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1 Introduction

1.1 Foreword

It is a truth universally acknowledged, that a combinatorial theory is often judged not
by its intrinsic beauty but by the examples and applications. Fair or not, this attitude is
historically grounded and generally accepted. While eternally challenging, this helps to
keep the area lively, widely accessible, and growing in unexpected directions.

The full version [12] of this extended abstract is a third in a series and continues our
study of the Naruse hook-length formula (NHLF), its generalizations and applications. In
the first paper [10], we introduced two q-analogues of the NHLF and gave their (difficult)
bijective proofs. In the second paper [11], we investigated the special case of ribbon hooks,
which were used to obtain two new elementary proofs of NHLF in full generality, as
well as various new mysterious summation and determinant formulas.

In this extended abstract we exploit the symmetry in a multivariate identity of eval-
uations of factorial Schur functions to give new product formulas for the number of
standard Young tableaux of certain skew shapes.

As an immediate consequence of our results, we obtain the exact asymptotic formulas
which were unreachable until now (see [12, Sections 6,8]). Below we illustrate our results
one by one, leaving full statements and generalizations for later.
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1.2 Number of SYT of skew shape

Standard Young tableaux are fundamental objects in enumerative and algebraic combi-
natorics and their enumeration is central to the area. The number f λ =

∣∣SYT(λ)
∣∣ of

standard Young tableaux of shape λ of size n, is given by the classical hook-length for-
mula:

f λ = n! ∏
u∈[λ]

1
h(u)

. (HLF)

Famously, there is no general product formula for the number f λ/µ =
∣∣SYT(λ/µ)

∣∣ of
standard Young tableaux of skew shape λ/µ.1 However, such formulas do exist for a
few sporadic families of skew shapes and truncated shapes (see [1]).

In this paper we give a six-parameter family of skew shapes (see Figure 1 (iv)) with
product formulas for the number of their SYT. This product formula is given in our main
result: Theorem 4.1. The three corollaries below showcase the most elegant special cases.
We single out two especially interesting special cases: Corollary 1.1 due to its connection
to the Selberg integral, and Corollary 1.2 due to its connection to the shifted shapes and
a potential for a bijective proof. Both special cases are known, but their proofs do not
generalize in this paper’s direction.

The formulas below are written in terms of superfactorials Φ(n), double superfactorials
,(n)ג super doublefactorials Ψ(n), and shifted super doublefactorials Ψ(n; k) defined as:

Φ(n) := 1! · 2! · · · (n− 1)! , (n)ג := (n− 2)!(n− 4)! · · · , (1.1)
Ψ(n) := 1!! · 3!! · · · (2n− 3)!! , Ψ(n; k) := (k + 1)!! · · · (k + 3)!! · · · (k + 2n− 3)!!

Corollary 1.1 (Kim–Oh [5]). For all a, b, c, d, e ∈N, let λ/µ be the skew shape in Figure 1 (i).
Then the number f λ/µ =

∣∣SYT(λ/µ)
∣∣ is equal to

n!
Φ(a)Φ(b)Φ(c)Φ(d)Φ(e)Φ(a + b + c)Φ(c + d + e)Φ(a + b + c + d + e)

Φ(a + b)Φ(d + e)Φ(a + c + d)Φ(b + c + e)Φ(a + b + 2c + d + e)
,

where n = |λ/µ| = (a + c + e)(b + c + d)− ab− ed.

Note that in [5, Corollary 4.7], the product formula is equivalent, but stated differ-
ently.

Corollary 1.2 (DeWitt [3]). For all a, b, c ∈ N, let λ/µ be the skew shape in Figure 1 (ii).
Then the number f λ/µ =

∣∣SYT(λ/µ)
∣∣ is equal to

n!
Φ(a)Φ(b)Φ(c)Φ(a + b + c) · Ψ(c)Ψ(a + b + c)

Φ(a + b)Φ(b + c)Φ(a + c) · Ψ(a + c)Ψ(b + c)Ψ(a + b + 2c)
,

where n = |λ/µ| = (a+b+2c
2 )− ab.
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Figure 1: Skew shapes with product formulas for the number of SYT. The symbol m
in the last shape indicates slope.

Corollary 1.3. For all a, b, c, d, e ∈ N, let λ/µ be the skew shape in Figure 1 (iii). Then the
number f λ/µ =

∣∣SYT(λ/µ)
∣∣ is equal to

n! · Φ(a)Φ(b)Φ(c)Φ(a + b + c) · Ψ(c; d + e)Ψ(a + b + c; d + e) · 2a)ג + 2c)2)גb + 2c)
Φ(a + b)Φ(b + c)Φ(a + c) ·Ψ(a + c)Ψ(b + c)Ψ(a + b + 2c; d + e) · 2a)ג + 2c + d)2)גb + 2c + e)

,

where n = |λ/µ| = (a + b + c + e)(b + c + d) + (a+c
2 ) + (b+c

2 )− ab− ed.

Let us emphasize that the proofs of corollaries 1.1–1.3 are quite technical in nature.
Here is a brief non-technical explanation. Fundamentally, the Naruse hook-length for-
mula (NHLF) provides a new way to understand SYT of skew shape, coming from ge-
ometry rather than representation theory. What we show in this paper is that the proof
of the NHLF has “hidden symmetries” which can be turned into product formulas. We
refer to Section 4 for the complete proofs and common generalizations of these results.

1.3 Structure of the paper

We begin with Section 2 which summarizes both the notation and gives a brief review
of the earlier work. In the next Section 3, we develop the technology of multivariate
formulas including the key identity (Theorem 3.7). We use this identity to prove the
product formulas for the number f λ/µ of SYT of skew shape in Section 4, including
generalization of corollaries 1.1–1.3.

1In fact, even for small zigzag shapes π = (k + 1, k, . . . , 1)/(k− 1, k− 2, . . . , 1), the number f π can have
large prime divisors.
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2 Notation and Background

2.1 Young diagrams and skew shapes

Let λ = (λ1, . . . , λr), µ = (µ1, . . . , µs) denote integer partitions of length `(λ) = r and
`(µ) = s. The size of the partition is denoted by |λ| and λ′ denotes the conjugate partition
of λ. We use [λ] to denote the Young diagram of the partition λ. The hook length hλ(i, j) =
λi− i+ λ′j− j+ 1 of a square u = (i, j) ∈ [λ] is the number of squares directly to the right
and directly below u in [λ] including u. The content of a square u = (i, j) is c(u) = j− i.

A skew shape is the set difference of the Young diagrams of two partitions [µ] ⊆ [λ]
and we denote it by λ/µ. The staircase shape is denoted by δn = (n− 1, n− 2, . . . , 2, 1).

2.2 Plane partitions

Let RPP(a, b, c) denote the set of reverse plane partitions that fit into an [a× b× c] box.
Recall the MacMahon box formula for the number of such (reverse) plane partitions, which
also can be written as follows:

∣∣RPP(a, b, c)
∣∣ = a

∏
i=1

b

∏
j=1

c

∏
k=1

i + j + k− 1
i + j + k− 2

=
Φ(a + b + c)Φ(a)Φ(b)Φ(c)
Φ(a + b)Φ(b + c)Φ(a + c)

. (2.1)

2.3 Factorial Schur functions

The factorial Schur function (e.g., see [9]) is defined as

s(d)µ (x | a) := ∑
T

∏
u∈µ

(
xT(u) − aT(u)+c(u)

)
, (2.2)

where x = x1, . . . , xd are variables, a = a1, a2, . . . are parameters, and where the sum is
over semistandard Young tableaux T of shape µ with entries in {1, . . . , d}. Moreover, in
addition, s(d)µ (x | a) is symmetric in x1, . . . , xd.

2.4 Excited diagrams

Let λ/µ be a skew partition and D be a subset of the Young diagram of λ. A cell
u = (i, j) ∈ D is called active if (i + 1, j), (i, j + 1) and (i + 1, j + 1) are all in [λ] \ D.
Let u be an active cell of D, define αu(D) to be the set obtained by replacing (i, j) ∈ D
by (i + 1, j + 1). We call this procedure an excited move. An excited diagram of λ/µ is
a subdiagram of λ obtained from the Young diagram of µ after a sequence of excited
moves on active cells. Let E(λ/µ) be the set of excited diagrams of λ/µ. See Figure 2
for examples.
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(i) (ii) .

Figure 2: The excited diagrams of the shapes (i) 333/21 and (ii) 333/22.

2.5 Non-intersecting paths

Excited diagrams of λ/µ are in bijection with families of non-intersecting grid paths
γ1, . . . , γk with a fixed set of start and end points, which depend only on λ/µ. A variant
of this was proved by Kreiman [8, Sections 5–6] (see also [11, Section 3]).

Formally, given a connected skew shape λ/µ, there is unique family of non-intersecting
paths γ∗1 , . . . , γ∗k in λ with support λ/µ, where each border strip γ∗i begins at the south-
ern box (ai, bi) of a column and ends at the eastern box (ci, di) of a row [8, Lemma
5.3]. Let NIP(λ/µ) be the set of k-tuples Γ := (γ1, . . . , γk) of non-intersecting paths
contained in [λ] with γi : (ai, bi)→ (ci, di).

Proposition 2.1 (Kreiman [8], see also [11]). Non-intersecting paths in NIP(λ/µ) are
uniquely determined by their support, i.e. set of squares. Moreover, the set of such supports
is exactly the set of complements [λ]r D to excited diagrams D ∈ E(λ/µ).

2.6 The Naruse hook-length formula

Recall the formula of Naruse for f λ/µ as a sum of product of hook-lengths (see [10]).

Theorem 2.2 (NHLF; Naruse [13]). Let λ, µ be partitions, such that µ ⊂ λ. We have:

f λ/µ = n! ∑
D∈E(λ/µ)

∏
u∈[λ]\D

1
h(u)

, (NHLF)

where the sum is over all excited diagrams D of λ/µ.

In [10] we gave two q-analogues of Naruse’s formula in terms of SSYT of skew shape,
as an identity for sλ/µ(1, q, q2, . . .), and for RPP of skew shape.

3 Multivariate path identity

3.1 Multivariate sums of excited diagrams

For the skew shape λ/µ ⊆ d × (n − d) we define Fλ/µ(x | y) and Gλ/µ(x | y) to be the
multivariate sums of excited diagrams
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Gλ/µ(x | y) := ∑
D∈E(λ/µ)

∏
(i,j)∈D

(xi − yj), Fλ/µ(x | y) := ∑
D∈E(λ/µ)

∏
(i,j)∈[λ]\D

1
xi − yj

.

By Proposition 2.1, the sum Fλ/µ(x | y) can be written as a multivariate sum of non-
intersecting paths.

Corollary 3.1. In the notation above, we have:

Fλ/µ(x | y) = ∑
Γ∈NIP(λ/µ)

∏
(i,j)∈Γ

1
xi − yj

.

Note that by evaluating (−1)|λ/µ|Fλ/µ(x | y) at xi = λi − i + 1 and yj = −λ′j + j and
multiplying by |λ/µ|! we obtain the right hand side of (NHLF).

(−1)|λ/µ|Fλ/µ(x | y)
∣∣∣xi=λi−i+1

yj=−λ′j+j
=

f λ/µ

|λ/µ|! . (3.1)

Let z〈λ〉 be the tuple of length n of x’s and y’s by reading the horizontal and vertical
steps of λ from (d, 1) to (1, n− d): i.e. zλi+d−i+1 = xi and zλ′j+n−d−j+1 = yj. For example,

for d = 4, n = 9 and λ = (5533), we have z〈λ〉 = (y1, y2, y3, x4, x3, y4, y5, x2, x1) (see
Figure 3 (i))

Combining results of Ikeda–Naruse [4], Knutson–Tao [6], and Lakshmibai–Raghavan–
Sankaran, one obtains the following formula for an evaluation of factorial Schur func-
tions.

Lemma 3.2 (Theorem 2 in [4]). For every skew shape λ/µ ⊆ d× (n− d), we have:

Gλ/µ(x | y) = s(d)µ (x | z〈λ〉) . (3.2)

Corollary 3.3. We have Fλ/µ(x | y) = s(d)µ (x | z〈λ〉)/s(d)λ (x | z〈λ〉) .

3.2 Symmetries

The factorial Schur function s(d)µ (x | y) is symmetric in x. By Lemma 3.2, the multivariate
sum Gλ/µ(x | y) is an evaluation of a certain factorial Schur function, which in general is
not symmetric in x.
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Example 3.4. The shape λ/µ = 332/21 from Figure 2 (i) has five excited diagrams. One can
check that the multivariate polynomial

G332/21(x1, x2, x3 | y1, y2, y3) = (x1− y1)(x1− y2)(x2− y1) + (x1− y1)(x1− y2)(x3− y2)

+ (x1− y1)(x2− y3)(x2− y1) + (x1− y1)(x2− y3)(x3− y2) + (x2− y2)(x2− y3)(x3− y2) ,

is not symmetric in x = (x1, x2, x3).

Now, below we present two cases when the sum Gλ/µ(x | y) is in fact symmetric in x.
The first case is when µ is a rectangle contained in λ.

Proposition 3.5. Let µ = pk be a rectangle, p ≥ k, and let λ be arbitrary partition containing µ.
Denote ` := max{i : λi − i ≥ p− k}. Then:

Gλ/pk(x | y) = s(`)pk (x1, . . . , x` | y1, . . . , yp+`−k) .

In particular, the polynomial Gλ/pk(x | y)is symmetric in (x1, . . . , x`).

Proof sketch. First, observe that E(λ/pk) = E((p+ `− k)`/pk) since the movement of the
excited boxes is limited by the position of the corner box of pk, which moves along the
diagonal j− i = p− k up to the boundary of λ, at position (`, p + `− k). Then:

Gλ/pk(x | y) = ∑
D∈E((p+`−k)`/pk)

∏
(i,j)∈D

(xi − yj) = G(p+`−k)`/pk(x | y)

= s`pk

(
x1, . . . , x` | y1, . . . , yp+`−k, x`, . . . , x1

)
.

Let us now invoke the original combinatorial formula for the factorial Schur functions,
equation (2.2), with aj = yj for j ≤ p + `− k and ap+`−k+j = x`+1−j otherwise. Note also
that when T is an SSYT of shape pk and entries at most `, by the strictness of columns
we have T(i, j) ≤ `− (k− i) for all entries in row i. We conclude that T(i, j) + c(i, j) ≤
`− k + p. Therefore, aT(u)+c(u) = yT(u)+c(u), where only the first p + `− k parameters ai
are involved in the formula. Then:

s(`)µ (x`, . . . , x1 | a1, . . . , ap+`−k, ap+`−k+1, . . .) = s(`)µ (x`, . . . , x1 | a1, . . . , ap+`−k),

since now the parameters of the factorial Schur are independent of the variables x and
the function is also symmetric in x.

Example 3.6. For λ/µ = 333/22, the multivariate sum G333/22(x1, x2, x3 | y1, y2, y3) of the six
excited diagrams in Figure 2 (ii) is symmetric in x1, x2, x3.
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Figure 3: (i) Example of how to read off z〈λ〉, (ii) paths in proof of Theorem 3.7, and
(iii) the shifted hook shape ΛO(a, c, d, m) appearing in Conjecture 5.1.

3.3 Multivariate path identity

We give an identity for a multivariate sum over non-intersecting paths as applications of
Propositions 3.5.

Theorem 3.7. We have the following identity for multivariate rational functions:

∑
Γ=(γ1,...,γc)

γp :(a+p,1)→(p,b+c)

∏
(i,j)∈Γ

1
xi − yj

= ∑
Θ=(θ1,...,θc)

θp :(p,1)→(a+p,b+c)

∏
(i,j)∈Θ

1
xi − yj

, (3.3)

where the sums are over non-intersecting lattice paths as above. Note that the left hand side is
equal to F(b+c)a+c/ba(x | y) defined above.

In the next section we use this identity to obtain product formulas for
f λ/µ for certain families of shapes λ/µ. In the case c = 1, we evaluate
(3.3) at xi = i and yj = −j + 1 obtain the following corollary.

Corollary 3.8 ([10]). We have:

∑
γ:(a,1)→(1,b)

∏
(i,j)∈γ

1
i + j− 1

= ∑
γ:(1,1)→(a,b)

∏
(i,j)∈γ

1
i + j− 1

. (3.4)

Equation (3.3) is a special case of (NHLF) for the skew shape (b + 1)a+1/ba [10,
Section 3.1]. This equation is also a special case of Racah formulas in [2, Section 10] (see
[12, Section 9]).

Proof of Theorem 3.7. By Proposition 3.5 for the shape (b + c)a+c/ba, we have:

G(b+c)a+c/ba(x | y) = sba(x1, . . . , xa+c | y1, . . . , yb+c) .

Divide the left hand side by ∏(i,j)∈(b+c)a+c(xi − yj) to obtain F(b+c)a+c/ba(x | y), the multi-
variate sum over excited diagrams. By Corollary 3.1, this is also a multivariate sum over
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tuples of non-intersecting paths in NIP((b + c)a+c/ba) :

∑
Γ=(γ1,...,γc)

γp :(a+p,1)→(p,b+c)

∏
(i,j)∈Γ

1
xi − yj

= sba(x1, . . . , xa+c | y1, . . . , yb+c) ∏
(i,j)∈(b+c)a+c

1
xi − yj

. (3.5)

Finally, the symmetry in x1, . . . , xa+c of the right hand side above implies that we can
flip these variables and consequently the paths γ′p to paths θp : (p, 1) → (a + p, b + c)
(see Figure 3 (ii)), and obtain the needed expression.

4 Skew shapes with product formulas

In this section we use Theorem 3.7 to obtain product formulas for a family of skew
shapes.

4.1 Six-parameter family of skew shapes

For all a, b, c, d, e, m ∈N, let Λ(a, b, c, d, e, m) denote the skew shape λ/ba, where λ is

λ := (b + c)a+c +
(
ν ∪ θ′

)
, (4.1)

and where ν = (d + (a + c− 1)m, d + (a + c− 2)m, . . . , d), θ = (e + (b + c− 1)m, e + (b +
c− 2)m, . . . , e); see Figure 1 (iv). This shape satisfies two key properties:

λa+c+1 ≤ b + c , (P1)
λi + λ′j = λr + λ′s, if i + j = r + s and (i, j) ∈ (b + c)a+c . (P2)

The second property is equivalent to saying that the antidiagonals in ((b + c)a+c) inside
λ have the same hook-lengths, or that λi − λi+1 = λi+1 − λi+2, i.e. the parts of λ are
given by an arithmetic progression. Here are two extreme special cases:

Λ(a, b, c, 0, 0, 1) = δa+b+2c/ba , Λ(a, b, c, d, e, 0) = (b + c + d)a+c(b + c)e/ba .

Next, we give a product formula for f π where π = Λ(a, b, c, d, e, m) in terms of falling
superfactorials Ψ(m)(n) := ∏n−1

i=1 ∏i
j=1 (jm+ j− 1)m where (k)r = k(k− 1) · · · (k− r+ 1).

Theorem 4.1. Let π = Λ(a, b, c, d, e, m) be as above. Then f π is given by the following product:

f π = n! · Φ(a + b + c)Φ(a)Φ(b)Φ(c)
Φ(a + b)Φ(b + c)Φ(a + c)Ψ(m)(a + c)Ψ(m)(b + c)

×

×
a+c−1

∏
i=0

(i(m + 1))!
(d + i(m + 1))!

b+c−1

∏
i=0

(i(m + 1))!
(e + i(m + 1))!

∏b−1
i=0 ∏a−1

j=0 (1 + d + e + (c + i + j)(m + 1))

∏b+c−1
i=0 ∏a+c−1

j=0 (1 + d + e + (i + j)(m + 1))
.
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Proof of Corollaries 1.1, 1.2 and 1.3. Use Theorem 4.1 for shapes Λ(a, b, c, e, d, 0), Λ(a, b, c, 0, 0, 1),
and Λ(a, b, c, d, e, 1), respectively.

The rest of the section is devoted to the proof of Theorem 4.1.

4.2 Proof of the product formulas for skew SYT

Proof of Theorem 4.1. The starting point is showing that the skew shape λ/ba = Λ(a, b, c, d, e, m)
and the thick reverse hook (b + c)a+c/ba = Λ(a, b, c, 0, 0, 0) have the same excited dia-
grams. To simplify the notation, let R = (b + c)a+c be the rectangle

[
(a + c)× (b + c)

]
.

Lemma 4.2. The skew shapes Λ(a, b, c, d, e, m) and Λ(a, b, c, 0, 0, 0) = R/ba have the same
excited diagrams.

Proof. From the description of excited diagrams: by (P1), the cell (b, a) of [µ] cannot go
past the cell (b + c, a + c) so the rest of [µ] is confined in the rectangle (b + c)a+c.

By (NHLF) and Lemma 4.2 we have:

f λ/ba

n!
=

 ∏
u∈[λ]\R

1
hλ(i, j)

 ∑
D∈E(R/ba)

∏
(i,j)∈R\D

1
hλ(i, j)

. (4.2)

The sum over excited diagrams of R/ba with hook-lengths in λ on the right hand
side above evaluates to a product.

Lemma 4.3. For λ and R as above we have:

∑
D∈E(R/ba)

∏
(i,j)∈R\D

1
hλ(i, j)

=
Φ(a + b + c)Φ(a)Φ(b)Φ(c)
Φ(a + b)Φ(b + c)Φ(a + c) ∏

(i,j)∈R/0cba

1
hλ(i, j)

. (4.3)

Proof. We write the sum of excited diagrams as an evaluation of F(b+c)a+c/ba(x | y).

∑
D∈E(R/ba)

∏
(i,j)∈R\D

1
hλ(i, j)

= (−1)mF(b+c)a+c/ba(x | y)
∣∣∣xi=λi−i+1

yj=j−λ′j

(4.4)

where m = (b + c)(a + c)− ba. Using Theorem 3.7 to obtain the symmetry of the series
F(b+c)a+c/ba(x | y) in x :

(−1)mF(b+c)a+c/ba(x | y)
∣∣∣xi=λi−i+1

yj=j−λ′j

= ∑
Θ

∏
(i,j)∈Θ

1
hλ(i, j)

, (4.5)

where the sum is over tuples Θ := (θ1, . . . , θc) of nonintersecting paths inside (b + c)a+c

with endpoints θp : (p, 1)→ (a + p, b + c). Note that each tuple Θ has the same number
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of cells in each diagonal i + j = k. Also, by property (P2) of λ, the sum (λi + λ′j) is
constant when (i + j) is constant. Thus each tuple Θ will have the same contribution to
the sum on the right hand side of (4.5), namely

∏
(i,j)∈Θ

1
hλ(i, j)

= ∏
(i,j)∈R/0cba

1
hλ(i, j)

.

Lastly, the number of tuples Θ in (4.5) equals the number of excited diagrams (b +
c)a+c/ba, given by (2.1).

By Lemma 4.3, (4.2) becomes the following product formula for f λ/ba
:

f λ/ba

n!
=

Φ(a + b + c)Φ(a)Φ(b)Φ(c)
Φ(a + b)Φ(b + c)Φ(a + c) ∏

(i,j)∈λ/0cba

1
hλ(i, j)

. (4.6)

Finally, we carefully rewrite this product in terms of Ψ(·) and Ψ(m)(·).

5 Final remark and a conjecture

In the full version [12] of this paper we give q-analogues of our product formulas.
It is natural to study shifted analogues of our product formulas. For nonnegative

integers a ≤ c, d and m, let λ/µ = ΛO(a, c, d, m) be the following shifted skew partition,

λ = (c + d, c + d− 1, . . . , c + d− a + 1) + ν ,

where ν = (d + (a + c− 1)m, d + (a + c− 2)m, . . . , d) and µ = δa+1. See Figure 3 (iii).

Conjecture 5.1. In the notation above, the number of SYT of shape π = ΛO(a, c, d, m) equals

gπ =
n!
2a ·

Φ(2a + c)Φ(a)
Φ(2a)Φ(a + c)

· (2a)ג (c)ג
2a)ג + c)

· ∏
u∈λ\(δa+c+1/caδc+1)

1
hB(u)

.

A special case π = ΛO(a, c, d, 0) is the (conjugated) truncated rectangle shape, and was
established by the third author using a different technique [14].
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