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On the cone of f -vectors of cubical polytopes
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Abstract. What is the minimal closed cone containing all f -vectors of cubical
d-polytopes? We construct cubical polytopes showing that this cone, expressed in
the cubical g-vector coordinates, contains the nonnegative g-orthant, thus verifying
one direction of the Cubical Generalized Lower Bound Conjecture of Babson, Billera
and Chan. Our polytopes also show that a natural cubical analogue of the simplicial
Generalized Lower Bound Theorem does not hold.

Keywords: cubical polytope, cubical g-vector

1 Introduction

Understanding the possible face numbers of polytopes, and of subfamilies of interest,
is a fundamental question, dealt with since antiquity. The celebrated g-theorem, conjec-
tured by McMullen [8] and proved by Stanley [13] (necessity) and by Billera and Lee [4]
(sufficiency), characterizes the f -vectors of simplicial polytopes. Here we consider f -
vectors of cubical polytopes; a d-polytope Q is cubical if all its facets are combinatorially
isomorphic to the (d − 1)-cube. Adin [1] proved analogues of the Dehn–Sommerville
relations for cubical polytopes, thus encoding the f -vector of Q by its (long) cubical
g-vector

gc(Q) =
(

gc
1(Q), gc

2(Q), . . . , gc
bd/2c(Q)

)
(with the constant gc

0(Q) = 2d−1 omitted). The construction of neighborly cubical
d-polytopes by Joswig and Ziegler [6], where the number of vertices varies, shows that
the linear span of the vectors gc(Q), over all cubical d-polytopes, is the entire vector space
Rbd/2c. Adin [1, Question 2] asked whether gc(Q) is always in the nonnegative orthant,
and Babson, Billera and Chan [3, Conjecture 5.2] conjectured further that the minimal
closed cone Cd containing all the vectors gc(Q) corresponding to cubical d-polytopes is
exactly this nonnegative orthant Ad.
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Denote by ei the i-th unit vector in Rbd/2c. Stacked cubical polytopes show that the
ray spanned by e1 is in Cd, and neighborly cubical polytopes show that the ray spanned
by ebd/2c is in Cd. Our main result is that all the rays spanned by the vectors ei are in Cd:

Theorem 1.1. Ad ⊆ Cd.

The conjecture of Adin and Babson–Billera–Chan is

Conjecture 1.2. Ad = Cd.

An analogue of Theorem 1.1 was previously known for the much wider class of PL
cubical spheres [3, Theorem 5.7]. Also, Conjecture 1.2 holds for d ≤ 5, by combining the
constructions above with Steve Klee’s result [7, Prop.3.7] asserting that gc

k(Q) ≥ 0 for
any cubical polytope Q of dimension 2k + 1.

Sanyal and Ziegler [12] showed how to construct, from any simplicial (d− 2)-polytope
P on n − 1 vertices and a total order v1 < v2 < . . . < vn−1 on its vertices, a cubical
d-polytope Q = Q(P,<) on 2n vertices; it is the projection of a deformed n-cube in
Rn onto the last d coordinates. Further, they showed that if P is k-neighborly then the
k-skeleton of Q is isomorphic to the k-skeleton of the n-cube. We apply their construction
to the case where Pn is the k-neighborly k-stacked (d− 2)-polytope on n− 1 vertices con-
structed by McMullen and Walkup [9], with 1 ≤ k ≤ b d−2

2 c, and with a suitable total or-
der <. Analyzing the cubical g-vectors of the resulting polytopes Q(k, d, n) = Q(Pn,<),
as n tends to infinity, gives Theorem 1.1. See Theorem 5.4 and Corollary 5.5 for the exact
values and asymptotic behavior of the cubical g-vectors.

The generalized lower bound theorem for simplicial polytopes (GLBT), conjectured
by McMullen and Walkup [9] and proved by Murai and Nevo [10], asserts that for
1 ≤ k < bd/2c, a simplicial d-polytope P is k-stacked if and only if gk+1(P) = 0. The
polytopes Q(k, d, n) demonstrate that the natural cubical analogue of the GLBT is false:

Theorem 1.3. For any k ≥ 1 and n ≥ d ≥ 2k + 2, we have gc
k+2(Q(k, d, n)) = 0, and

Q(k, d, n) is not cubical (k + 1)-stacked.

This is an extended abstract. For the complete paper, see [2].
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2 Preliminaries

The purpose of this section is mainly to set the notation that we will use throughout
the paper. For undefined terminology we refer the reader to [14]. A d-dimensional
polytope P is the convex hull of a finite set of points in Rd which affinely span Rd. A
(proper) face σ of P is the intersection of P with one of its supporting hyperplanes, the
dimension dim σ of σ is then the dimension of the affine span of that intersection. The
faces of dimensions 0, 1, and d − 1 are called vertices, edges, and facets, respectively.
The empty set ∅ and the polytope P itself are called trivial faces and have dimensions
−1 and d, respectively. We will abbreviate and write d-polytope and i-face to denote
dimension. We denote by Vert(P) the set of vertices of P, and for a vertex v ∈ Vert(P),
we denote by P /v the vertex figure of P at v, that is, P /v is a (d− 1)-polytope obtained
as the intersection of P with a hyperplane which strictly separates v from Vert(P) \ {v};
the face lattice of P /v does not depend on the separating hyperplane chosen.

A polytopal complex K is a finite collection of polytopes in Rd such that

(i) the empty polytope is in K,

(ii) if P ∈ K then all faces of P are also in K,

(iii) if P, Q ∈ K then P ∩Q is a face of both P and Q.

The dimension dim K of K is the maximum of dim P over all P ∈ K; we say that K is
a dim K-complex. The elements in K are called faces; the faces of dimension dim K are
called facets. For F ∈ K we define the (open) star of F and the antistar of F, respectively,
by

stF(K) = {G ∈ K | F ⊆ G} ,
astF(K) =

{
G ∈ K

∣∣ F * G
}

.

The number of i-faces in K is denoted by fi(K), and the f -vector of K is f (K) =
( f0(K), f1(K), . . . , fdim K(K)). The f -polynomial of K is defined by

f (K, t) =
dim K+1

∑
i=0

fi−1(K)ti,

where f−1(K) = 1.
For a polytope P we denote by 〈P〉 the complex of all faces of P. The boundary

complex ∂P is the complex formed by all the proper faces of P, that is ∂P = 〈P〉 \ {P}. We
also define the f -vector and f -polynomial of P by f (P) = f (∂P) and f (P, t) = f (∂P, t).
We use lkv(P) to denote the boundary complex ∂ (P /v ) of the vertex figure of P at v.
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2.1 Simplicial complexes and polytopes

A simplicial complex is a polytopal complex in which all polytopes are simplices. Let
K be a simplicial (D− 1)-complex; the h-polynomial of K is defined by

h(K, t) = h0(K) + h1(K)t + · · ·+ hD(K)tD

:= (1− t)D · f
(

K,
t

1− t

)
,

and the h-vector of K is (h0(K), . . . , hD(K)). If K = ∂P for a simplicial D-polytope P then
the Dehn–Sommerville relations assert that hi(K) = hD−i(K) for any 0 ≤ i ≤ D. The
corresponding g-vector

(
g0(K), . . . , gbD/2c(K)

)
of K is then defined by

g0(K) = h0(K) = 1,
gi(K) = hi(K)− hi−1(K), for all 1 ≤ i ≤ bD/2c .

For two simplicial complexes K and L we define the join K ∗ L to be the simplicial
complex whose simplices are the disjoint unions of simplices of K and simplices of L.

A polytope is simplicial if each of its proper faces is a simplex. For a simplicial
polytope P we write h(P, t) to mean h(∂P, t), and similarly hi(P) := hi(∂P) and gi(P) :=
gi(∂P).

A simplicial d-polytope P is called k-stacked if P has a triangulation in which there
are no interior faces of dimension less than d − k. A simplicial polytope P is called
k-neighborly if each subset of at most k vertices forms the vertex set of a face of P. We
denote by C(d, n) the cyclic d-polytope with n vertices:

C(d, n) := conv {x(t1), x(t2) . . . , x(tn)} ,

where t1 < t2 < · · · < tn and x(t) :=
(
t, t2, . . . , td) is the moment curve in Rd.

2.2 Cubical complexes and polytopes

A cubical complex is a polytopal complex in which all polytopes are combinatorially
isomorphic to cubes. Let Q be a cubical (d− 1)-complex, the short cubical h-polynomial
is defined by

hsc(Q, t) =
d−1

∑
i=0

hsc
i (Q)ti =

d−1

∑
j=0

f j(Q)(2t)j(1− t)d−1−j.

When Q is clear from the context, we may sometimes drop it from the notation, as we
do in the following few definitions. The (long) cubical h-vector (hc

0, hc
1, . . . , hc

d) is defined
by

hc
0 = 2d−1,

hsc
i = hc

i + hc
i+1, for 0 ≤ i ≤ d− 1,
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and the corresponding (short and long) cubical g-vectors are defined, as in the simplicial
case, by

gsc
0 = hsc

0 = f0, gsc
i = hsc

i − hsc
i−1 for 1 ≤ i ≤ b(d− 1)/2c ;

gc
0 = hc

0 = 2d−1, gc
i = hc

i − hc
i−1 for 1 ≤ i ≤ bd/2c .

A polytope is cubical if each of its proper faces is combinatorially a cube. Adin [1]
showed that any cubical d-polytope Q satisfies an analogue of the Dehn–Sommerville
relations: hc

i (Q) = hc
d−i(Q) for all 0 ≤ i ≤ d.

In analogy with the simplicial case, [3] defined cubical neighborliness and cubical
stackedness: a cubical d-polytope is k-neighborly if it has the k-skeleton of a cube (of
some dimension); it is k-stacked if it has a cubical subdivision with no interior faces of
dimension less than d− k.

Each vertex figure in a cubical d-polytope P is a simplicial (d− 1)-polytope; we finish
this section with the relation known as Hetyei’s observation:

hsc(P, t) := hsc(∂P, t) = ∑
v∈Vert(P)

h(lkv(P), t). (2.1)

It shows that the cubical Dehn–Sommerville relations follow from the simplicial ones.

3 The McMullen–Walkup polytopes

In section 3 of [9], McMullen and Walkup describe the construction of k-neighborly
k-stacked simplicial D-polytopes with N vertices, for any set of parameters satisfying
2 ≤ 2k ≤ D < N. Their construction takes a k-neighborly 2k-polytope C with N−D+ 2k
vertices (e.g. the cyclic 2k-polytope with N − D + 2k vertices), and a (D − 2k)-simplex
T, both lying in RD in such a way that the relative interior of T intersects the affine hull
Aff(C) in a vertex x of C. Then the convex hull conv(C ∪ T) is the desired polytope. We
define a slightly more general construction.

Definition 3.1. Let 2 ≤ K ≤ D < N. Let C = C(K, N − D + K) be the cyclic
K-polytope with N − D + K vertices, and let T be a (D − K)-simplex, both lying in
RD in such a way that the relative interior of T intersects Aff(C) in a vertex x of C. The
polytope conv(C ∪ T) is a D-dimensional simplicial polytope with N vertices, denoted
MW(K, D, N; x).

The boundary complex of MW(K, D, N; x) is thus described by

∂MW(K, D, N; x) = 〈T〉 ∗ lkx(C)
⋃

∂T∗lkx(C)

∂T ∗ astx(C). (3.1)
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McMullen and Walkup have shown that MW(2k, D, N; x) is k-neighborly as well as
k-stacked, thus satisfying

gi(MW(2k, D, N; x)) =

{
0 i > k,((

N−D−1
i

))
= (N−D+i−2

i ) i ≤ k.
(3.2)

In fact, the proof that MW(2k, D, N; x) is k-neighborly and k-stacked given in [9,
p. 269] shows:

Lemma 3.2. The polytope MW(K, D, N; x) is bK/2c-neighborly and bK/2c-stacked. In partic-
ular,

gi(MW(2k− 1, D, N; x)) =

{
0 i > k− 1,((

N−D−1
i

))
= (N−D+i−2

i ) i ≤ k− 1.
(3.3)

The vertices of C come with a natural order v1 < v2 < . . . vN−D+K (inherited from
the order of the parameters t1 < t2 < · · · < tN−D+K in the definition of C). We will
take x to be the last vertex in that ordering, denoting the resulting polytope simply by
MW(K, D, N). Removing x = vN−D+K, we extend the order v1 < · · · < vN−D+K−1 of the
remaining vertices of C to an order v1 < · · · < vN−D+K−1 < vN−D+K < · · · < vN of the
vertices of MW(K, D, N), where vN−D+K, . . . , vN are the vertices of the (D− K)-simplex
T. We will use the following result:

Lemma 3.3. MW(2k, D, N)
/

v1 is combinatorially isomorphic to MW(2k− 1, D− 1, N − 1).

Proof sketch. For C = C(2k, N − D + 2k) denote C′ = C
/

v1 , and note that
C′ ∼= C(2k − 1, N − D + 2k − 1). Applying the construction in Definition 3.1 with C′

produces an MW(2k− 1, D− 1, N − 1) with boundary complex

〈T〉 ∗ lkx(C′)
⋃

∂T∗lkx(C′)

∂T ∗ astx(C′). (3.4)

Now one shows that the complex above is equal to lkv1(MW(2k, D, N)).

4 The Sanyal–Ziegler construction

We give a very brief sketch of the construction, focusing on the combinatorial description
of links of vertices. The reader is prompted to confer with the paper [12], or with Sanyal’s
diploma thesis [11].

Let (P,<) be a simplicial (d − 2)-polytope with n − 1 vertices. Label the vertices
v1, . . . , vn−1 ∈ Rd−2 according to the given order v1 < v2 < · · · < vn−1, and assume that
the vertices are in general position, i.e., no d− 1 vertices of P lie on a hyperplane. We
start by defining the lexicographic diamonds of P.
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4.1 Lexicographic diamonds

Let w1, . . . , wn−1 ∈ R be a set of heights, and denote by Vw = {(wi, vi) | 1 ≤ i ≤ n− 1} ⊂
Rd−1 the set of lifted vertices. Let p = (w0, v0) ∈ Rd−1 be an arbitrary point with w0 �
|wi| for every 1 ≤ i ≤ n− 1, and consider the (d− 1)-polytope D(P, w) = conv(Vw, p).
We call D(P, w) the diamond over P with subdivision w, noting that, for w0 big enough,
the combinatorial type of D(P, w) is independent of the choice of point p.

Of special interest are the subdivisions of P induced by the heights

(w1, w2, . . . , wn−1) = (±h, 0, . . . , 0) with h > 0.

The subdivision induced by (−h, 0, . . . , 0) is obtained by pulling v1, it is a triangu-
lation of P, and its cells are the pyramids with apex v1 over facets in P ∩ P1 with
P1 = conv(v2, . . . , vn−1). The subdivision induced by (h, 0, . . . , 0) is obtained by pushing
v1, and it consists of the pyramids with apex v1 over facets in P1 \ P, and one (pos-
sibly non-simplex) cell P1. The a-th lexicographic subdivision Lexa(P) of P is ob-
tained by successively pushing the vertices v1, . . . , va−1, and then pulling va. That is,
pushing v1 creates a subdivision with one non-simplex cell P1, which we replace by
its subdivision obtained by pushing v2, which, in turn, has only one non-simplex cell
P2 = conv{v3, . . . , vn−1}, and so on, until we finally replace Pa−1 = conv{va, . . . , vn−1}
by its triangulation obtained by pulling va.

The above iterative procedure amounts to choosing a set of heights w1, . . . wn−1 with

w1 > · · · > wa−1 > 0 > wa, and wa+1 = · · · = wn−1 = 0.

The resulting diamond, denoted Da, is called the a-th lexicographic diamond. Its ver-
tices are labeled v0, v1, . . . , vn−1, with v0 corresponding to the apex p.

Remark 4.1. Note that pushing or pulling a vertex in a simplex has no effect, thus the
(possibly) different diamonds are Da with 1 ≤ a ≤ n− d + 1.

4.2 The vertex figures of Q

Take a Gale transform G ∈ R(n−1)×(n−d) of P that has the form G =

[
In−d

G

]
, where

G ∈ R(d−1)×(n−d). Plugging G into the deformed cube template (see [12, Definition
3.1]) produces a combinatorial n-cube C = Cn(G). The projection of C onto the last d
coordinates πd(C) is the cubical polytope Q = Q(P,<) mentioned in the introduction.

The following key result from [12]1 states that each vertex figure of Q is combi-
natorially equivalent to some diamond Da, and moreover, it tells us which diamond
corresponds to a given vertex v of Q.

1Theorem 3.7 in [12] actually contains a typo, having n− d− 1 instead of the correct value n− d + 1.
Their proof, however, does give the correct value.
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Lemma 4.2 ([12, Theorem 3.7]). Let v be a vertex of C labeled by σ ∈ {+,−}n. Then the
vertex figure of πd(v) in Q is isomorphic to Da with

a = min
(
{i ∈ [n] | σi = +}

⋃
{n− d + 1}

)
.

The isomorphism Da ∼= Q /v is given by: vi (in Da) corresponds to the neighbor of v
obtained by flipping the (i + 1)-st coordinate of v (0 ≤ i ≤ n− 1).

5 The cubical polytopes Q(k, d, n)

Fix positive integers k ≥ 1 and n ≥ d ≥ 2k+ 2. We apply the Sanyal–Ziegler construction
to the McMullen–Walkup polytope P = MW(2k, d − 2, n − 1), with a total order < on
its vertices as described after Lemma 3.2 above. The result is a d-dimensional cubical
polytope Q = Q(k, d, n) = Q(P,<) with 2n vertices. We now compute its cubical g-
vector gc(Q), in stages.

5.1 Computing gsc(Q(k, d, n))

By Hetyei’s observation (2.1) we have

hsc
i (Q) = ∑

v∈Vert(Q)

hi(lkv(Q)) (0 ≤ i ≤ d− 1).

Therefore, for 1 ≤ i ≤ b d−1
2 c:

gsc
i (Q) = ∑

v∈Vert(Q)

gi(lkv(Q)) =
n−d

∑
a=1

2n−agi(Da) + 2dgi(Dn−d+1). (5.1)

We compute the g-vectors of the diamonds Da at hand, i.e. for our choice of (P,<).

Proposition 5.1. For each 1 ≤ a ≤ n− d + 1 and 0 ≤ i ≤ b d−1
2 c:

gi(Da) =


0, if i > k + 1;((

n−d−a+1
k

))
, if i = k + 1;((

n−d
i

))
, if i ≤ k.

Proof sketch. For a = 1 this follows from the f -polynomials identity

f (D1, t) = f (Lex1(P), t) + t · f (P, t) = (1 + t)( f (P, t)− t · f (lkv1(P), t)) + t · f (P, t)

combined with Lemma 3.2, Lemma 3.3 and the transformation to h-polynomials.
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For a > 1, contract the edge v0v1 in P to obtain the (a− 1)-lexicographic diamond
Da−1(P1) over P1 = MW(2k, d− 2, n− 2). Use the relation

h(Da(P), t) = h(Da−1(P1), t) + t · h(lkv0v1(Da(P), t))

and iterate by edge contraction in P1 etc.

Combining (5.1) with Proposition 5.1, and noting that
((

0
k

))
= 0 for k ≥ 1, we

conclude

Corollary 5.2. For each 0 ≤ i ≤ b d−1
2 c,

gsc
i (Q) =


0, if i > k + 1;
n−d

∑
a=1

2n−a
((

n−d−a+1
k

))
, if i = k + 1;

2n
((

n−d
i

))
, if i ≤ k.

5.2 Computing gc(Q(k, d, n))

In order to compute the cubical g-vector of Q, and in particular gc
k+2(Q), we need the

following binomial identity; its proof is omitted here.

Lemma 5.3. For any integers k ≥ 1 and m ≥ 0,

m

∑
a=1

2m−a
((

m− a + 1
k

))
= (−1)k+1 + 2m

k

∑
j=0

(−1)j
((

m
k− j

))
.

Theorem 5.4. For each 1 ≤ i ≤ bd/2c,

gc
i (Q) =


0, if i > k + 1;

2n
i

∑
j=1

(−1)j−1
((

n−d
i−j

))
+ (−1)i2d, if i ≤ k + 1.

Proof sketch. From the definitions of gc and gsc, we have

gc
i (Q) =

i

∑
j=1

(−1)j−1gsc
i−j(Q) + (−1)i2d (1 ≤ i ≤ bd/2c). (5.2)

The values of gc
i (Q) for i ≤ k + 1 now follow easily from Corollary 5.2. It also follows

that
gc

i (Q) + gc
i+1(Q) = 0 (i ≥ k + 2),
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and all that remains is to show that gc
k+2(Q) = 0. Indeed, by (5.2) and Corollary 5.2,

gc
k+2(Q) =

n−d

∑
a=1

2n−a
((

n− d− a + 1
k

))
−
[

2n
k

∑
j=0

(−1)j
((

n− d
k− j

))
+ (−1)k+12d

]
.

Using Lemma 5.3 with m = n− d gives, indeed, gc
k+2(Q) = 0 as claimed.

Corollary 5.5. Fix k ≥ 1 and d ≥ 2k + 2, and let {Qn}∞
n=d = {Q(k, d, n)}∞

n=d. Then

lim
n→∞

gc
k+1(Qn)

2n
((

n−d
k

)) = 1, and lim
n→∞

gc
i (Qn)

2n
((

n−d
k

)) = 0 (∀i 6= k).

Corollary 5.5 shows that the ray spanned by ek (2 ≤ k ≤ bd/2c) in Rbd/2c belongs
to the closed cone Cd. Note that this was already known for the ray spanned by ebd/2c
because of the existence of neighborly cubical d-polytopes, such as Q(k, 2k + 2, n)). The
ray spanned by e1 belongs to this cone because of the existence of stacked cubical d-
polytopes. Thus Cd contains Ad, and Theorem 1.1 is proved.

6 No obvious cubical GLBT

In [3], after introducing the definitions of cubical stackedness and cubical neighborliness,
the authors show that cubical 1-stacked d-polytopes with at least n vertices exist, for any
n ≥ 2d (see [3, Corollary 5.6]). It is also shown (see [3, proof of Proposition 5.5]) that if Q
is a cubical k-stacked d-polytope, then gc

i (Q) = 0 for k < i ≤ bd/2c. The converse claim,
namely, that gc

k+1(Q) = 0 implies that Q is cubical k-stacked, is false, as our analysis of
Q(k, d, n) below shows. This is in apparent contrast with the simplicial GLBT.

Theorem 6.1. The polytope Q = Q(k, d, n) is not cubical (k + 1)-stacked.

Proof sketch. Assume by contradiction that Q is cubical (k + 1)-stacked, so Q has some
cubulation Q′, namely a subdivision into (combinatorial) cubes, without interior
(d− k− 2)-faces. Let Cn be the deformed n-cube that Q is a projection of.

Lemma 6.2. All faces of Q′ must be faces of Cn.

To see this, note that any 1-dimensional subcomplex of Cn which is isomorphic to the
graph of an m-cube, is the 1-skeleton of an m-face of Cn.

Each lkv(Q′) (the simplicial complex whose face lattice is the ideal above the vertex
v in the face lattice of Q′) is a triangulation of Q /v with no interior (d− k − 3)-faces.
Thus the vertex figure of v in Q — isomorphic to some diamond Da — is (k + 1)-
stacked, and by the GLBT, lkv(Q′) is the triangulation obtained from Da by inserting
all (d − 1)-simplices whose (d − k − 3)-skeleton is contained in the boundary of the
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diamond Da. (We abuse notation and identify ∂Da with lkv(Q) by the isomorphism
given in Lemma 4.2.) This description allows us to determine, for each vertex v of Q,
the set of d-cubes in Q′ that contain v. The compatibility condition mentioned above is
the requirement that if u is a vertex in a d-cube from the list of v, then the list of u must
contain this d-cube too.

Omitting many details, here is a description of the facets in the (k + 1)-stacked trian-
gulation of Da, after introducing some terminology: let G be a subset of vertices of the
cyclic polytope C. A block B ⊂ G is a maximal subset of G (w.r.t inclusion) of consecutive
vertices, and B is even / odd if its size is. Recall that p denotes the apex of Da.

Proposition 6.3. The sets of d vertices that form the (d − 1)-simplices of the (k + 1)-stacked
triangulation of Da are exactly the ones of one of the following two types:

(i) {p} ∪ {2k-set in C \ {x} consisting of even blocks} ∪ T,

(ii) {a} ∪ {2k-set F in C \ {x} consisting of even blocks, min F > a} ∪ T.

Consider a vertex vσ of Q with σ ∈ {+,−}n, and with a = min{i | σi = +} <
n − d + 1; then Q

/
vσ
∼= Da. Now vσ′ , where σ′ is obtained by flipping the (a + 1)-th

coordinate of σ, is a neighbor of vσ with Q
/

vσ′
∼= Db, for some b > a. Since {vσ, vσ′}

forms an edge of Q, it must be contained in some d-cube of the cubulation of Q, and, by
the isomorphism Q

/
vσ
∼= Da given after Lemma 4.2, the d-set F of Da corresponding to

this d-cube must be of type (ii). But F is not a d-set of either type (i) or (ii) in Db, and so
the triangulations of Q

/
vσ and Q

/
vσ′ are incompatible.

This contradicts the assumption that Q′ exists.

7 Concluding remarks

The following question, implicit in [3], asks for a sequence of cubical k-stacked
d-polytopes with gc-vector approaching the ray spanned by ek. It is still unanswered.

Question 7.1. Let 2 ≤ k ≤ bd/2c − 1. Does there exist a sequence of cubical k-stacked
d-polytopes such that the k-th coordinate of gc dominates the other coordinates?

Jockusch studied the lower and upper bound problems for cubical polytopes in [5],
where he stated a Cubical Lower Bound Conjecture:

Conjecture 7.2 (CLBC, [5]). Let Q be a cubical d-polytope with n vertices. Then

fk(Q) ≥
(

2d−k
(

d
k

)
− 2d−k−1

(
d− 1

k

))( n
2d−1 − 2

)
+ 2d−k

(
d
k

)
(1 ≤ k ≤ d− 1).

We prove a cubical version of the MPW-reduction stating that the case k = 1 of Con-
jecture 7.2 implies that it holds for all k. The case k = 1 is equivalent to gc

2 ≥ 0.
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