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Abstract. We construct a Demazure crystal for nonsymmetric Macdonald polynomials

specialized at t = 0, giving a new proof that these specialized nonsymmetric Macdon-

ald polynomials are graded sums of Demazure characters.
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1 Introduction

Macdonald [20] defined symmetric functions with two parameters Pλ(X; q, t) indexed by

partitions as the unique symmetric function basis satisfying certain triangularity (with

respect to monomials in the variables X = x1, x2, . . .) and orthogonality (with respect

to a generalized Hall inner product) conditions. The coefficients of Pλ(X; q, t) when

written as a sum of monomials are rational functions in the parameters q and t. Based

on hand computations for partitions up to size 8, Macdonald conjectured that the Kostka–
Macdonald coefficients Kλ,µ(q, t) defined by expanding the integral form Jµ(X; q, t), a scalar

multiple of the original Pλ(X; q, t), into the plethystic Schur basis,

Jµ(X; q, t) = ∑
λ

Kλ,µ(q, t)sλ [X(1 − t)], (1.1)

are polynomials in q and t with nonnegative integer coefficients.

Inspired by Garsia and Procesi [10], Garsia and Haiman [9] constructed a bi-graded

module for the symmetric group and conjectured that the Frobenius character is

Hµ(X; q, t) = Jµ[X/(1 − t); q, t], (1.2)

thus the Kostka–Macdonald coefficients give the Schur function expansion of Hµ(X; q, t).
This conjecture gives a representation theoretic interpretation for the Kostka–Macdonald

polynomials as the graded coefficients of the irreducible decomposition of these mod-

ules. Haiman [14] resolved both conjectures by analyzing the isospectral Hilbert scheme

of points in a plane, ultimately showing that it is Cohen–Macaulay (and Gorenstein).
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The nonsymmetric Macdonald polynomials Ea(X; q, t), introduced by Opdam [23]

and Macdonald [21], are indexed by weak compositions and form a basis for the full

polynomial ring. They generalize Macdonald polynomials in the sense that

Eλn,λn−1,...,λ1
(x1, . . . , xn; q, t) = Pλ(x1, . . . , xn; q, t),

E0m×a(x1, . . . , xm, 0, . . . , 0; q, t) = Psort(a)(x1, . . . , xm; q, t),

where 0m × a denotes the composition obtained by prepending m 0’s to a.

Generalizing Haglund’s elegant combinatorial formula for Hµ(X; q, t) [11, 12], Haglund,

Haiman, and Loehr [13] gave a combinatorial formula for Ea(X; q, t) as

Ea(X; q, t) = ∑
T:a→[n]

non−attacking

qmaj(T)tcoinv(T)Xwt(T) ∏
c 6=left(c)

1 − t

1 − qleg(c)+1tarm(c)+1
, (1.3)

where the sum is over certain positive integer fillings T of the diagram of the compo-

sition a and coinv and maj are nonnegative integer statistics. In stark contrast with

the symmetric case, there are no known (or even conjectured) positivity results for the

nonsymmetric Macdonald polynomials.

Demazure [8] generalized the Weyl character formula to certain submodules gener-

ated by extremal weight spaces under the action of a Borel subalgebra of a Lie algebra.

These Demazure characters κa, where a = w · λ, for w a permutation acting on the coordi-

nates of a partition λ, arose in connection with Schubert calculus [7], and, in type A, also

form a basis of the polynomial ring. Recent work of Assaf and Searles [5] indicates that

the type A Demazure characters are the most natural pull backs of Schur functions to

the polynomial ring, in the sense that the combinatorics of the former stabilizes to that

of the latter. Therefore, in the search for polynomial analogs of Schur positivity state-

ments for nonsymmetric Macdonald polynomials, the natural basis for comparison is the

Demazure characters. Recently, Assaf [1] proved that the specialization Ea(X; q, 0) is a

nonnegative sum of Demazure characters, and that this nonnegativity precisely parallels

the Schur expansion of Pλ(X; 0, t). While the proof is purely combinatorial, the resulting

formula is difficult to work with and, in practice, requires computing the fundamental

slide polynomial [6] expansion of Ea(X; q, 0).
In this abstract, we present a new combinatorial proof of the Demazure positivity

of Ea(X; q, 0) that provides a representation theoretic interpretation for Ea(X; q, 0) as the

character of a graded Demazure module and results in an explicit combinatorial formula

for the Demazure coefficients. Our proof proceeds by constructing crystal operators [15]

on fillings of a diagram that we prove generate a Demazure crystal, generalizing a recent

result of Assaf and Schilling [4]. In Section 2, we review crystal graphs and Demazure

truncations of them. In Section 3, we review the combinatorial model for nonsymmetric

Macdonald polynomials. Bringing these two ideas together, in Section 4, we define

our Demazure crystal and, in Section 5, deduce from it a formula for the Demazure

expansion of Ea(X; q, 0). For further details, see [3].
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2 Crystal graphs

Irreducible polynomial representation of the general linear group GLn are naturally in-

dexed by partitions λ of length n with a basis naturally indexed by semistandard Young
tableaux of shape λ. These are fillings of the diagram of λ from the alphabet {1, 2, . . . , n}
such that entries weakly increase along rows and strictly increase up columns. For ex-

ample, the semi-standard Young tableaux of shape (2, 2, 1, 0) are shown in Figure 1.
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Figure 1: The semi-standard Young tableaux of shape (2, 2, 1, 0).

Let SSYTn(λ) denote the set of semi-standard Young tableaux of shape λ over the

alphabet {1, 2, . . . , n}. To each semi-standard Young tableau T, we associate the weak

composition wt(T) whose ith part is the number of entries of T equal to i.
The Schur polynomials are the characters of these irreducible representations. They

may be defined as the generating polynomial for semi-standard Young tableaux,

sλ(x1, . . . , xn) = ∑
T∈SSYTn(λ)

xwt(T)1
1 · · · xwt(T)n

n . (2.1)

Kashiwara [15] introduced the notion of crystal bases in his study of the represen-

tation theory of quantized universal enveloping algebras at q = 0. A crystal graph is a

directed, colored graph with vertex set given by the crystal basis of a quantum group and

directed edges given by deformations of the Chevalley generators. There is an explicit

combinatorial construction of the crystal graph, with raising and lowering operators

denoted by ei and fi, respectively, that act on tableaux [17, 19].

For a semi-standard Young tableau T, let T|≤c denote the first c columns of T. Given

a positive integer 1 ≤ i < n, define indices:

mi(T, c) = wt(T|≤c)i − wt(T|≤c)i+1, mi(T) = max
c>0

(mi(T, c)) .

Observe that if mi(T) > 0 and c is the leftmost column that attains this maximum, then

there is an i and no i + 1 in column c of T.

Definition 2.1. Given an integer 1 ≤ i < n, define the lowering operator fi on semi-

standard Young tableaux as follows: if mi(T) ≤ 0, then fi(T) = 0; otherwise, for c the

smallest index such that mi(T, c) = mi(T), fi(T) changes the i in column c of T to i + 1.
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Figure 2: The crystal B(2, 2, 1, 0) (left) and the Demazure crystal B2431(2, 2, 1, 0) (right),

with edges f1 ւ, f2 ↓, f3 ց defined by the lowering operators.

For example, Figure 2 shows the lowering operators on SSYT4(2, 2, 1, 0).
Denote the highest weight crystal for a partition λ by B(λ). Then

chB(λ) = ∑
b∈B(λ)

xwt(b)1
1 · · · xwt(b)n

n = sλ(x1, . . . , xn), (2.2)

which is the character of the irreducible representation of highest weight λ.

Demazure [8] generalized the Weyl character formula to certain submodules gener-

ated by extremal weight spaces under the action of a Borel subalgebra of a Lie algebra.

These Demazure characters arose in connection with Schubert calculus [7]. Demazure crys-
tals are certain truncations conjectured by Littelmann [19] and proved by Kashiwara [16]

to generalize Demazure characters. Given a subset X ⊆ B(λ), we define Di by

DiX = {b ∈ B(λ) | ek
i (b) ∈ X for some k ≥ 0}, (2.3)
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where ei denotes the raising operator satisfying ei(b) = b′ if and only if fi(b′) = b for all

b, b′ ∈ B(λ).
These operators satisfy the braid relations for the symmetric group, and so for a

permutation w with reduced expression w = sik
· · · si1 , we may define

Bw(λ) = Dik
· · ·Di1{uλ}, (2.4)

where uλ is the highest weight element in B(λ); that is, ei(uλ) = 0 for all i. For example,

Figure 2 shows the Demazure crystal for w = 2431 and λ = (2, 2, 1, 0).

Theorem 2.2 ([16]). Given a weak composition a, the Demazure character κa is given by

κa = ∑
b∈Bw(a)(sort(a))

xwt(b)1
1 · · · xwt(b)n

n = chBw(a)(sort(a)), (2.5)

where sort(a) is the partition sorting of a and w(a) is the shortest permutation that sorts a.

3 Macdonald polynomials

Macdonald’s symmetric functions Pλ(X; q, t) [20] are two parameter generalizations of

classical symmetric functions that simultaneously generalize the Hall–Littlewood sym-

metric functions Hλ(X; t) = Pλ(X; 0, t) and the Jack symmetric functions Jλ,α(X) =
limt→1 Pλ(X; tα , t). The nonsymmetric Macdonald polynomials Ea(x1, . . . , xn; q, t) were

introduced by Opdam [23] and Macdonald [21]. The symmetric Macdonald polynomi-

als are a special case of their nonsymmetric analogs,

Eλn,λn−1,...,λ1
(x1, . . . , xn; q, t) = Pλ(x1, . . . , xn; q, t). (3.1)

Haglund, Haiman and Loehr [13] gave a combinatorial formula for the monomial

expansion of nonsymmetric Macdonald polynomials as follows.

Two cells of a diagram are attacking if they lie in the same column or if they lie in

adjacent columns with the cell on the left strictly higher than the cell on the right. A

filling is non-attacking if no two attacking cells have the same value.

Given a non-attacking filling T, define the major index of T, denoted by maj(T), to

be the sum of the legs of all cells c such that the entry in c is strictly greater than the

entry immediately to its left. A triple is a collection of three cells with two row adjacent

and either (Type I) the third cell is above the left and the lower row is strictly longer,

or (Type II) the third cell is below the right and the higher row is weakly longer. The

orientation of a triple is determined by reading the entries of the cells from smallest to

largest. A co-inversion triple is a Type I triple oriented counterclockwise or a Type II

triple oriented clockwise. For example, the filling T in Figure 3 is non-attacking, with

maj(T) = 2 + 1 = 3 and coinv(T) = 2.
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Figure 3: A non-attacking filling of the diagram for (2, 1, 3, 0, 0, 2) with the two co-

inversion triples noted to the right.

Theorem 3.1 ([13]). The nonsymmetric Macdonald polynomial Ea(x1, . . . , xn; q, t) is given by

Ea(X; q, t) = ∑
T:a→[n]

non−attacking

qmaj(T)tcoinv(T)Xwt(T) ∏
c 6=left(c)

1 − t
1 − qleg(c)+1tarm(c)+1

. (3.2)

We consider the specialization at t = 0, in which case the product becomes 1, and the

only terms that survive are those T with coinv(T) = 0.

4 4
3
2 2

4 4
3
2 1

4 4
3
1 1

4 4
2
1 1

4 4
1
2 2

4 3
3
2 2

4 3
3
2 1

4 3
3
1 1

4 3
2
1 1

4 3
1
2 2

4 2
3
2 1

4 2
3
1 1

4 2
2
1 1

3 3
2
1 1

3 3
1
2 2

3 2
2
1 1

4 4
2
1 3

3 3
2
1 4

3 2
2
1 4

3 1
2
1 4

Figure 4: The semi-standard key tabloids of shape (0, 2, 1, 2).

Definition 3.2 ([1]). The semi-standard key tabloids of shape a, denoted by SSKD(a), are the

non-attacking fillings of the diagram of a with no co-inversion triples.

For example, the 20 semi-standard key tabloids of shape (0, 2, 1, 2) are given in Fig-

ure 4. With this terminology, the specialized nonsymmetric Macdonald polynomial is

Ea(x1, . . . , xn; q, 0) = ∑
T∈SSKD(a)

qmaj(T)xwt(T)1
1 · · · xwt(T)n

n . (3.3)

Define the nonsymmetric Kostka–Foulkes polynomial Ka,b(q) by the expansion

Eb(X; q, 0) = ∑
a

Ka,b(q)κa(X). (3.4)

In [1], Assaf uses weak dual equivalence [2] to prove Ka,b(q) ∈ N[q].
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Theorem 3.3 ([1]). The specialized nonsymmetric Macdonald polynomial Ea(x1, . . . , xn; q, 0) is
a positive graded sum of Demazure characters.

While the proof in [1] is combinatorial, the interpretation for Ka,b(q) comes as the maj-

weighted number of weak dual equivalence classes on standard key tabloids of shape b
that have type a. This requires computing each equivalence class in its entirety. Thus we

desire a direct formula analogous to that for the Kostka–Foulkes polynomials Kλ,µ(0, t).

4 Demazure crystal on key tabloids

Generalizing the crystal constructions on Young tableaux, we give a new proof of The-

orem 3.3 by constructing an explicit Demazure crystal on semi-standard key tabloids as

follows. For a semi-standard key tabloid T, let w(T) denote the word obtained by read-

ing columns of T right to left, and reading each column top to bottom. Given a positive

integer 1 ≤ i < n and a word w of length k, define indices:

Mi(w, j) = wt(wj · · ·wk)i+1 − wt(wj · · · wk)i, Mi(w) = max
j>0

(Mi(w, j)) .

Definition 4.1. Given an integer 1 ≤ i < n, define the raising operator ei on SSKD(a)
as follows: if Mi(w(T)) ≤ 0, then ei(T) = 0; otherwise, for j the largest index such

that Mi(w(T), j) = Mi(w(T)), and letting c be the column in which the letter of T
corresponding to wj lies, ei(T) changes all column-consecutive i + 1s weakly right of

column c of T to i and simultaneously changes all is in the affected columns to i + 1s.

For example, Figure 5 shows the raising operators on SSKD(0, 2, 1, 2). Note that,

unlike the crystal operators on semi-standard Young tableaux, the raising operator ei on

semi-standard key tabloids might change the relative order of i and i + 1 within a given

column. For ei acting on T, we might change i above i + 1 in some column to i + 1 above

i. Whenever this happens for a semi-standard key tabloid T, we say that ei flips T.

Theorem 4.2. The raising operators are well-defined, maj-preserving maps ei : SSKD(a) →
SSKD(a) ∪ {0} that are invertible on the subset of tabloids T such that ei(T) 6= 0.

We also consider the lowering operators, denoted by fi, satisfying fi(T′) = T if and

only if ei(T) = T′ for all T, T′ ∈ SSKD(a). We similarly say that fi flips T if within some

column fi changes i + 1 above i to become i above i + 1.

In the case of semi-standard key tabloids with maj = 0, i.e. the semi-standard key

tableaux [1] that correspond to Mason’s semi-skyline augmented fillings [22], the rais-

ing operators in Definition 4.1 are precisely those defined by Assaf and Schilling [4] in

connection with Schubert polynomials.

Identifying each semi-standard key tabloid of shape a with the diagram in the plane

obtained by placing all cells with entry i into row i, the semi-standard key tableaux are
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Figure 5: The Demazure crystal for E(0,2,1,2)(X; q, 0) on SSKD(0, 2, 1, 2), with edges

e1 ր, e2 ↑, e3 տ defined by raising operators.

precisely the diagrams that arise by applying Kohnert’s algorithm [18] to the composition

diagram for a [2]. We define a rectification map that sends an arbitrary diagram to a

Kohnert diagram, which back at the level of tabloids, sends a semi-standard key tabloid

to a semi-standard key tableau. This rectification map, illustrated in Figure 6, commutes

with the raising operators, allowing us to give a bijective proof of the following using

the Demazure crystal of Assaf and Schilling [4] on semi-standard key tableaux.

Theorem 4.3. The raising operators define a Demazure crystal graph on SSKD(a). In particular,
their generating polynomial Ea(x1, . . . , xn; q, 0) is a graded sum of Demazure characters.

For example, from Figure 5, we see that

E(0,2,1,2)(X; q, 0) = κ(0,2,1,2)(X) + qκ(1,1,1,2)(X).
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Figure 6: Examples of the rectification algorithm from semi-standard key tabloids, to

diagrams, to Kohnert diagram (via rectification), to semi-standard key tableaux.

5 Highest weights

A connected crystal graph B has a unique highest weight element Y characterized by

the property ei(Y) = 0 for all i. Moreover, a component with highest weight element Y
is isomorphic to the highest weight crystal B(λ). In terms a characters, this becomes

chB = ∑
b∈B

xwt(b)1
1 · · · xwt(b)n

n = ∑
Y∈B

ei(Y)=0 ∀ i

swt(Y)(x1, . . . , xn). (5.1)

For Demazure crystal graphs, each connected component still has a unique highest

weight element characterized as the unique element killed by all raising operators. Given

our explicit raising operators on semi-standard key tabloid, these are easy to compute.

For example, the six highest weight semi-standard key tabloids of shape (0, 3, 0, 2) are

shown in Figure 7, indicating that the Demazure crystal has six connected components

and the Demazure expansion of E(0,3,0,2)(X; q, 0) has six terms. Moreover, the q-weight

of these terms is easily determined by the simple major index statistic.

As powerful as highest weight elements are, they fall short of determining the trun-

cation permutation w for the given Demazure crystal. In particular, every Demazure

truncation of B(λ) has the same highest weight. However, each Bw(λ) has a unique

Demazure lowest weight element Z determined by wt(Z) ≤ wt(T) for all T on the same

connected component. While it is true that fi(Z) = 0 for all i, this property alone does

not uniquely characterize it. For example, the tableau with reading word 42412 in the
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1 1 3
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Figure 7: The highest weights for the Demazure crystal for E(0,3,0,2)(X; q, 0).

Demazure crystal B2431(2, 2, 1, 0) shown in Figure 2 is killed by all of the lowering oper-

ators, but it is not the global lowest weight element. In order to determine the Demazure
lowest weight a, given by w · λ, we have the following algorithm to determine the De-

mazure lowest weight element from a given highest weight element.

For the following definition, given a semi-standard key tabloid T and an index i, set

si(T) = f k
i (T) where k is maximal such that f k

i (T) 6= 0.

Definition 5.1. Given a highest weight element Y of the Demazure crystal on SSKD(a),
the corresponding Demazure lowest weight element Z is constructed by letting Z0 = Y, and

for m ≥ 0 defining Zm+1 as follows. Find indices i ≤ j ≤ k such that

• j is minimal such that f j(Zm) 6= 0 and not a flip;

• k is maximal and then i is minimal such that sisi+1 · · · sk(Zm) acts nontrivially and

has no flips at each step.

Then set Zm+1 = sisi+1 · · · sk(Zm). Stop when no such j exists.

2 1

1 3 2

f3
−→

2 1

1 4 2

f 2
2−→

3 1

1 4 3

f 2
1−→

3 2

2 4 3

f3
−→

3 2

2 4 4

f2
−→

3 3

2 4 4

Figure 8: Computing the Demazure lowest weight for the given highest weight.

For example, in Figure 8, we take Z0 to be the leftmost tabloid. Then j = 2, and

so k = 3 and i = 1, giving Z1 = s1s2s3(Z0), which is the fourth from the left tabloid.

Continuing the algorithm, we have j = 3, and so k = 3 and i = 2, giving Z2 = s2s3(Z1),
which is the rightmost tabloid and also the Demazure lowest weight.

Figure 9 shows the six Demazure lowest weights of the Demazure crystal on SSKD(0, 3, 0, 2)
corresponding to the highest weights in Figure 7.

4 4

2 2 2

3 4

2 2 2

4 3

2 2 4

3 3

2 4 4

1 3

2 2 4

2 3

1 4 4

Figure 9: The Demazure lowest weights for the Demazure crystal for E(0,3,0,2)(X; q, 0).

Using this notion, we have the following explicit expansion.
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Theorem 5.2. The specialized nonsymmetric Macdonald polynomial Ea(X; q, 0) is given by

Ea(X; q, 0) = ∑
Z∈SSKD(a)

Z Demazure lowest weight

qmaj(Z)κwt(Z)(X). (5.2)

In particular, the nonsymmetric Kostka–Foulkes polynomial Ka,b(q) is given by

Ka,b(q) = #{Z ∈ SSKD(b) | Z Demazure lowest weight with wt(Z) = a}. (5.3)

For example, from Figure 9, we see that

E(0,3,0,2)(X; q, 0) = κ(0,3,0,2)(X) + qκ(0,3,1,1)(X) + qκ(0,2,1,2)(X)

+q2κ(0,1,2,2)(X) + q2κ(1,2,1,1)(X) + q3κ(1,1,1,2)(X).
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