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Abstract. In a seminal work, Bessis gave a geometric interpretation of the noncrossing
lattice NC(W), associated to a well-generated complex reflection group W. We use
this framework to prove, in a unified way, various instances of the cyclic sieving phe-
nomenon on the set of reduced reflection factorizations of the Coxeter element. These
include in particular the conjectures of N. Williams on the actions Pro and Twist.

Résumé. Dans un travail pionnier, Bessis a donné une interprétation géométrique
du treillis NC(W) des partitions non-croisées, associé à un groupe de réflexion com-
plexe W irréductible et bien engendré. Nous utilisons ce cadre pour démontrer, de
manière unifiée, diverses instances du phénomène du crible cyclique sur l’ensemble
des factorisations réduites de l’élément de Coxeter en réflexions. Ces résultats incluent
notamment les conjectures de N. Williams sur les actions Pro et Twist.

Keywords: Cyclic sieving phenomenon, Coxeter element, reflection factorizations,
Hurwitz action, Lyashko–Looijenga morphism

1 Introduction

Already in 1892, Hurwitz knew that there exist nn−2 minimal length factorizations of
the long cycle (12 · · · n) ∈ Sn into transpositions. This same number counts maximal
chains of the noncrossing lattice NC(n), labeled trees on n vertices, topologically distinct
branched coverings of the sphere by itself, and1 classes of degree n polynomials with
prescribed critical values.

It often happens that the most exciting phenomena first observed in the symmetric
group Sn, have suitable analogs for other reflection groups W. Our main object of study
in this note is the set RedW(c) of minimal length reflection factorizations of a Coxeter
element c of W. It is enumerated by the Hurwitz number

|RedW(c)| = hnn!
|W| ,
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where h is the order of the Coxeter element.
Bessis used the noncrossing lattice NC(W) as a combinatorial recipe to build up the

universal covering spaces of reflection arrangement complements. In the most difficult
part of his work, he had to refine this construction to work with centralizer subgroups
of W. The insight for that came from a topological understanding of his and Reiner’s
work [2] on the CSP:

The cyclic sieving phenomenon (CSP)

In 2004, the cyclic sieving phenomenon was first observed in Minnesota [5]. It occurs
when a polynomial X(q) carries orbital information about the action of a cyclic group C
on a space X. More precisely, and if C is generated by an element c of order n, we say
that the triple (X, X(q), C) exhibits the cyclic sieving phenomenon (CSP) if for all integers d,

|Xcd | = X(ζd), (1.1)

where ζ = e2πi/n and Xcd
denotes the set of elements of X fixed by cd.

Already in his thesis Drew Armstrong had conjectured cyclic sieving phenomena for
the poset NC(k)(W) of generalized noncrossing partitions. Bessis and Reiner however,
were the first [2] to prove a CSP for NC(W). Their work was later used by Krattenthaler
and Müller to prove Armstrong’s conjectures, albeit with an approach relying on case
by case calculations.

Below we recall the cyclic actions Φcyc and Ψcyc that have been considered originally
in the context of NC(k)(W), and the action Twist on factorizations of the Coxeter element:

Definition 1.1 ([2, 6]). For a well-generated group W (see Section 2), we consider the
following cyclic actions on the set RedW(c) of reduced reflection factorizations of the
Coxeter element c of W:

Φcyc : (t1, · · · tn)→
((ctn)t1,ctn, t2, · · · , tn−1

)
Ψcyc : (t1, · · · , tn)→ (ctn, t1, · · · , tn−1)

Twist : (t1, · · · , tn)→
(

(t1···tn−1)tn,(t1···tn−2)tn−1, · · · ,t1 t2, t1

)
, (1.2)

where wt := wtw−1 stands for conjugation.

In fact, Williams [6] was the first to conjecture CSP’s for the set RedW(c). He con-
sidered the action Pro, which is the inverse of Ψcyc above, and the action Twist. We are
now ready to state our main theorem:

Theorem 1.2. For an irreducible, well-generated, complex reflection group W, with degrees
d1, · · · , dn (see Section 2), Coxeter element c and Coxeter number h = dn, the triple(

RedW(c),
n

∏
i=1

[ih]q
[di]q

, C
)
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exhibits the cyclic sieving phenomenon, where C may be generated by any of the actions Φcyc, Ψcyc,

or Twist given in Definition 1.1 and where [n]q :=
1− qn

1− q
.

We prove this theorem (see Section 6 after Lemma 6.1) by interpreting the three
combinatorial cyclic actions on factorizations, as Galois actions in a topological covering
induced by the Lyashko–Looijenga morphism LL (see Section 4 and Section 5). These,
it turns out, correspond to scalar actions on certain symmetric fibers of the LL map.
Finally a geometric Lemma 6.1 provides a CSP on the latter ones with respect to the
Hilbert series of the special fiber LL−1(0), which is exactly the polynomial that appears
in Theorem 1.2.

2 Background on reflection groups and their complex ge-
ometry

Given a complex vector space V ∼= Cn, we say that a finite subgroup W of GL(V) ∼=
GLn(C) is a complex reflection group if it is generated by pseudo-reflections. Those are C-
linear maps t whose fixed spaces Vt := ker(t− id) are hyperplanes (i.e. codim(Vt) = 1).

Complex reflection groups act naturally on the polynomial algebra C[V] := Sym(V∗)
via precomposition (that is, (w ∗ f )(v) := f (w−1 · v)). The Shephard–Todd–Chevalley
theorem states that their invariant algebra C[V]W , is itself a polynomial algebra. It is
generated by n algebraically independent polynomials ( f1, · · · , fn), which can be chosen
to be homogeneous. Even though there is no canonical selection for them, their degrees
di := deg( fi) are uniquely determined.

One of the most important applications of the Shephard–Todd–Chevalley theorem is
on the geometric invariant theory (GIT) of W. It implies that the orbit space W \V can be
identified with an n-dimensional complex space, and that we can think of the fundamental
invariants fi as its coordinates (i.e. Spec(C[ f1, · · · , fn]) = W \ V). Furthermore it gives
an algebraic description on the abstract quotient map ρ : V →W \V:

Cn ∼= V 3 x := (x1, · · · , xn)
ρ
−→ f(x) :=

(
f1(x), · · · , fn(x)

)
∈W\V ∼= Cn (2.1)

In this note, we will be interested in the subclass of complex reflection groups that
are generated by n = dim(V)-many quasi-reflections. Those are called well-generated and
they possess good analogs of the Coxeter elements of real reflection groups. For us, and
if h := dn and ζ = e2πi/h, a Coxeter element will be a Springer ζ-regular element. That is,
an element c ∈W with a ζ-eigenvector v that is regular (i.e. lies in a free orbit of W).
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2.1 Braid groups and discriminant hypersurfaces

Each complex reflection group W comes with an associated arrangement AW :=
⋃

H∈R H
of its reflection hyperplanes H ⊂ V. It is a theorem of Steinberg that the restriction of
the quotient map ρ : V →W \V on the complement Vreg := V \AW is a Galois covering.
We define the braid group B(W) to be the fundamental group of the base of this covering

and use the following s.e.s. to produce a surjection B(W)
π
−� W.

1 ↪→ π1(Vreg)
:=

P(W)

ρ∗−−→ π1(W\Vreg)

:=

B(W)

π
−� W → 1 (2.2)

Given a choice of a basepoint v ∈ Vreg, a loop b ∈ B(W) lifts to a path that connects
v to b∗(v) (we call this the Galois action of b). Then, we define w := π(b) to be the unique
element w ∈ W such that w · v = b∗(v). We make now such a choice of a basepoint v
and in what follows we consider the surjection π fixed.

It is well understood that much of the combinatorics of real reflection groups W is
determined by the associated arrangement AW . As we transition to the complex case,
AW is replaced by its image W \AW in the quotient space. It is (yet another) consequence
of the GIT of W that this image is an algebraic variety in W \V ∼= Cn which we call the
discriminant hypersurface of W and denote by H.

Furthermore, H is cut out by a single polynomial in the fi’s, which we also call the
discriminant of W, and which we denote by ∆(W, f). When W is a well-generated group,
we can always choose a system of fundamental invariants fi, such that the discriminant
takes the form

∆(W, f) = f n
n + α2 f n−2

n + · · ·+ αn, (2.3)

where αi ∈ C[ f1, · · · , fn−1] are quasi-homogeneous polynomials of weighted degree hi.

3 Geometric factorizations of a Coxeter element

Recall that we have identified (see (2.1)) the orbit space W \ V with an n-dimensional
complex vector space whose coordinates are the fundamental invariants fi. Let us now
define the base space Y := Spec C[ f1, · · · , fn−1], so that W \ V ∼= Y ×C with coordinates
written (y, x) or sometimes (y, fn).

The special slice L0 := 0 × C, given by f1 = · · · = fn−1 = 0 and fn arbitrary, is
independent of the choice of fi’s (see [3, Remark 25]). Because of the monicity of the
discriminant (2.3) in fn, L0 intersects the hypersurface H only at the origin (0, 0). In
particular, the loop inside L0 given by fn(t) = e2πit, t ∈ [0, 1] (and the rest of the fi’s
equal to 0), is an element of the braid group B(W) = π1(W \V −H). We denote it by δ

(see Figure 1).
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We can map δ to an element of W via the fixed surjection π : B(W) � W from (2.2).
Because of our explicit knowledge of the quotient map ρ, it is easy to see that the Galois
action of δ on the basepoint v ∈ Vreg is multiplication by e2πi/h:

Proposition 3.1 ([1, Lemma 6.13]). The element c := π(δ) is a Coxeter element for W.

As a loop around the unique point of contact {(0, 0)} = H⋂ L0 gives rise to a
geometrically constructed Coxeter element, we might consider nearby “vertical” slices
Ly := y × C ⊂ W \ V ∼= Y × C. In that case, the intersection Ly

⋂H consists of n
points (counted with multiplicity), which are the solutions (see (2.3)) of the equation(

∆(W, f); (y, t)
)

:= tn + α2(y)tn−2 + · · ·+ αn(y) = 0. (3.1)

Here y ∈ Y ∼= Cn−1 = Spec(C[ f1, · · · , fn−1]) is fixed and t is the parameter, and we write
(y, xi) for the solutions.

Bessis describes a way of drawing loops around these points (y, xi) and shows that,
via the fixed surjection π, they map to factorizations of the Coxeter element. This process
of assigning factorizations to points y of the base space will be called a labeling map. The
construction depends nontrivially (and this is a subtlety that is important for us) on
a choice of ordering of the complex numbers. In what follows, we will consider the
following two:

Definition 3.2.

1. Complex lexicographic order (clo): We order the points xi ∈ C by increasing real part
first and we cut ties by increasing imaginary part.

2. Polar lexicographic order (plo): We order the points xi ∈ C via their polar coordinates
(r, θ) = (|x|, arg(x)), where r ≥ 0 and θ ∈ [−3π/2, π/2]. We order them by
increasing length r first, and by decreasing argument θ to cut ties (where θ starts
at the 12:00 position).

After we have decided on such an ordering, we proceed by picking a path θ in Y that
connects 0 to y. We lift it to a path βθ in Y × C, starting at (0, 1), which always stays
“above” (i.e. has bigger imaginary part than) all the points in the intersections Ly′

⋂H
(see Figure 1). We call the endpoint of this path (y, x∞) to indicate that it lies in the slice
Ly and above all points (y, xi).

From x∞ we now construct paths βi in Ly to the (ordered) points xi such that they
never cross each other (or themselves), and their order as they leave x∞ is given by their
indices (i.e. β1 is the leftmost one).

Given this information, we can now easily construct elements b(y,xi)
of B(W): First,

we follow the path βθ from the basepoint (0, 1) to (y, x∞), then we go down βi but
before we reach its end, we trace a small counterclockwise circle around xi, and finally
we return by the same route (see Figure 1).
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Figure 1: Factorizations via the slice Ly.

The product δy = b(y,x1)
· · · b(y,xk)

(where k is
the number of geometrically distinct points xi) sur-
rounds H and is, of course, homotopic to our
loop δ. We have finally made it; from each slice
Ly, we have constructed a geometric factoriza-
tion of δ. The fixed surjection π : B(W) � W
allows us to turn this into a factorization of the
Coxeter element c:

Definition 3.3. There is a collection of label-
ing maps which, to any point y ∈ Y assign
a factorization c1 · · · ck = c, where the factors
ci := π(b(y,xi)

) are defined as above. Such la-
beling maps are differentiated by the choice of
ordering of the complex numbers as discussed
before Definition 3.2.

We denote the labeling maps corresponding
to the orders (plo) and (clo) as clbl and rlbl re-
spectively (referring to “cyclic” labels vs “reduced”2 labels).

4 The Lyashko–Looijenga morphism (LL) and trivializa-
tion theorems

In the previous section we described a way to produce factorizations of the Coxeter el-
ement, by intersecting the discriminant hypersurface H with the slices Ly. The most
striking fact of this theory though, is that this geometric construction is sufficient to pro-
duce all reduced block factorizations of the Coxeter element c. In fact, if we additionally
keep track of the intersection Ly

⋂H, each such factorization is attained exactly once
(Theorem 4.3 records this for reflection factorizations, which is sufficient for us).

The geometric object that keeps track of the point configurations Ly
⋂H for the vari-

ous y ∈ Y is the Lyashko–Looijenga morphism. We use the notation En for the space of
centered configurations of n points (that need not be distinct):

Definition 4.1. For an irreducible well-generated complex reflection group W, we define
the Lyashko–Looijenga map by:

Y LL−−−−→ En

y = ( f1, · · · , fn−1) −−−−−→ multiset of roots of
(
∆(W, f); (y, t)

)
= 0

2This term is not related to some length function; it is only here to allow the exposition be consistent
with [1, Definition 7.14].
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and denote it by LL. Notice that there is a simple description of LL as an algebraic
morphism. Indeed the (multiset of) roots of a polynomial is completely determined by
its coefficients, therefore we can express LL as the map:

Y ∼= Cn−1 LL−−−−→ En ∼= Cn−1

y = ( f1, · · · , fn−1) −−−−−→
(
α2( f1, · · · , fn−1), · · · , αn( f1, · · · , fn−1)

)
where the αi’s are as in (3.1).

The LL map is a proper, finite morphism and its ramification and monodromy are
intimately related to the combinatorics of the noncrossing lattice (see [3, Chapter 7] and
[1, Theorem 7.20]). However, in what follows we will mainly take advantage of just two
statements about LL.

To set them up, we introduce the notation Ereg
n for the subset of En that contains

those centered configurations that have n distinct points. Furthermore, we let Yreg be
the preimage LL−1(Ereg

n ) (that is, the set of those points y ∈ Y for which the slice Ly
intersects the discriminant H in n-many distinct points).

Proposition 4.2 ([1, Lemma 5.7]). The restriction LL : Yreg → Ereg
n is a topological covering

map. In particular, any path in Ereg
n can be lifted to a path in Yreg.

Theorem 4.3 ([1, Theorem 7.5]). The map LL× rlbl : Yreg → Ereg
n × RedW(c) is a bijection.

The same is true for the map clbl.

4.1 Interpretation of the Hurwitz action via the labeling maps

The driving (combinatorial) force behind Theorem 4.3 is the transitivity of the Hurwitz
action on the set RedW(c). Its connection to such a geometric statement comes from the
labeling map. Let us, however, first recall the definition:

Definition 4.4. For any group G, there is a natural action of the (usual) braid group Bn
on the set of n-tuples of elements ti of G. The generator si acts via:

si ∗ (t1, · · · , ti, ti+1, · · · , tn) = (t1, · · · , ti−1, titi+1t−1
i , ti, ti+2, · · · , tn). (4.1)

We call this the (left) Hurwitz action of Bn on Gn. It is clear that the Hurwitz action
respects the product of the ti’s. Therefore, we may restrict it on tuples that encode fixed
length factorizations of elements of G. In our context, we consider the Hurwitz action
on the set of reduced reflection factorizations RedW(c).

The following Lemma 4.5, which describes how the label rlbl(y) is affected as y
varies in the base space Y, is the main technical support of this note. It is based on
the observation, already by Fox and Neuwirth [4], that we may identify braids g ∈ Bn
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with loops γ in Ereg
n . This of course demands that we first choose a basepoint e ∈ Ereg

n
and order its elements (e is a point configuration), just so that we may even define the
isomorphism.

On the other hand, these loops γ can be lifted to paths in Yreg via the covering map
LL : Yreg → Ereg

n (see Proposition 4.2). If y is a lift of the basepoint e, we write γ · y for
the Galois action (that is γ · y is the endpoint when we lift the loop γ starting at y). Then
we have:

Lemma 4.5 ([1, Corollary 6.20]). The labeling maps are equivariant with respect to the Hurwitz
action and the Galois action. That is,

rlbl(γ · y) = g ∗ rlbl(y),

where γ and g are as above. The same is true for clbl.

Proof. Any loop γ ∈ Ereg
n can be decomposed as a sequence of moves that transpose two

neighboring points (we call these Hurwitz moves). In this case, the corresponding braid
g ∈ Bn is just one of the canonical generators si whose action is given by (4.1).

The following Figure 2 describes the effect of such a Hurwitz move on the labeling
maps. The loops βi in Figure 2a are the ones we used in Section 3 to define the labels.
We write rlbl(y) = (β1, β2) forgetting the surjection π : B(W) � W.

The next two Figures 2b and 2c show the slice Lγ·y and on it are drawn two pairs of
loops. The blue loops (β1, β2) are homotopic (notice that the homotopy must happen
inside B(W) = π1(W \V −H)) to those in Figure 2a. The red ones (β′1, β′2), on the other
hand, are those assigned by the labeling map. As we can see, we have

rlbl(γ · y) = (β′1, β′2) = (β1β2β−1
1 , β1) = s1 ∗ (β1, β2) = s1 ∗ rlbl(y).

(a) As the two points in LL(y)
move around each other...

(b) ...the loop β2 stretches to
avoid β1.

(c) Our previous loop β2 is now
homotopic to β′−1

2 β′1β′2.

Figure 2: The Hurwitz action.

Remark 4.6. This is indeed a different theorem for the two labeling maps. The reason is
that the way we associate the braid g to the loop γ depends on a choice of ordering of the
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points in the configuration e. This is different for the various labeling maps as we saw
in Definition 3.2. This nuance will become clearer in Section 5, where in Propositions 5.2
and 5.3 we apply this Lemma to both maps clbl and rlbl.

5 Cyclic actions via the labeling maps

In this section we give an interpretation of (all three) cyclic actions Φ, Ψ, and Twist, from
the introduction, as Hurwitz actions. They are in fact induced by particular loops in the
configuration space Ereg

n via Lemma 4.5. We begin by introducing the latter ones:

Definition 5.1. We consider the following centered configurations of Ereg
n :

e(n) := {eε+2πik/n | k = 1, · · · n} and e(n−1,1) := {0}∪{eε+2πik/(n−1) | k = 1, · · · , n− 1},

for small ε, and the following loops (also in Ereg
n ) based on them:

γ(n)(t) := e2πit/n · e(n), t ∈ [0, 1], and γ(n−1,1)(t) := e2πit/(n−1) · e(n−1,1), t ∈ [0, 1].

Notice that the configurations are cyclically symmetric and the loops γ correspond to
the minimal rotations that respect them. We will further consider two twisting loops that
rotate the two configuration by 180◦:

γT
(n)(t) := eπit · e(n), t ∈ [0, 1], and γT

(n−1,1)(t) := eπit · e(n−1,1), t ∈ [0, 1],

defined when n is even or odd respectively.

Proposition 5.2. The labeling map clbl : Yreg → RedW(c) is equivariant with respect to the
Galois actions of γ(n) and γ(n−1,1), and the actions of Φcyc and Ψcyc, respectively. That is,

Φcyc ∗ clbl(y1) = clbl(γ(n) · y1) and Ψcyc ∗ clbl(y2) = clbl(γ(n−1,1) · y2),

for any y1 ∈ LL−1(e(n)) and any y2 ∈ LL−1(e(n−1,1)).

Proof. The proof is encoded in Figure 3. We write clbl(y1) = (β1, · · · , βn) and similarly
clbl(γ(n) · y1) = (β′1, · · · , β′n) forgetting the fixed surjection π : B(W) � W. As the Galois
action of γ(n) rotates the configuration in Figure 3a, the blue loop βi ends up encircling
the (i + 1)th point in Figure 3b. That is, it is homotopic to its label there (βi = β′i+1).

The situation is different only for the last loop βn. As we can see in Figure 3b, after
the rotation βn is no longer a label. To express it in terms of the β′i’s, notice that it
surrounds the configuration clockwise, then follows β′1, and then it unwinds again. That
is βn = c−1β′1c, which we reverse to obtain β′1 = cβnc−1 and complete the proof for Φcyc.

The proof is similar for Ψcyc. As before, we have βi = β′i+1, i = 2 · · · n − 1. But
now, the last loop βn ends up encircling the second point (after the rotation). That is,
β′2 = cβnc−1. Moreover, the loop β1 is not a label anymore as it is now on the right of
β′2. We compute the Hurwitz move β′1 = β′−1

2 β1β′2, which after replacing β′2 with cβnc−1

gives us precisely Ψcyc.
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(a) As the configuration
rotates, the loop

(b) ... β5 can no longer be
part of the label.

(c) As 0 is labeled first
(Definition 3.2) in (plo),

(d) ... in this case, β1 can-
not be a label either.

Figure 3: A Hurwitz interpretation of Φcyc and Ψcyc.

As we discussed in Remark 4.6, the labeling maps rlbl and clbl are affected in a
different way as we follow the paths γ in the configuration space Ereg

n .

Proposition 5.3. The labeling map rlbl : Yreg → RedW(c) is equivariant with respect to
the Galois actions of γT

(n)(t) and γT
(n−1,1)(t), and the action of Twist, when n is even or odd

respectively. That is,

Twist ∗ rlbl(y1) = rlbl(γT
(n)(t) · y1) and Twist ∗ rlbl(y2) = rlbl(γT

(n−1,1)(t) · y2),

for n even and odd respectively, and for any y1 ∈ LL−1(e(n)) and any y2 ∈ LL−1(e(n−1,1)).

Proof.

Figure 4: 12 angry points

The same method applies here as in Proposition 5.2. The
difference is that the labeling map rlbl orders the points differ-
ently, as we can see in Figure 4. We write rlbl(y1) = (t1, · · · , tn)
and rlbl(γT

(n) · y1) = (t′1, · · · , t′n). The Galois action is clockwise
rotation by 180◦.

According to Lemma 4.5 a label ti is conjugated by a label tj
only when tj crosses ti from above and to the right. In particular,
as the points move in the upper half circle, the labels are not
affected. For instance, t1 travels to the nth point giving us t′n = t1.

If we follow t2 however, using Figure 4 to enhance our imagination, we see that t1
crosses it to the right; this gives us t′n−1 = t1t2. We may proceed by induction: Pick an
even number 2k (think of 8 in the figure) and start rotating it. It will first be conjugated
by the odd numbers 7, 5, · · · , or really 2k− 1, 2k− 3, · · · (in that order), and then by the
labels of the even numbers too. Those however will have already reached their final
version (since they are now on the upper half circle). That is, the total action on t2k until
it becomes t′n+1−2k will be:

t′n+1−2k = wt2kw−1 for w = (t1···t2k−3)t2k−2 · · · (t1t2t3)t4 · t1t2 · t1 · t3 · · · t2k−1,

and direct calculations shows that w = t1t2 · · · t2k−1. The proof is similar for an odd
number 2k + 1 and similar for the Galois action of γT

(n−1,1).
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The following Lemma identifies the previous Galois actions on the symmetric config-
urations e, essentially as scalar multiplication. Note that since the coordinates fi of the
space Y have weights di, the correct way to define a scalar action on it, called weighted
multiplication, is via:

λ ∈ C∗, y = ( f1, · · · , fn−1) ⇒ λ ∗ y := (λd1 f1, · · · , λdn−1 fn−1). (5.1)

Lemma 5.4. The Galois actions of γ(n) on LL−1(e(n)), and of γ(n−1,1) on LL−1(e(n−1,1)), are
identical to weighted multiplication by e−2πi/nh and e−2πi/(n−1)h respectively. Similarly, both
twisting loops γT

(n) and γT
(n−1,1) act on the corresponding fibers as weighted multiplication by

e−πi/h.

Proof. The loops γ simply rotate the roots of the discriminant polynomial (3.1) by some
angle θ. To do this is to scale its coefficients αk(y) by (eiθ)k. Since the αk are of weighted
degree kh, we see that this translates to weighted multiplication on y by eiθ/h.

Definition 5.5. We record here the cyclic subgroups of the weighted C∗-action considered
above. We will view the fibers LL−1(e) as modules over them. We define:

Cnh :=
〈

e
−2πi

nh
〉

and C(n−1)h :=
〈

e
−2πi
(n−1)h

〉
and C2h :=

〈
e
−πi

h
〉

.

Corollary 5.6. The following module isomorphisms hold:

RedW(c) ∼=Cnh LL−1(e(n)), RedW(c) ∼=C(n−1)h
LL−1(e(n−1,1))

RedW(c) ∼=C2h LL−1(e(n)), n even, RedW(c) ∼=C2h LL−1(e(n−1,1)), n odd,

where the cyclic actions on RedW(c) are those of Φcyc, Ψcyc, and Twist respectively, and the
actions on the fibers LL−1(e) are via weighted multiplication and according to Definition 5.5.

Proof. This is immediate after Propositions 5.2 and 5.3, and Lemma 5.4.

6 CSP’s through finite quasi-homogeneous morphisms

Lemma 6.1. Let f : Cn → Cn be a polynomial morphism, finite and quasihomogeneous, which
corresponds to the inclusion of algebras C[x1, · · · , xn] ←↩ C[θ1, · · · , θn] over weighted parame-
ters xi and θi of degrees ai and bi respectively. Consider further a point ε = (ε1, · · · , εn) in Cn,
such that the fiber f−1(ε) is stable under weighted multiplication by c := e−2πi/N for some
number N. Then, if CN := 〈c〉, we have the isomorphism of CN-modules:

f−1(ε) ∼=CN
C[x1, · · · , xn]

/(
θ1, · · · , θn

)
=: R,

where the action on R is the induced action on functions. That is, c ∗ xi = (e2πi/N)ai xi (notice
the change of sign). In particular, for X := f−1(ε) and X(q) := Hilb(R, q) = ∏n

i=1
[bi]q
[ai]q

, the
triple (X, X(q), CN) exhibits the CSP.
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Sketch. Since C[x] is Cohen-Macaulay and finite over C[θ], it is a free C[θ]-module. This
allows us to construct a CN-stable filtration of the (otherwise ungraded) coordinate ring
K[ f−1(ε)] whose associated graded ring is isomorphic to R as a CN-module. The final
statement about CSP’s is [5, Proposition 2.1: (i) ⇐⇒ (iii)].

Proof of Theorem 1.2. Our main theorem is an immediate consequence of the previous
lemma and Corollary 5.6. Indeed, the LL map is finite, quasi-homogeneous, and the

Hilbert series of LL−1(0) is precisely [1, Theorem 5.3] the polynomial ∏n
i=1

[ih]q
[di]q

.

Remark 6.2. Lemma 6.1 is of a geometric nature and it takes advantage of the special
role that is played by the origin 0 for quasi-homogeneous morphisms. Intuitively, it
says that the scalar action that defines the weights of the morphism can be transferred to
nearby fibers to the extent that their symmetry allows.

On the other hand, it gives a very pleasant elucidation of CSP’s where the same poly-
nomial encodes orbital information of different cyclic actions. In our case for instance,
the different cyclic groups C(n−1)h and Cnh appear as we deform the origin 0 ∈ En to the
configurations e(n−1,1) and e(n), which in turn have different cyclic symmetries.
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