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Genus From Sandpile Torsor Algorithm
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Abstract. Previous work by Chan–Church–Grochow and Baker–Wang showed that the
output of the rotor routing and Bernardi sandpile torsor algorithms can be used to
distinguish a planar ribbon graph from a nonplanar ribbon graph. Here, we show that
this output is not enough to determine the genus of a ribbon graph. Nevertheless, we
provide an algorithm that is able to detect the genus of a ribbon graph from the output
of the rotor routing process if further information is known.
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1 Background and Motivation

In this paper, we work with connected graphs that may have multiple edges between the
same pair of vertices but no self loops. For a graph G, we denote the set of vertices by
V(G), the set of edges by E(G), and the set of spanning trees by T (G).

1.1 The Sandpile Group

For any graph G, define the group Div(G) of divisors of G as:

Div(G) := { ∑
v∈V(G)

nvv | nv ∈ Z}

Define the subgroup Div0(G) of degree-0 divisors of G as:

Div0(G) := { ∑
v∈V(G)

nvv | nv ∈ Z, ∑
v∈V(G)

nv = 0}

The graph Laplacian ∆ : Div(G) → Div(G) is the symmetric matrix with diagonal el-
ements ∆vv = −deg(v) and off-diagonals ∆vw = number of edges connecting v to w.
Finally, define the sandpile group or Picard group Pic0(G) as:

Pic0(G) := Div0(G)/im(∆)
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We can view the elements of Div0(G) as configurations on a graph where we place
some number of “chips” on each vertex (allowing for negative chips but not fractional
chips). The image of the graph Laplacian is generated by “firing” and “unfiring” vertices
of G: when a vertex v fires, it sends one chip along each edge incident to v. This decreases
the number of chips at v by the degree of v and increases the number of chips at every
other vertex w by the number of edges incident to both v and w. When a vertex v unfires,
it takes in one chip along each edge incident to v. This increases the number of chips
at v by the degree of v and decreases the number of chips at every other vertex w by
the number of edges incident to both v and w. Thus, an equivalent definition of Pic0(G)
is the set of equivalence classes of Div0(G) under the equivalence relation generated by
firing and unfiring vertices of G.

1.2 Sandpile Torsors

1.2.1 Relating Pic0(G) and T (G)

It is a well known fact that the size of the sandpile group of a graph G is the same as the
number of spanning trees of G (as shown e.g. in [2] and [5]). Thus, it is natural to ask
whether there exists a canonical (automorphism invariant) bijection between these two
sets. However, this is not always the case because there is not always a distinguished
spanning tree to associate with the identity element of the sandpile group. For example,
a graph with 2 vertices and multiple edges has no distinguished spanning tree.

The next best hope would be if there were a canonical free transitive action of Pic0(G)
acting on T (G) (which can be thought of as a canonical bijection after fixing a tree).
However, there is still potential ambiguity. For example, on a graph with 2 vertices and
multiple edges, there is no canonical order to cycle through the trees, even after fixing
one of them.

To resolve this issue, we introduce additional structure on G. For each vertex v ∈
V(G), assign a cyclic order {ρv} to the edges incident to v. When this information is
provided, (G, {ρvk}) is called a ribbon graph, sometimes referred to as a combinatorial
embedding. Nevertheless, even with the ribbon graph structure provided, there is not
always a canonical choice of free transitive action. For example, if we have a graph with
2 vertices v and w and 3 edges e1, e2 and e3 such that {ρv} = {ρw} = (e1, e2, e3), then
there is no canonical way to decide whether the sandpile element (1,−1) or the sandpile
element (−1, 1) should send e1 to e2 (see Figure 1).

This final ambiguity can be fixed by associating our free transitive action with a
distinguished vertex, that we call the basepoint. We will call such an action a sandpile
torsor of the graph.

Formally, we first define a ribbon graph isomorphism. A ribbon graph isomorphism
(ψ, ψ′) from (G, {ρvk}) to (G′, {ρ′vk

}) is a pair of isomorphisms ψ : V(G) → V(G′) and
ψ′ : E(G) → E(G′) such that if v is incident to e then ψ(v) is incident to ψ′(e) and if
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Figure 1: A ribbon graph with no canonical free transitive action of its sandpile group
acting on its spanning trees. The numbers give the cyclic order around each vertex. In
general, if no labels are given, the order is assumed to be clockwise.

ρv = (e1, e2, ..., ek) then ρψ(v) = (ψ′(e1), ψ′(e2), ..., ψ′(ek)). In other words, this is a graph
isomorphism that respects the ribbon structure. Note that ψ induces an isomorphism
from Pic0(G) → Pic0(G′) (which by abuse of notation we will call ψ) and ψ′ induces an
isomorphism from T (G)→ T (G′) (which by abuse of notation, we will call ψ′).

Definition 1.1. A sandpile torsor with basepoint v is a free transitive action ϕv : Pic0(G) ×
T (G)→ T (G) such that for all S ∈ Pic0(G), T ∈ T (G), and (ψ, ψ′) ∈ Aut((G, {ρvk})) with
v fixed by ψ, ϕv(S, T) = ϕv(ψ(S), ψ′(T)).

Definition 1.2. A sandpile torsor algorithm α is an algorithm for which the input is a ribbon
graph and one of its vertices. The output is a sandpile torsor with the vertex as basepoint and
which also satisfies the following condition: if (G, {ρvk}) and (G′, {ρ′vk

}) are two ribbon graphs
with (ψ, ψ′) an isomorphism between them, then for all v ∈ V(G), S ∈ Pic0(G), and T ∈ T (G),
we have the equality αv(S, T) = αψ(v)(ψ(S), ψ′(T)).

There are a few known sandpile torsor algorithms. The two that have been the most
studied are the rotor routing process and the Bernardi process.

1.2.2 Rotor Routing Process

The rotor routing process is a known sandpile torsor algorithm.
For v ∈ V(G), denote rv as the sandpile torsor with basepoint v determined by the

rotor routing process (or the rotor routing torsor with basepoint v for short). For S ∈ Pic0(G)
and T ∈ T (G), define rv(S, T) in the following way:

Choose a representative of S with a nonnegative number of chips away from v. Then,
direct the edges of T so that they point towards v along the path of T. There is now one
directed edge coming out of every vertex w 6= v. This edge is called the rotor at w. If w
has a positive number of chips, rotate the rotor at w to the next edge in ρw and then send
a chip to the other vertex incident to this edge. Continue this process until every vertex
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Figure 2: A demonstration of the rotor routing action with basepoint v acting on the
given spanning tree by the sandpile element with 1 chip on the bottom right vertex, -1
chips on v, and no chips elsewhere.

has zero chips (at which point the chips have all been deposited at v). The resulting
position of the rotors gives a new spanning tree T′. See Figure 2 for an example and [5]
for details and proofs.

1.2.3 Bernardi Process

The Bernardi process is another known sandpile torsor algorithm.
For v ∈ V(G), denote βv as the sandpile torsor with basepoint v determined by the

Bernardi process (or the Bernardi torsor with basepoint v for short). For S ∈ Pic0(G) and
T ∈ T (G), define βv(S, T) in the following way:

Let S ∈ Pic0(G), v ∈ V(G), and T ∈ T (G). Consider an edge e incident to vertices
v1 and v2 to be composed of two half-edges (e, v1) and (e, v2). Choose an arbitrary edge e
incident to v. (The choice of e does not affect the action). We first need to find the break
divisor associated with each spanning tree. To get the break divisor associated with T,
we follow a recursive procedure beginning at the half-edge (e, v) and continuing until
we return to (e, v). Informally, this procedure traces around T and places a chip the first
time it crosses each edge that is not in T. Say that our current edge is (e′, v′). There are
2 cases:

1) If e′ ∈ T, we consider the other half edge associated to e′, say (e′, w′). Then, we
move to the half edge (e′′, w′) where e′′ is the next edge after e′ in ρw′ and restart the
procedure with (e′′, w′) as our new half edge.

2) If e′ 6∈ T, we consider the half edge (ẽ, v′) where ẽ is the next edge after e′ in ρv′ .
Furthermore, if we have not already passed through the other half edge involving e′, we
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Figure 3: A demonstration of the Bernardi action with basepoint v acting on the given
spanning tree by the sandpile element with 1 chip on the bottom right vertex, −1 chips
on v and no chips elsewhere. Note that it is not a coincidence that this action produces
the same spanning tree as the rotor routing action in Figure 2. It is shown in [1] that
the rotor routing and Bernardi actions are identical to each other on planar graphs.

place a chip on v′. Then we restart the procedure with (ẽ, v′) as our new half edge.
This process continues until we return to (e, v). At this point, we will have placed

one chip for each edge not in T, so this gives us an element of Divg(G) for g = E(G)−
V(G) + 1 where

Divg(G) := { ∑
v∈V(G)

nvv | nv ∈ Z, ∑
v∈V(G)

nv = g}

It can be shown that these elements are all unique as elements of

Picg(G) := Divg(G)/im(∆).

The element of Picg(G) associated to the spanning tree T in this way is called the break
divisor of T. βv(S, T) is given by adding S to the break divisor associated to T, which
gives us a new element of Picg(G), and then finding the spanning tree T′ for which this
is the break divisor. See Figure 3 for an example and [1] for details and proofs, as well
as an efficient algorithm to find the spanning tree associated with a given break divisor.

1.3 Summary of Results

The genus of a ribbon graph (G, {ρvk}) is the genus of the surface obtained after thicken-
ing the edges of G and then gluing disks to the boundary components. A ribbon graph
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is called planar if its genus is equal to 0. The inspiration for this paper comes from the
following theorem proven in [4] for the rotor routing case and [1] for the Bernardi case.

Theorem 1.3. The rotor routing and Bernardi processes map each vertex of a ribbon graph to
the same sandpile torsor if and only if the graph is planar, i.e. the processes are invariant to the
choice of basepoint if and only if the graph is planar.

The theorem suggests that we may be able to determine the genus of a ribbon graph
from the structure of the sandpile torsors given by a sandpile torsor algorithm [3]. In
order for this to be possible, we need a positive answer to the following question

Conjecture 1.4. Let (G, {ρvk}) and (G′, {ρ′vk
}) be two ribbon graphs with genuses g and g′

respectively and let α be a sandpile torsor algorithm. Assume that V(G) = V(G′), Pic0(G) =
Pic0(G′), and ϕ : T (G) → T (G′) is a bijection such that for every vertex v ∈ V(G) the
following diagram commutes:

Pic0(G)× T (G) T (G)

Pic0(G′)× T (G′) T (G′)

αv(Pic0(G))

Id×ϕ ϕ

αv(Pic0(G′))

Is it necessarily true that g = g′?

In the case where g = 0 or g′ = 0, this is a corollary of Theorem 1.3 (in fact, for this
case we can weaken the assumptions by allowing the first vertical map to be ψ× ϕ where
ψ is any isomorphism between Pic0(G) and Pic0(G′). This case is studied at length in
the full paper). We will give a counterexample to Conjecture 1.4 in Section 2 when α is
either the rotor routing or Bernardi process.1

Because of the failure of this conjecture, any algorithm for determining the genus of a
ribbon graph must require more information than just the orbits of the sandpile torsors
produced by the rotor routing or Bernardi process. In Section 3 we construct such an
algorithm using the rotor routing process as well as information about the edges of G.
Specifically, we prove the following theorem:

Theorem 1.5. Let (G, {ρvk}) be a ribbon graph. Suppose that we are given V(G), E(G),
Pic0(G), T (G) ⊂ P(E(G)) and for every v ∈ V(G), we are given the map

Pic0(G)× T (G)
rv(Pic0(G))−−−−−−→ T (G)

where rv is the rotor routing torsor with basepoint v. Then, it is possible to determine the genus
of (G, {ρvk}).

1Extending to the case where α is an arbitrary sandpile torsor appears difficult because the definition
of a sandpile torsor algorithm relies on automorphisms. For a ribbon graph with no automorphisms, the
sandpile torsors at different basepoints do not have to relate in any way.
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Figure 4: Two graphs with the same rotor routing/ Bernardi torsors but different genus

2 Counterexample

First, we note that there is a known formula for genus of a ribbon graph (G, {ρvk}).
Define a cycle on a ribbon graph (G, {ρvk}) as a closed loop such that whenever we enter
a vertex, we exit along the next edge in the cyclic order at that vertex. Let cyc(G, {ρvk})
be the number of cycles in (G, {ρvk}). Then the following formula holds, see e.g. [6].

Proposition 2.1. For a ribbon graph (G, {ρvk}), the genus g satisfies 2g = 2 − |V(G)| +
|E(G)| − cyc(G, {ρvk}).

With this formula in mind, we can construct a counterexample to Conjecture 1.4. Let
x be any odd integer. Consider 2 ribbon graphs, (G, {ρvk}) and (G′, {ρ′vk

}) such that
|V(G)| = |V(G′)| = 3. Call the elements of V(G) v1, z1, and w1, and call the elements of
V(G′) v2, z2, and w2. Connect v1 and z1 with 2 edges, z1 and w1 with x edges, v2 and z2
with 1 edge, and z2 and w2 with 2x edges (see Figure 4). For the cyclic ordering ρz1 , set
the 2 edges that connect to v1 to be next to each other. Furthermore, set the cyclic order
of edges connecting z1 to w1 to be the same for ρz1 as ρw1 , and likewise, set the cyclic
ordering of edges connecting z2 to w2 to be the same for ρ′z2

as ρ′w2
(again see Figure 4).

Theorem 2.2. For any g, let (G, {ρvk}) and (G′, {ρ′vk
}) be constructed as above with x =

2g + 1. If we identify the vertices of G with the vertices of G′, then Pic0(G) = Pic0(G′).
Furthermore, there is a bijection ϕ : T (G) → T (G′) such that for every vertex v ∈ V(G)
the following diagram commutes, where αv is either the rotor routing or Bernardi torsor with
basepoint v:
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Pic0(G)× T (G) T (G)

Pic0(G′)× T (G′) T (G′)

αv(Pic0(G))

Id×ϕ ϕ

αv(Pic0(G′))

However, the genus of (G, {ρvk}) is g while the genus of (G′, {ρ′vk
}) is 2g.

The idea of this proof is the following. The sandpile torsors αvi and αzi are the same
while αwi cycles the trees in the opposite order. This holds whether α is the rotor routing
process or the Bernardi process and whether i = 1 or i = 2. Label the spanning trees
of G1 as [a, b] where a is the index of the edge between v1 and z1 (either 1 or 2) and b
is the index of the edge between z1 and w1 in cyclic order (ranging from 1 to x). Label
the spanning trees of G2 as [a] with a the index of the edge between z2 and w2 (ranging
from 1 to 2x). The bijection ϕ that causes the diagram in Theorem 2.2 to commute is the
one that sends [a, b]→ [b] when a and b are the same parity, and [a, b]→ [b + x] when a
and b are opposite parity.

3 Genus Algorithm

The method to prove Theorem 1.5 is to take an arbitrary vertex of our ribbon graph and
show that the cyclic order of edges around it is essentially uniquely determined. Then,
we can apply Proposition 2.1 to determine the ribbon graph’s genus.

Definition 3.1. Let (G, {ρvk}) be a ribbon graph and v be a vertex. Define a v-component of
(G, {ρvk}) as the full ribbon subgraph induced on the vertices in a connected component of G \ v
union {v}. Note that (G, {ρvk}) has a single v-component if and only if v is not a cut vertex.
Furthermore, the intersection of any two v-components is {v}. In Figure 5, the lower ribbon
graph is a v-component of the upper ribbon graph.

Lemma 3.2. Let (G, {ρvk}) be a ribbon graph with a vertex v. Let e1 and e2 be two edges incident
to v in the same v-component, and let w1 and w2 be their other incident vertices respectively.
There exists a spanning tree T of (G, {ρvk}) such that: i) e1 ∈ T ii) e2 6∈ T and iii) The path
from w2 to v over edges in T passes through w1.

Let (G, {ρvk}) be a ribbon graph with a vertex v. Let e1 and e2 be two edges incident
to v in the same v-component (G′, {ρ′vk

}), and let w1 and w2 be their other incident
vertices respectively. Let T be a spanning tree satisfying the conditions of Lemma 3.2,
and let T′ be the restriction of T to G′ (which is a spanning tree of G′).

Let S ∈ Pic0(G) be the sandpile element that places 1 chip on v, −1 chips on w2, and
0 chips elsewhere. Let rw2 be the rotor routing torsor on (G, {ρvk}) with basepoint w2.
Let T̂ be the image of rw2(S× T) and T̂′ be its restriction to E(G′).
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Proposition 3.3. In the construction above, e2 is directly after e1 in ρ′v if and only if T̂′ =
T′ ∪ e2 \ e1.

This proposition implies that if (G, {ρvk}) is a ribbon graph with a single v-component
(or equivalently a cut-free ribbon graph), given the necessary inputs for Theorem 1.5, we
can precisely calculate ρvk and thus, by Proposition 2.1, also the genus of (G, {ρvk}).
However, knowing the restriction of ρv to each v-component is not generally enough
information to determine genus. We will also need information about when edges from
one v-component fall between edges of a second v-component. This is the content of the
next two lemmas.

Let (G, {ρvk}) be a ribbon graph with a vertex v. Let e1 and e2 be two sequential
edges within a v-component, and w1 and w2 be their other incident vertices respectively.
Consider any v-component (G′, {ρ′vk

}) such that a1, ..., ak are the edges in E(G′) that are
between e1 and e2 in ρv. Let T be a spanning tree satisfying the conditions of Lemma 3.2,
and T′ be the restriction of T to E(G′).

Let S ∈ Pic0(G) be the sandpile element that places 1 chip on v, −1 chips on w2, and
0 chips elsewhere, rw2 be the rotor routing torsor on (G, {ρvk}) with basepoint w2, T̂ be
the image of rw2(S× T), and T̂′ be the restriction of T̂ to E(G′).

Let S′ ∈ Pic0(G′) be the sandpile element that places −k chips on v and d chips on
each other vertex x ∈ V(G′) where d is the number of edges incident to x in {a1, ..., ak}.
Finally, let r′v be the rotor routing torsor on (G′, {ρ′vk

}) with basepoint v.

Lemma 3.4. In the construction above, r′v(S′ × T′) = T̂′.

See Figure 5 for a demonstration of this lemma.
Let (G′, {ρ′vk

}) be a ribbon graph with a vertex v such that v is not a cut vertex.2 Let
{e1, ..., en} be the edges of G′ incident to v. For any E ⊆ {e1, ..., en}, let SE ∈ Pic0(G′)
be the sandpile element that places −k chips on v and d chips on each other vertex
x ∈ V(G′) where d is the number of edges incident to x in E .

Lemma 3.5. In the construction above, if SE = SE ′ then either E = E ′ or one is {e1, ..., en} and
the other is ∅.

By combining the results of the last two lemmas, for a ribbon graph (G, {ρvk}) we
are able to find exactly which edges from one v-component (G′, {ρ′vk

}) fall between
two sequential edges in a second v-component (G′′, {ρ′′vk

}) with one exception. If all
of the edges of (G′, {ρ′vk

}) fall between the same two edges of (G′′, {ρ′′vk
}), then we

cannot always determine which pair of edges they fall between. However, the following
lemma shows that any ambiguities in ρv can be resolved with no effect on the genus of
(G, {ρvk}).

2We use (G′, {ρ′vk
}) instead of (G, {ρvk}) because we want to think of (G′, {ρ′vk

}) as a v-component of
a larger ribbon graph.
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Figure 5: A demonstration of Lemma 3.4.

Let (G, {ρvk}) be a ribbon graph, and v ∈ V(G) such that ρv = (e1, ..., ei+j). Assume
that for all 1 ≤ k ≤ i and i + 1 ≤ l ≤ i + j, ek and el are on different v-components
of (G, {ρvk}). Let (G′, {ρ′vk

}) be the union of all v-components non-trivially intersecting
{e1, .., ei} and (G′′, {ρ′′vk

}) be the union of all v-components non-trivially intersecting
{ei+1, .., ei+j} (Where {ρ′vk

} and {ρ′′vk
} are defined naturally as restrictions of {ρvk})(see

Figure 6).

Lemma 3.6. In the above construction, the genus of (G, {ρvk}) is the sum of the genus of
(G′, {ρ′vk

}) and the genus of (G′′, {ρ′′vk
}) .

Whenever the previous propositions and lemmas are insufficient for generating the
exact cyclic order ρv around a vertex v ∈ V(G), it is because we have three or more
ribbon subgraphs sequentially around v. Lemma 3.6 tells us that no matter what order
we choose for them, the resulting ribbon graph’s genus is the sum of the genuses of the
ribbon subgraphs. Thus, by choosing arbitrarily, we reduce to a case where we can apply
Proposition 2.1 to prove Theorem 1.5.

Finally, we conjecture that the same theorem holds for the Bernardi process because
the two sandpile torsor algorithms have a lot of the same properties.

Conjecture 3.7. Let (G, {ρvk}) be a ribbon graph. Suppose that we are given V(G), E(G),
Pic0(G), T (G) ⊂ P(E(G)) and for every v ∈ V(G), we are given the map
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Figure 6: The Genus of the Full Ribbon Graph is the Sum of the Genuses of the Two
Ribbon Subgraphs

Pic0(G)× T (G)
βv(Pic0(G))−−−−−−→ T (G)

where βv is the Bernardi torsor with basepoint v. Then, is it possible to determine the genus of
(G, {ρvk})?

The challenge for this conjecture is that even on a cut-free graph, it is not easy to use
the Bernardi process to detect information about the cyclic order around a fixed vertex
without information about the cyclic order around other vertices. In other words, there
is no clear analogue to Proposition 3.3.
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