Theorem 6.4. For k ≥ 0, we have ϕ(d2k) = g↓k+1 and k ≥ 1 we have ϕ(d̄2k) = g↑k .

Γ pµ P∗λ g↑k g↓k+1

Diagram in
EndHtw(1)

···
2`(µ)

1 σµ;
···

2ngλ

1 eλ

2k 2k

Table 1: A dictionary between Γ and diagrams in EndHtw(1).
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