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Properties of the Edelman-Greene bijection
(extended abstract)

Svante Linusson∗1 and Samu Potka†1
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Abstract. Edelman and Greene constructed a bijective correspondence between the
reduced words of the reverse permutation in the symmetric group Sn and standard
Young tableaux of the staircase shape (n− 1, n− 2, . . . , 1). Our motivation originates
from random sorting networks, a line of research initiated by Angel, Holroyd, Romik
and Virág. We reformulate one of their conjectures on the shapes of intermediate con-
figurations coming from random sorting networks. Properties of the Edelman–Greene
bijection restricted to 132-avoiding and 2143-avoiding permutations are presented. We
also consider the Edelman–Greene bijection applied to non-reduced words.
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1 Introduction

In 1982, Richard Stanley conjectured, and later proved algebraically in [16] that the num-
ber of maximal chains in the weak Bruhat order on the symmetric group Sn is equal to the
number of staircase shape standard Young tableaux. Motivated to find a bijective proof,
Edelman and Greene [7] constructed such a correspondence based on the celebrated
Robinson–Schensted–Knuth (RSK) algorithm and Schützenberger’s jeu de taquin. Much
later, Little [13] found another bijection proved to be equivalent to the Edelman–Greene
correspondence by Hamaker and Young in [10].

Our motivation to study the Edelman–Greene (EG) bijection stems from studies on
random sorting networks which are reduced words, w = w1 . . . w(n

2)
, of the reverse permuta-

tion n(n− 1) . . . 21 in Sn chosen uniformly at random among all such words.
Let si := (i i + 1) denote swaps, adjacent transpositions. Then w1 . . . wk defines the

permutation sw1 · · · swk in Sn for any 1 ≤ k ≤ (n
2).

Based on extensive computational evidence, Angel, Holroyd, Romik and Virág [1]
stated several tantalizing conjectures on random sorting networks, a proof of which has
recently been announced in [5]. One consequence would be that asymptotically the
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permutation matrices corresponding to the intermediate configurations coming from
random sorting networks are supported on a family of ellipses, or, in other words, have
their 1s inside an elliptic region of the matrix. In particular, at half-time the permutation
matrix is supported on a disc. Figure 1 provides an illustration.

Figure 1: The intermediate permutation matrices M(σt) of a 1000-element random
sorting network at times t = 1

4 , 1
2 and 3

4 .

To avoid technicalities, we just state the conjecture informally. See [1, Conjecture 2] for
more details. Note that the permutation matrices therein are flipped vertically.

Conjecture 1.1 (A consequence of [1, Conjecture 2]). Let w = w1 . . . w(n
2)

be a random
sorting network and σt be the permutation defined by w1 . . . wbt(n

2)c. For all t ∈ (0, 1), the

limit shape of the scaled permutation matrix (2i
n − 1, 1− 2σ(i)

n )1≤i≤n is At = {(x, y) ∈ R2 :
sin2(πt)− 2xy cos(πt)− x2 − y2 = 0}.

Our main result, Theorem 3.1, is that the shape of the empty area (Rothe diagram)
in the upper left corner of the permutation matrix is exactly the same as a region in the
insertion tableaux generated by the EG-bijection which we call the frozen region. This
leads to a reformulation of Conjecture 1.1 directly in terms of the EG-bijection.

As a side-product, we obtain some new observations and simple reproofs of previ-
ous results on the reduced words of 132-avoiding permutations. We also study sorting
networks whose intermediate permutations are required to be 132-avoiding.

Section 4 treats the Edelman–Greene insertion applied to non-reduced words. In
particular, we study the sets of words yielding the same pairs of Young tableaux under
the Edelman–Greene correspondence and define a natural partial order on this set which
turns out to have some nice and surprising properties. There is a different generalization
of the Edelman–Greene bijection for non-reduced words called Hecke insertion [4].

All proofs are omitted in this extended abstract of [12].
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2 Preliminaries

2.1 Notation

The notation w ∈ N∗ means that w is a word with positive integer letters. We define
len(w) to be the length of w. The set of reduced words of σ ∈ Sn is denoted by R(σ),
and, for convenience, in the case of σ = n(n− 1) . . . 21 we use the abbreviation R(n).

It is important to note that we perform the compositions of swaps swi corresponding
to a word w = w1 . . . wm from the left. As an example, consider S4 and the reduced word
1213. Composing the swaps s1s2s1s3 from the left yields the permutation 3241. In terms
of permutation matrices, we would have, for example,

2 1 3 4


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

s1

2 3 1 4


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

s1s2

3 2 1 4


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

s1s2s1

3 2 4 1


0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

s1s2s1s3

where we can see that si corresponds to swapping the columns i and i + 1.
Given a partition λ, len(λ) denotes its length. We define the Young diagram of λ as

{(i, j) ∈N2 : 1 ≤ i ≤ len(λ), 1 ≤ j ≤ λi} and use the English notation, that is, draw it as
a collection of square boxes corresponding to the cells (i, j) with i increasing downwards
and j to the right. We let SYT(λ) be the set of standard Young tableaux of the shape λ.

2.2 The Edelman–Greene bijection

The Edelman–Greene correspondence is a bijection between R(n), that is, maximal
chains in the weak Bruhat order on Sn, and standard Young tableaux of the staircase
shape scn = (n− 1, n− 2, . . . , 1).

Definition 2.1 (The Edelman–Greene insertion). Suppose P is a Young tableau with strictly
increasing rows P1, . . . , P` and x0 ∈ N is to be inserted in P. The insertion procedure is as
follows for each 0 ≤ i ≤ `:

• If xi > z for all z ∈ Pi+1, place xi at the end of Pi+1 and stop.
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• If xi = z′ for some z′ ∈ Pi+1, insert xi+1 = z′ + 1 in Pi+2.

• Otherwise, xi < z for some z ∈ Pi+1, and we let z′ be the least such z, replace it by xi and
insert xi+1 = z′ in Pi+2. In both this and the case above we say that xi bumps z′.

Repeat the insertion until for some i the xi is inserted at the end of Pi+1 and the algorithm stops.
This could be a previously empty row P`+1.

We should mention that our definition of the insertion differs from that of [7], where
they also use the different name Coxeter–Knuth insertion. However, using for example
the proof of [7, Lemma 6.23], one can show that the two definitions coincide for reduced
words. Note also that except for a difference in handling equal elements bumping, the
Edelman–Greene insertion and the RSK insertion are the same.

Definition 2.2 (The Edelman–Greene correspondence). Let w = w1 . . . wi . . . wm ∈ N∗.
Initialize P(0) = ∅.

• For each 1 ≤ i ≤ m, insert wi in P(i−1) and denote the result by P(i).

Let P(m) := P(w) and let Q(w) be the Young tableau obtained by setting Q(w)i,j = k for the
unique cell (i, j) ∈ P(k) \ P(k−1). Set EG(w) := Q(w).

As an example, consider the reduced word w = 321232. Then the P(k), 1 ≤ k ≤ 6,
form the following sequence

3
−→

2
3 −→

1
2
3
−→

1 2
2
3

−→
1 2 3
2
3

−→
1 2 3
2 3
3

so that

P(321232) =
1 2 3
2 3
3

and EG(321232) := Q(321232) =
1 4 5
2 6
3

.

The tableau P(w) is called the insertion tableau and the tableau Q(w) the recording
tableau since it records the growth of P(w). Note that P(w) and Q(w) are always of the
same shape for a fixed w. To state one of the main results of Edelman and Greene, let
the reading word r(P) of an insertion tableau P be the word obtained by collecting the
entries of P row by row from left to right starting from the bottom row.

Theorem 2.3 ([7, Theorem 6.25]). The correspondence w 7→ (P(w), Q(w)) is a bijection be-
tween ∪σ∈SnR(σ) and the set of pairs of tableaux (P, Q) such that P is row and column strict,
r(P) is reduced, P and Q have the same shape, and Q is standard.

Each of the P(k), 1 ≤ k ≤ m, is going to contain some amount of entries such that
P(k)

i,j = i + j − 1. We call the region of P(k) formed by such entries the frozen region
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and say that an insertion tableau is frozen if the tableau is entirely a frozen region. The
reason for using this terminology is that the frozen region does not change during the
Edelman–Greene insertion. See P in Figure 2. The frozen region is white in the example.
It turns out that P(w) is always frozen when w ∈ R(n), and in fact, as we will see later
in Corollary 3.4, more generally if and only if w ∈ R(σ) with σ 132-avoiding. Frozen
tableaux have previously appeared in the literature on the combinatorics of K-theory
under the name minimal increasing tableaux, see [3] and the subsequent papers.

Theorem 2.4 ([7, Theorem 6.26]). Suppose w ∈ R(n). Then P(w) is frozen and Q(w) ∈
SYT(scn). The map EG(w) : w 7→ Q(w) is a bijection from R(n) to SYT(scn).

Continuing in the setting of Theorem 2.4, if w ∈ R(n), the inverse to the Edelman–
Greene bijection takes a very special form. To define it, we have to introduce Schützen-
berger’s jeu de taquin. For a good introduction, one could refer to [15], although the
terminology is slightly different.

Let T be a partially filled Young diagram with increasing rows and columns, and
each entry 1 ≤ k ≤ max(i,j)∈T Ti,j occurring exactly once. The evacuation path of T is a
sequence of cells π1, . . . , πs such that

• π1 = (imax, jmax), the location of the largest entry of T,

• if πk = (i, j), πk+1 = (i′, j′) ∈ T such that Ti′,j′ = max{Ti,j−1, Ti−1,j} > −∞ with the
convention Ti,j := −∞ for (i, j) 6∈ T and for unlabeled (i, j) ∈ T.

Next, define the tableau T∂ by

• removing the label of Tπ1 ,

• and sliding the labels along the evacuation path: Tπ1 ← Tπ2 ← · · · ← Tπs .

A single application of ∂ is called an elementary promotion. Whenever a label 1 ≤ ` ≤ Tπ1

slides from some cell (i, j) to (i, j + 1) (respectively (i + 1, j)) in applying ∂ until all labels
have been removed is referred to as a right slide (respectively downslide). For w ∈ R(n),
the inverse to the Edelman–Greene bijection can then be defined as follows.

Theorem 2.5 ([7, Theorem 7.18]). Suppose Q ∈ SYT(scn). Apply ∂ until all labels have
been cleared and say that π

(k)
1 = (ik, jk) is the first cell of the evacuation path π(k) for the k:th

iteration. Then EG−1(Q) = j(n
2)

. . . jk . . . j1.

Consider again the example following Definition 2.2. Applying ∂ yields the sequence

Q =
1 4 5
2 6
3

∂−→
1 5

2 4
3

∂−→
1

2 4
3

∂−→
1

2
3

∂−→
1

2
∂−→

1
∂−→ .

The largest entries are in the cells π
(1)
1 = (2, 2), π

(2)
1 = (1, 3), π

(3)
1 = (2, 2), π

(4)
1 =

(3, 1), π
(5)
1 = (2, 2) and π

(6)
1 = (1, 3). Hence, EG−1(Q) = 321232 as expected.
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3 Frozen regions and diagrams

This section aims to show that Conjecture 1.1 can be formulated in terms of the frozen
regions of insertion tableaux. Our goal is to prove that the shape of the frozen region of
P(k) corresponds to the shape of one part of the so-called diagram of σ = sw1sw2 . . . swk .
The (Rothe) diagram D(σ) of a permutation σ is the set of cells left unshaded when we
shade all the cells weakly to the east and south of 1-entries in the permutation matrix
M(σ). In particular, we consider the (possibly empty) connected component of D(σ) con-
taining (1, 1) which we call the top-left component of the diagram and denote by D(1,1)(σ).
The top-left component induces a partition which is denoted by λ(σ). Similarly, the
frozen region of the insertion tableau of a reduced word induces a partition λ f (w) since
by Theorem 2.3 the tableau is row and column strict. See Figure 2 for an example.

D(σ) =

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0

P =

1 2 4
2 3 5
3 4
4 5

Figure 2: The diagram D(σ) and P = P(w) for any w ∈ R(σ) for σ = 561423. The
top-left component D(1,1)(σ) induces the partition λ(σ) = (2, 2, 2, 2) and the frozen
region of P the partition λ f (w) = (2, 2, 2, 2).

The following is our main result.

Theorem 3.1. If w = w1 · · ·w` is reduced, then λ(sw1 . . . sw`
) = λ f (w). That is, the top-left

component of the diagram of sw1 . . . sw`
has the same shape as the frozen region of P(w).

Proof. Omitted in this extended abstract. A key observation is that by [7, Lemma 6.22
and Lemma 6.23] it is enough to consider the case when w is a reading word.

Corollary 3.2. Let w be a random sorting network. Conjecture 1.1 holds if and only if for all
t ∈ (0, 1), the limit shape of the scaled frozen region Ft = {(2j

n − 1, 1− 2i
n ) ∈ R2 : (i, j) ∈

λ f (w1 . . . wbt(n
2)c)} is determined by {(x, y) ∈ R2 : x ≤ − cos(πt), y ≥ cos(πt), sin2(πt)−

2xy cos(πt)− x2 − y2 = 0}.

Corollary 3.2 follows from Theorem 3.1 by symmetries proved by Edelman and
Greene. The interpretation of Conjecture 1.1 offered by Corollary 3.2 is illustrated in
Figure 3.
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Figure 3: A comparison at t = 3
4 illustrating how the same shapes occur in both

permutation matrices and frozen regions.

3.1 Pattern avoidance

Theorem 3.1 also connects our work with the study of pattern-avoiding permutations.
The set of 132-avoiding permutations of [n], Sn(132), is of particular interest here. The
reason is an observation of Fulton.

Lemma 3.3 ([9, Proposition 9.19]). Let σ ∈ Sn. Then σ is 132-avoiding if and only if D(σ) =
D(1,1)(σ).

Since the length of a reduced word of σ ∈ Sn is exactly the number of inversions
in σ, that is inv(σ), Lemma 3.3 suggests we also need the following well-known fact:
if σ ∈ Sn, then |D(σ)| = inv(σ). Note that by Lemma 3.3, this can also be stated as
λ(σ) ` inv(σ) for σ ∈ Sn(132), meaning that λ(σ) is a partition of inv(σ). We then
obtain the characterization below.

Corollary 3.4. Let w ∈ R(σ). The insertion tableau P(w) is frozen if and only if σ is 132-
avoiding.

Somewhat related, Tenner showed in [17, Theorem 5.15] that the set of 132-avoiding
permutations of any length with k inversions is in bijection with partitions of k.

The proof method of [7, Theorem 8.1, part 2] would also lead to a proof of Corol-
lary 3.4. Moreover, it in fact allows us to prove something stronger. A permutation is
said to be vexillary if it is 2143-avoiding. We have the following result.

Theorem 3.5. Let w ∈ R(σ). If σ is vexillary, then the cell (i, j) of P(w) contains the entry
(i + j− 1) + k, k ≥ 0, if and only if (i + k, j + k) is in D(σ), where k is the number of 1s north-
west of (i+ k, j+ k). Furthermore, if the set of cells (i+ k, j+ k) for entries (i+ j− 1)+ k, k ≥ 0,
in cells (i, j) in P(w) is the diagram of a vexillary permutation, then σ is vexillary.
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Proof. Omitted in this extended abstract.

We refer to Figure 2 for an example. Note that the entries with k = 0 are in the frozen
region of P(w).

The corollary below is mostly a reproof of consequences of results by Stanley [16,
Theorem 4.1], and Edelman and Greene [7, Theorem 8.1]. We have added the observa-
tion that each shape λ ⊂ scn appears for exactly one σ ∈ Sn(132) (and the consequent
second bijection), which also follows from their works by properties of 132-avoiding
permutations but is not discussed.

Corollary 3.6. If σ is 132-avoiding, then P(w) is frozen and has the same shape λ(σ) for all
w ∈ R(σ). Furthermore, each shape λ ⊂ scn appears for exactly one σ ∈ Sn(132). Hence,
EG(w) : w 7→ Q(w) defines a bijection

R(σ)→ SYT(λ(σ)),

and a bijection ⋃
σ∈Sn(132)

R(σ)→
⋃

λ⊂scn

SYT(λ).

Corollary 3.7. Let f λ = |SYT(λ)|. Then∣∣∣∣∣∣ ⋃
σ∈Sn(p)

R(σ)

∣∣∣∣∣∣ = ∑
λ⊂scn

f λ,

where p ∈ {132, 213}.

This is implied by Corollary 3.6 and symmetries proved by Edelman and Greene.
However, we have not been able to simplify the sum on the right-hand side.

Having in mind that the insertion tableau P(w) becomes frozen for any reduced
word w of the reverse permutation, it could be interesting to restrict to 132-avoiding
sorting networks, that is, those reduced words w = w1 . . . w(n

2)
∈ R(n) such that for any

1 ≤ i ≤ (n
2) the permutation sw1 · · · swi is 132-avoiding, or, equivalently, P(w1 . . . wi) is

frozen. This corresponds to considering the maximum length chains in the weak Bruhat
order on Sn restricted to 132-avoiding permutations. Björner and Wachs showed in [2]
that the restriction yields a sublattice isomorphic to the Tamari lattice Tn.

Using results from the next section, we can characterize 132-avoiding sorting net-
works in terms of shifted standard Young tableaux, which was first proved by Fishel and
Nelson [8, Theorem 4.6]. These are standard Young tableaux for which each row i can be
shifted (i− 1) steps to the right without breaking the rule that the columns are increasing
downwards. For example,

1 2 4
3 5
6

−→
1 2 4

3 5
6

.



Properties of the Edelman-Greene bijection (extended abstract) 9

Proposition 3.8. [8, Theorem 4.6] Let w = w1 . . . w(n
2)

be a sorting network.
It is 132-avoiding if and only if Qi,j > Qi−1,j+1 for all (i, j), (i − 1, j + 1) ∈ Q, or in other
words, Q is a shifted standard Young tableau of the shape scn, where Q = EG(w).
It is 213-avoiding if and only if Qi,j < Qi−1,j+1 for all (i, j), (i − 1, j + 1) ∈ Q where Q =
EG(w).

Proof. Omitted. We use Proposition 4.4. The second statement follows from the first by
symmetries.

This subclass of sorting networks has also been studied by Schilling, Thiéry, White
and Williams in [14]. Note in particular the observation that 132-avoiding sorting net-
works form a commutation class, that is, each 132-avoiding sorting network is reachable
from another by a sequence of commutations: sisj 7→ sjsi if |i − j| > 1. They also ob-
served that by [14, Lemma 2.2] n-element 132-avoiding sorting networks are in bijection
with reduced words of the signed permutation −(n− 1) −(n− 2) . . . −1 by si 7→ si−1.

Another characterization of 132-avoiding sorting networks is in terms of lattice words
(also called lattice permutations or Yamanouchi words). A lattice word of type λ =
(λ1, . . . , λm) is a word w = w1 . . . wm in which for each 2 ≤ i + 1 ≤ m there is at least one
i before it, and i occurs λi times in w.

Proposition 3.9. Let w = w1 . . . w(n
2)

be a sorting network and let w̄ = w̄1 . . . w̄k, where
w̄i = n− wi for 1 ≤ i ≤ k. Then w is 132-avoiding if and only if w (or equivalently, wrev) is
a lattice word of type scn. It is 213-avoiding if and only if w̄ (or equivalently, w̄rev) is a lattice
word of type scn.

Proof. Omitted in this extended abstract. Similarly to Proposition 3.8, uses Proposi-
tion 4.4. The second statement follows from the first.

Fishel and Nelson proved the “⇒”-direction of Proposition 3.9 in [8, Corollary 4.5].
Note that if w = w1 . . . wk is a 132-avoiding sorting network, wrev = wk . . . w1 is a 132-
avoiding sorting network as well, since Q(wrev) can be obtained by shifting Q(w), re-
flecting the result anti-diagonally, complementing the entries: m 7→ (n

2) − m + 1, and
(un)shifting back.

We should emphasize that 132-avoiding and 312-avoiding sorting networks coincide.

Proposition 3.10. A sorting network is 132-avoiding if and only if it is 312-avoiding. Similarly,
a sorting network is 213-avoiding if and only if it is 231-avoiding.

Proof. Omitted in this extended abstract.

The following enumerative result was, stated in another form, first obtained by Fishel
and Nelson [8, Corollary 3.4] who enumerated the maximum length chains in Tn using
a different set of methods. However, it is also a reformulation of Corollary 4.5 by Propo-
sition 3.8.
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Corollary 3.11 ([8, Corollary 3.4]). The number of 132-avoiding sorting networks of length (n
2)

is (
n
2

)
!

1!2! . . . (n− 2)!
1!3! . . . (2n− 3)!

.

The same holds for 213-avoiding sorting networks.

4 Non-reduced words

The Edelman–Greene bijection takes as its argument a reduced word. In order to un-
derstand the insertion better, we study its interaction with non-reduced words as well.
Simultaneously, we obtain Proposition 4.4 which can be used to prove Proposition 3.8
and Proposition 3.9.

Fix a standard Young tableau Q and let WQ = {w ∈ N∗ : EG(w) = Q, P(w) frozen}.
Recall that by Corollary 3.4 the reduced words in the setsWQ are reduced words of 132-
avoiding permutations. Note that since the tableau Q(w) = EG(w) has len(w) entries,
all words inWQ have the same length. Also, since the Edelman–Greene correspondence
is a bijection between R(σ) and SYT(λ(σ)) for σ ∈ Sn(132), WQ contains exactly one
reduced word.

We define the poset PQ = (WQ,�) by setting v � w for v, w ∈ WQ if vi ≤ wi for all
1 ≤ i ≤ len(v) = len(w). Figure 4 contains some examples.

Figure 4: Some examples of the 16 posets PQ for Q ∈ SYT(sc4).

4.1 Properties of PQ

First, we extend a result of Edelman and Greene [7, Theorem 6.27]. The descents of a
standard Young tableau T are entries k such that if Ti,j = k, then Ti′,j′ = k + 1 for i′ > i,
in other words k + 1 is strictly south of k. Let Des(T) := {k : k is a descent of T} be the
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set of descents of T. Correspondingly, for w ∈ N∗, let Des(w) := {1 ≤ i ≤ len(w)− 1 :
wi ≥ wi+1}.

Proposition 4.1. For all w ∈ PQ, Des(w) = Des(Q).

Suppose Q is a standard Young tableau with m entries. Define c(Q) := c1 . . . ci . . . cm,
where ci is the column of i in Q for 1 ≤ i ≤ m. Then we say that c(Q) is the column
word of Q. Note that this term is used differently by other authors. Column words of
standard Young tableaux are, by their definition, lattice words.

Proposition 4.2. For Q ∈ SYT(scn), 0̂ = c(Q) is the unique bottom element in PQ.

We conjecture that EG−1(Q) is maximal in PQ. However, in general it is not the top
element. As an example, take a reduced word of the reverse permutation in S6 starting
4521343 . . . and a non-reduced word 2431343 . . . in the same poset PQ, both ending with
the same subword. The height h(P) of a poset P is the length of its longest chain. Let [·, ·]
denote an interval in PQ and `Q := h([c(Q), EG−1(Q)]). In other words, `Q is the length

of a maximum length chain from c(Q) to EG−1(Q). Then `Q ≤ ∑
len(c(Q))
i=1 (EG−1(Q)i −

c(Q)i). However, computations suggest that we have equality for Q ∈ SYT(scn).

Conjecture 4.3. For Q ∈ SYT(scn), we conjecture that EG−1(Q) is a maximal element in PQ

and `Q = ∑
len(c(Q))
i=1 (EG−1(Q)i − c(Q)i).

Note that ∑
len(c(Q))
i=1 (EG−1(Q)i− c(Q)i) is the amount of right slides when performing

EG−1 on Q. Hence `Q ≤ (n
3) for the shape scn. Let ηn,i denote the number of Q ∈

SYT(scn) such that `Q = i, 0 ≤ i ≤ (n
3). The tableaux Q contributing to ηn,0 are simple to

characterize. Then PQ only contains the column word c(Q).

Proposition 4.4. If Q ∈ SYT(scn), then `Q = 0 if and only if Qi,j > Qi−1,j+1 for all (i, j), (i−
1, j + 1) ∈ Q.

The staircase standard Young tableaux in Proposition 4.4 have been enumerated pre-
viously and can also be reinterpreted in terms of several other combinatorial objects, for
example Gelfand–Tsetlin patterns (see the entry A003121 in the OEIS [11]).

Corollary 4.5. We have ηn,0 = (n
2)!

1!2!...(n−2)!
1!3!...(2n−3)! .

We end with some consequences of Conjecture 4.3.

Proposition 4.6. Assume the second part of Conjecture 4.3 holds and Q ∈ SYT(scn). Then
a) `Qt = (n

3)− `Q, so the sequence ηn,i, 0 ≤ i ≤ (n
3), is symmetric,

b) the Schützenberger involution S preserves `Q, that is, `Q = `QS ,
c) the number ηn,i is even for all n ≥ 4, 0 ≤ i ≤ (n

3),
d) and `Q = (n

3) if and only if Qi,j < Qi−1,j+1 for all (i, j), (i− 1, j + 1) ∈ Q.
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