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Abstract. In the early 1970s, Richard Stanley and Kenneth Johnson introduced and laid
the groundwork for studying the order polynomial of partially ordered sets (posets).
Decades later, Hamaker, Patrias, Pechenik, and Williams introduced the term “dop-
pelgangers”: equivalence classes of posets given by equality of the order polynomial.
We provide necessary and sufficient conditions on doppelgangers through applica-
tion of both old and novel tools, including new recurrences and the Ur-operation: a
new generalized poset operation. In addition, we prove that the doppelgangers of
posets P of bounded height |P| − k may be classified up to systems of k diophan-
tine equations in 2O(k2) time, and similarly that the order polynomial of such posets
may be computed in O(|P|) time. The full version of this paper may be found at
https://arxiv.org/abs/1710.10407.
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1 Introduction

1.1 Background

Richard Stanley introduced the order polynomial FP(m) of an unlabeled partially or-
dered set (poset) in 1970 as an analog to chromatic polynomials [10]. Soon after, Johnson
introduced a recurrence relation on the order polynomial of unlabeled posets [7] which
Stanley expanded upon through the introduction of induction on incomparable ele-
ments, a powerful tool for studying posets. Computing the order polynomial is difficult.
For instance, Brightwell and Winkler proved that computing even the first coefficient of
the order polynomial (counting linear extensions) is #P-complete [2]. Despite this, Faigle
and Schrader proved that the order polynomial of special families, series-parallel posets
and posets of bounded (constant) width, may be computed in polynomial time [4].
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More recently, Boussicault, Feray, Lascoux, and Reiner examined posets from a ge-
ometric perspective by studying linear extension sums as valuations over polyhedral
cones [1]. In their work, the authors re-introduce induction on incomparable elements,
extending a simple recurrence on linear extensions to valuations. In 2014, McNamara
and Ward [8] set out to classify the equivalence classes of the multivariate generating
function K(P,ω), a function introduced by Gessel in 1983 [5], and closely related to the
labeled order polynomial ΩP,ω(m). In their work, McNamara and Ward prove a number
of important poset invariants for KP,ω(m), and offer several conjectures and unexplained
equivalences–one of which we explain in section 3.1. Later, Hamaker, Patrias, Pechenik
and Williams coined the term doppelgangers for unlabeled posets with the same order
polynomial, and demonstrated several examples related to the K-theory of miniscule
varieties [6]. Their paper focuses on infinite families of grid-like doppelgangers, raising
the natural question of the existence and importance of similar families. We apply John-
son’s initial recurrence to FP(m) as well as a new recurrence on both ΩP,ω(m) and K(P,ω)

similar to that used in [1] in order to further study doppelgangers.

1.2 Results

Our work begins with an exploration of the interaction between doppelgangers and the
standard poset operations disjoint union and ordinal sum, the operations used to build
series-parallel posets. To this end, we introduce a number of recurrences that require
the following definitions. For incomparable elements x, y, let P|x ≤ y be the poset with
added cover relation x l y and all further relations required by transitivity, and P|x = y
be P with x and y identified. In particular, if v is the identification of x and y then z ≤ v
in P|x = y if and only if z ≤ x in P or z ≤ y in P. Finally, given a labeled poset (P, ω),
let (P, ω)|x < y be the poset (P, ω) with the added strict relation x < y and all other
relations implied by transitivity. Note that (P, ω)|x < y may not correspond to a labeled
poset.

Recall that FP(m) counts the number of order-preserving maps P→ [m] = {1, . . . , m}.
ΩP,ω(m) counts the number of (P, ω)-partitions into [m]–order preserving maps P→ [m]
that are consistent with the labeling ω (a bijection between P and [|P|]). Finally, KP,ω(x)

is a sum over all (P, ω)-partitions f of the product of x| f
−1(j)|

j for each j ≥ 1. More detail
regarding these definitions can be found at the end of Section 2.

Lemma 1.1. The order polynomial and multivariate generating function admit the following
recurrences:

FP = FP|x≤y + FP|y≤x − FP|x=y (1.1)

ΩP,ω = ΩP|x≤y,ω + ΩP|y≤x,ω (1.2)

KP,ω = KP|x<y,ω + KP|y≤x,ω (1.3)
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The objects P|x < y, ω and P|y ≤ x, ω in (1.3) might not be posets, but these objects
remain valid for the purpose of calculating KP,ω. While we mostly focus on these recur-
rences to examine ordinal sum, they provide further results on doppelgangers as well.
For instance, just a single step of recurrence (1.1) provides new infinite families.

Example 1.2. For each n ≥ 2, the posets P1 and P2 below are doppelgangers.

x y
n n

xy

n n− 1

P1 P2

We have the isomorphisms (P1|x ≤ y) ∼= (P2|x ≤ y), (P1|y ≤ x) ∼= (P2|y ≤ x), and
(P1|x = y) ∼= (P2|x = y). Since isomorphic posets have the same order polynomial, Equation
1.1 from Lemma 1.1 shows that FP1 = FP2 . Setting n = 2, we recover the Nicomachus formula

m

∑
k=1

k3 = FP2 = FP1 =

(
m

∑
k=1

k

)2

In their work, McNamara and Ward offer four pairs of posets with equivalent KP,ω
which their methods do not explain as a springboard for further investigation [8]. Our
improper recurrence, Equation (1.3), easily shows the first of these pairs, given in Figure
1, have equivalent KP,ω. We expect Lemma 1.1 has far reaching consequences for KP,ω.

In order to study the interaction of doppelgangers and the ordinal sum, we combine
these recurrences with Stanley’s method of induction on incomparable elements [9], re-
introduced recently in [1]. This method provides elegant proofs of old results such as
Stanley’s poset reciprocity theorem [10], and provides a basis for the order polynomial
which interacts well with ordinal sum (see Proposition 3.1), leading to the following re-
sults. Recall that the ordinal sum of P and Q, P⊕ Q, follows from stacking the Hasse
diagrams of P and Q. We say P ∼ Q when FP(x) = FQ(x). Using induction on incom-
parable elements, we show in Lemma 3.2 that the order polynomial of an ordinal sum
P⊕Q is given by the Cauchy product of the order polynomials of P and Q in a basis of
binomial coefficients. As corollaries of Lemma 3.2, we have the following results.

Corollary 1.3. For labeled posets (P, ω), (P′, ω′), (Q, ψ), (Q′, ψ′), any two conditions imply
the third:

1) (P, ω) ∼ (P′, ω′)
2) (Q, ψ) ∼ (Q′, ψ′)
3) (P⊕Q, ω⊕ ψ) ∼ (P′ ⊕Q′, ω′ ⊕ ψ′)

Corollary 1.4. For all labeled posets (P, ω), (Q, ψ),

(P⊕Q, ω⊕ ψ) ∼ (Q⊕ P, ψ⊕ω).
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While Lemma 1.1 and Corollaries 1.3 and 1.4 explain a large number of small and
series-parallel doppelgangers, there are examples of size ≥ 6 (see Example 4.4) they
cannot explain. To this end, we introduce a new poset operation to generalize Corollaries
1.3 and 1.4.

Definition 1.5. For a poset P = {x1, · · · , xn} and a sequence of posets {P1, · · · , Pn}, let
P [xk → Pk]

n
k=1 be the poset on

⋃
k Pk with the following operation:

For p ∈ Pj, q ∈ Pk, p ≤ q when

{
p ≤ q j = k
xj ≤ xk j 6= k

.

We call this the Ur-operation on P by {P1, · · · , Pn}. If any Pk is not specified, then that Pk is
assumed to be the poset on one element.

Example 1.6. The Ur-operation generalizes disjoint union, ordinal sum, and ordinal product.

V + V V ⊕V V ⊗V

A2 C2 V A2[xi → V]2i=1 C2[xi → V]2i=1 V[xi → V]3i=1

Further, using the operation we prove a generalization of Corollary 1.3:

Theorem 1.7. For a poset P = {x1, · · · , xn} and two sequences of posets {P1, . . . , Pn} and
{Q1, . . . , Qn} such that Pi ∼ Qi, we have that P [xk → Pk]

n
k=1 ∼P [xk → Qk]

n
k=1.

Theorem 1.7 shows that elements of the same poset may be exchanged for doppel-
gangers while preserving equivalence. This raises the natural question of when distinct
elements may be exchanged with the same result.

Definition 1.8. We say x ∈ P, y ∈ Q are Ur-equivalent when P[x → R] ∼ Q[y → S] for all
posets R ∼ S.

In Corollary 4.6 and Conjecture 4.7, we offer a basic necessary and sufficient condition
for Ur-equivalence, and conjecture a strengthening of the result.

Finally, we move to the classification of infinite families of doppelgangers. Faigle
and Schrader proved that for posets with bounded width k, the order polynomial may
be computed in O(|P|2k+1) time. However, any algorithm to classify infinite families of
doppelgangers must be constant with respect to |P|. We provide such an algorithm for
posets of height |P| − k, a subfamily of Faigle and Schrader’s posets of bounded width.

Theorem 1.9. For constant k, the doppelgangers among posets of height |P| − k = n − k are
completely determined by sets of k Diophantine equations computable in 2O(k2) time. In addition,
FP(x) is computable in O(n) time, and for k = O( log(n)

log(log(n))), the time is polynomial in n.
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Theorem 1.9 takes advantage of several invariants on doppelgangers we will intro-
duce in Section 3.1, as well as the rigid structure of posets of bounded height. The
improvement this structure brings from O(n2k+1) to O(n) allows us to extend our fam-
ily of bounded height past the constant restriction imposed by Faigle and Schrader on
posets of bounded width. As an example, we provide the Diophantine equations for
k = 1, 2 in Table 1, along with general solutions where possible.

2 Doppelgangers and the Order Polynomial

For a poset P, let FP(n) denote the number of order-preserving maps f from P to
{1, 2, . . . , n} – that is, maps which satisfy f (x) ≤ f (y) whenever x ≤ y in P. Thus
the numbers FP(n) provide a measure of how far the poset P is from a total order. If two
posets P and Q satisfy the equivalence FP(n) = FQ(n) for all n, we will call them doppel-
gangers, and we denote this fact by P ∼ Q. In this paper we establish certain structural
properties of a pair of of posets (P, Q) which are either necessary or sufficient condi-
tions for P ∼ Q. Stanley offered many necessary conditions in his early work and later
as exercises in Enumerative Combinatorics [11]. We provide some simple but important
examples from these to aid intuition.

Proposition 2.1. If P and Q are doppelgangers, then |P| = |Q| and e(P) = e(Q).

Here, e(P) is the number of linear extensions of a poset P, order preserving bijections
from P → [|P|]. The above follows from the fact that the order polynomial is of degree
|P|, and the leading coefficient is uniquely determined by e(P).

We recall several operations on posets and show that they behave well in relation
to order polynomials. Let P and Q be posets: The disjoint union of P and Q, denoted
P + Q, is constructed by taking the union of the elements of P and Q and inheriting the
relations from P and Q. The ordinal sum of P and Q, denoted P⊕ Q, is constructed by
first taking P + Q, and then imposing the relation x ≤ y for every x ∈ P and y ∈ Q.

Proposition 2.2. FP+Q(n) = FP(n)FQ(n).

These operations can be used to generate larger, more complicated pairs of doppel-
gangers out of smaller pairs. For example, if Q ∼ R, then we get that

FP+Q = FPFQ = FPFR = FP+R,

and so P + Q and P + R are doppelgangers for all posets P. Analogously, in Corollary
1.3 we will also see that P⊕ Q and P⊕ R are doppelgangers whenever Q ∼ R. In fact,
the Ur-operation provides a direct generalization of this property, given in Theorem 4.3.

The term doppelganger originally referred to unlabeled posets, but extends easily to
labeled posets (P, ω). A labeled poset (P, ω) is a poset P equipped with a bijective labeling
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ω : P→ [|P|]. In this case, a map f : (P, ω)→ [m] is order-preserving when f (x) ≤ f (y)
whenever x ≤ y, and f (x) < f (y) whenever x < y and ω(x) > ω(y). The number of
such maps is the order polynomial of (P, ω), denoted ΩP,ω(m). In fact, every unlabeled
poset P may be written as a labeled poset (P, ω) where ω is a natural labeling or a linear
extension of P, that is when ω(x) < ω(y) whenever x < y. In this case FP = ΩP,ω. In
fact, labeled posets admit an interesting generalization of the order polynomial studied
in recent work [8]. The multivariate generating function of (P, ω) is

KP,ω(x) = ∑
f∈(P,ω)−partitions

x| f
−1(1)|

1 x| f
−1(2)|

2 . . .

Here, (P, ω)-partitions differ from order preserving maps only in that they map to Z+.

3 Order Polynomial Recurrence

3.1 Induction on Incomparable Elements

Recall the poset operations introduced in Section 1.2: P|x ≤ y, P|x = y, and P|x < y.
While this final operation might not result in a valid labeled poset, order preserving
functions, and thus the order polynomial and multivariate generating functions, are still
well-defined on these improper posets.

Equation (1.3) illuminates McNamara and Ward’s first unexplained example (see Fig-
ure 1). This ends our discussion of KP,ω, but application of our methodology to the
function is a possible direction of further research.

x y x

y x

y

yx x

y

y

x

P P|x < y P|y ≤ x Q Q|x < y Q|y ≤ x

Figure 1: Equivalence of KP,ω and KQ,ω. Double edges denoted strict order relations.

We use Lemma 1.1 to prove results involving order polynomials by strong induction
on the number of incomparable pairs of elements, as each of the terms of the recurrences
have fewer such pairs than the original poset. It is clear from repeated applications of
Equation (1.1) that the order polynomial of any poset should have an expression as the
sum of the order polynomial of total orders, or chains, with FCk = (m+k−1

k ) where Ck is a
chain of cardinality k. Indeed, as a consequence of poset reciprocity we can easily derive
the expression for the order polynomial in the (m+k−1

k ) or chain basis.
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Proposition 3.1. For all posets P, there exist ck ∈N such that

FP(m) = (−1)|P|
|P|

∑
k=h(P)

(−1)kck

(
m + k− 1

k

)
where h(P) is the height of P and denotes the number of elements in the largest total order in P.

In the chain basis the coefficients of FP⊕Q are given by the convolution of the coef-
ficients of P with those of Q. Further, this extends to labeled posets and beyond the
chain basis. In particular, we generalize ⊕ to labeled posets in the following way: given
labeled posets (P, ω) and (Q, ψ), let ω⊕ ψ be a labeling on P⊕Q given by

(ω⊕ ψ)(x) =

{
ω(x) x ∈ P
|P|+ ψ(x) x ∈ Q

.

Then (P⊕ Q, ω ⊕ ψ) is the labeled poset where every element of P is weakly less than
every element of Q.

Lemma 3.2. If FP(m) = ∑|P|i=1 ai(
m+k−1

k ) and FQ(n) = ∑|Q|j=1 bj(
m+k−1

k ), then

FP⊕Q(n) =
|P|+|Q|

∑
k=1

(
k

∑
i=1

aibk−i

)(
m + k− 1

k

)
.

Corollaries 1.3, 1.4, our results on doppelgangers with respect to ordinal sum, follow
immediately. In Section 4, we will extend the unlabeled (naturally labeled) version of
Corollary 1.3 to the Ur-operation. Despite its simplicity, Corollary 1.4 has merit on its
own, and easily recovers one of the doppelganger pairs discussed in [6]. If we let Cn
denote the total order on n elements and if we let An denote a collection of n elements
with no relations between them, then the posets in this example can be expressed by the
ordinal sum as follows.

Example 3.3. Cn−1 ⊕ A2 ⊕ Cn−1 = ΛQ2n ∼ Φ+
I2(2n) = A2 ⊕ Cn−1 ⊕ Cn−1 (see Figure 1 in

[6]). This pair of doppelgangers is an immediate consequence of Corollary 1.4.

4 The Ur-Operation

Section 3.1 details the interactions of the order polynomial and standard poset opera-
tions. By considering the Ur-operation, Definition 1.5, it is possible in turn to extend
our results. Recall the Ur-operation replaces some subset of points in a poset P by a
corresponding set of posets {P1, · · · , Pk}, denoted by P [xi → Pi]

n
i=1. Then the disjoint

sum operation P1 + P2 can be expressed as A2[xk → Pk]
2
k=1, the ordinal sum operation
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P1 ⊕ P2 as C2[xk → Pk]
2
k=1, and the ordinal product P⊗ Q as P[xk → Q]nk=1. Here A2 is

the anti-chain, or completely un-ordered poset, of size 2.
The order polynomial of the Ur-operation relies heavily on the structure P . There-

fore it is convenient throughout the rest of this section to have the following definition.

Definition 4.1. For a poset P and x ∈P , define gP
x (n, m) to be the number of order-preserving

maps f : P [x → ∅] → [m] such that 1 + min
x≤y

f (y)−max
y≤x

f (y) = n, where the min and max

are taken to be m and 1 respectively if not well defined.

Note that gP
x (n, m) counts the number of ways to choose an order preserving map

into [m] such there are n consistent choices for the value at x.

4.1 The Order Polynomial

With this in hand, we offer a simple formula for the order polynomial of a single substi-
tution. The polynomial for the general operation may be given by repeated application

Proposition 4.2. For a poset P with x ∈P , a poset Q, and m ≥ 1,

FP [x→Q](m) =
m

∑
n=1

gP
x (n, m)FQ(n).

The Ur-operation generalizes the relation between ordinal sum and doppelgangers
given by Corollaries 1.3 and 1.4. In particular, we have Theorem 1.6 which we restate
below.

Theorem 4.3. For a poset P = {x1, · · · , xn} and two sequences of posets {P1, . . . , Pn} and
{Q1, . . . , Qn} such that Pi ∼ Qi, we have that P [xk → Pk]

n
k=1 ∼P [xk → Qk]

n
k=1.

Example 4.4. The posets (d) and (e) below are doppelgangers by Theorem 4.3.

y

x

(a) P (b) Q (c) Q∗ (d) P[x → Q, y→ Q∗] (e) P[x → Q∗, y→ Q]

Due to the underlying non-series-parallel structure of P, this does not follow from Corollaries
1.3 or 1.4, nor does it follow from a single application of Johnson’s recurrence.

Theorem 4.3 allows us to build new doppelgangers out of an arbitrary poset by iter-
atively replacing points with corresponding doppelgangers. We know as well, however,
that one can construct doppelgangers by replacing different points of some poset P with
corresponding doppelgangers, such as in Ck or Ak. It is natural then to ask about a
generalization of this occurrence. For posets P and Q with x ∈ P and y ∈ Q, when do
we have P[x → R] ∼ Q[y→ S] for all doppelgangers R ∼ S?
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4.2 Ur-Equivalence

Definition 4.5. We say x ∈ P, y ∈ Q are Ur-equivalent when P[x → R] ∼ Q[y → S] for all
posets R ∼ S.

Ur-equivalence relies on the same structure the order polynomial does: for x ∈ P and
y ∈ Q, x and y are Ur-equivalent if and only if gP

x = gQ
y . As a corollary of this result, we

have the following.

Corollary 4.6. For x ∈ P and y ∈ Q with |P| = |Q| = n, x and y are Ur-equivalent if and only
if there exist posets {S1, · · · , Sn} with |Si| = i such that P[x → Si] ∼ Q[y→ Si], ∀ i ∈ [n]

Unfortunately, while gP
x reveals the structure behind Ur-equivalence, in general it is

too difficult to calculate to be of practical use. However, one may note that gP
x is totally

determined by the structure of P[x → ∅] and its relation to P. The structure of gP
x

suggests that we may be able to strengthen the Corollary 4.6:

Conjecture 4.7. For x ∈ P and y ∈ Q, x and y are Ur-equivalent if and only if P ∼ Q and
P[x → ∅] ∼ Q[y→ ∅].

The conjecture holds for small posets, and like the order polynomial, gP
x has signifi-

cant extra structure that could be leveraged to prove such a result.

5 Posets of Bounded Height

Due to the computational complexity of the order polynomial, a general classification of
doppelgangers seems hopeless. However, there are certain large families for which the
order polynomial is computable in polynomial time. For instance, Faigle and Schrader
showed that the order polynomial of P ∈ Wk, the set {P ∈ Pn | w(P) ≤ k} may be
computed in O(n2k+1). While this set does not have a rigid enough structure to permit
classification, a special subset does. Consider Hk ⊂ Wk, the set {P ∈ Pn | h(P) =
n− k}. We will leverage invariants on doppelgangers and the rigid structure of Hk to
prove that one may reduce classification of doppelgangers to k Diophantine equations
in 2O(k2) time. In addition, we show that for constant k the order polynomial of posets
in this class has time complexity O(n), and is computable in polynomial time for k =
O(log(n)/log(log(n))).

5.1 Invariants

Proposition 3.1 introduces an important restriction on the roots of the order polynomial,
first shown by Stanley [10]. Recall that the height of P, h(P), is the cardinality of the
largest total ordering contained in P.
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Lemma 5.1. FP(x) vanishes at x = 0,−1, . . . ,−h(P) + 1 but not at −h(P),−h(P)− 1, . . ..

In particular, doppelganger posets have the same height. In fact, combining Lemma
5.1 with a number other simple invariants, we produce a set of necessary and sufficient
conditions for doppelgangers.

Proposition 5.2. P ∼ Q if and only if |P| = |Q|, h(P) = h(Q), e(P) = e(Q), and FP(x) =
FQ(x) at |P| − h(P)− 1 distinct x–not counting the trivial agreement at 1, 0,−1, . . . ,−h(P).

In the section that follows we will not use the e(P) invariant, but it is particularly
useful for enumerating H1 and H2.

5.2 Classifying Hk

The height invariant, Corollary 5.1, and the underlying structure of Hk allow us to
theoretically classify all its doppelgangers in time dependent on k and compute their
order polynomials in O(n) time. Consider a poset P ∈ Hk. We may view this poset as a
set of “on-chain” elements x1 ≤ · · · ≤ xh(p), and k “off-chain” elements. For every off-
chain element x, there exist nonnegative integers a + b + c = h such that x is greater than
x1, · · · , xa, x is incomparable to xa+1, · · · , xa+b, and x is less than xa+b+1, · · · , xa+b+c. The
relative structure of these off-chain to on-chain elements is key to computing FP(m).

Lemma 5.3. Let P be a finite poset consisting of a chain x1 ≤ . . . ≤ xh(P) and k = |P| − h(P)
other elements off the chain y1, . . . , yk. Applying the above argument to each yi results in values
a + b + c = h for each term. For convenience, we define (a1 ≤ . . . ≤ a2k) to be the ordering of
these 2k values, and further define a0 = 0 ≤ a1, and a2k+1 = h(P)+ 1 ≥ a2k. Let di, 0 ≤ i ≤ 2k,
be the difference between the i and i + 1st terms in this sequence, i.e. di = ai+1 − ai. The value
of FP(m) is a polynomial in the di and can be computed in O(m3k+1).

To see the above, begin by summing over at most mk possible choices of the values
for some order preserving f : |P| → [m] on an off-chain elements x. For each choice
of the value of f on the x, we sum over the possible choices for how many times f
increases between each xai and xai+1. The number of ways to arrange these increases is
a polynomial in m of degree at most 2k + 1. Together with our mk possible choices this
gives O(m3k+1). In fact, given the di of Lemma 5.3, we need only compute FP(1) . . . FP(k)
to get the order polynomial. Thus the rate limiting step becomes computing the ai and
di for a given poset P.

Lemma 5.4. Given a poset P, |P| = n, with h(P) = n− k, computing the ai and di of Lemma
5.3 takes O(n) time.

This result follows from bounding the number of edges in the Hasse diagram of |P|,
and then finding maximal paths in the graph in linear time. Lemma 5.4 provides the key
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m1

m2

m3

m1

m2

m3

m4

m5

m1

m2

m3

m4

m5

m1

m2

m3

m4

m5

m1

m2

m3

m4

m5

(a) Tri (b) Dtri (c) Ntri (d) Xdis (e) Xcon

Figure 2: The five families of posets of height n− 1 and n− 2.

step to calculate FP, but classifying doppelgangers does not require this computation.
The limiting step in classification becomes enumerating all possible poset structures of
off-chain elements, which may take up to 2O(k2) time. Together, this relative off and
on-chain structure and Lemmas 5.3 and 5.4 allow us to prove Theorem 1.9.

5.3 Example: H1 and H2

While for large k, classifying the Hk may be computationally intractable, H1 and H2 are
simple enough to compute by hand. We provide a classification of these families as an
example of the above method, and show how the Diophantine equations lead to new
infinite families of doppelgangers. We begin by enumerating the families of H1 and H2

Proposition 5.5. All posets P with |P| − h(P) = 1 are isomorphic to a poset depicted by
Figure 2(a). All posets P with |P| − h(P) = 2 are isomorphic to poset depicted by Figures 2(b-e).

The values of the invariants for the posets in Figure 2 are given in Table 1 and the
computation of these values can be found in the appendix of [3]. The result of this table is
that we can compute all doppelgangers among posets of height at most |P| − 2 by solving
various pairs of Diophantine equations. In fact, Table 1 implies that all doppelgangers
between Tri and Tri, and Dtri and Dtri are completely determined by Corollary 1.4.
In addition, doppelgangers between Ntri and Ntri are given by Corollary 1.4 and the
equivalence Ntri(m2, m3, m4) = Ntri(3b− c− 2(d+ e), b, c) ∼Ntri(d, 2b− d− e, e). Further
examples of infinite doppelganger families following from Table 1 may be found in [3].
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Family e(P) FP(2)
Tri m2 + 1 |P|+ m2 + 1

Dtri (m2 + 1)(m4 + 1) |P|+ m2 + m4 + 1
Ntri (m2 + m3 + m4 + 2)(m3 + 1) |P|+ m2 + 3m3 + m4 + 2
Xdis (m2 + m3 + 1)(m3 + m4 + 1) + m3 + 1 |P|+ m2 + 3m3 + m4 + 2
Xcon (m2 + m3 + 1)(m3 + m4 + 1)− 1

2 m3(m3 + 1) |P|+ m2 + 2m3 + m4 + 1

Table 1: Values of e(P) and FP(2) for the five infinite families in Figure 1.
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