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Abstract. We give a combinatorial interpretation of the Lidskii formula for flow
polytopes and use it to compute volumes via the enumeration of new families of com-
binatorial objects which are generalizations of parking functions. Our model applies
to recover formulas of Pitman and Stanley, and compute volumes of previously seem-
ingly unapproachable flow polytopes. A highlight of our model is that it leads to a
combinatorial proof of an elegant volume formula for a new flow polytope which we
call the caracol polytope. We prove that the volume of this polytope is the product of
a Catalan number and the number of parking functions.

Keywords: flow polytope, Lidskii formula, Kostant partition function, labeled Dyck
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1 Introduction

Flow polytopes are a family of polytopes with remarkable enumerative and geometric
properties. They are related to other areas of mathematics including toric geometry,
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Verma modules in representation theory, special functions, and algebraic combinatorics.
Their combinatorial and geometric study started with work of Baldoni and Vergne [1]
and unpublished work of Postnikov and Stanley.

For an acyclic directed graph G on n + 1 vertices and m edges accompanied by an
integer vector a = (a1, . . . , an) ∈ Zn, the flow polytope FG(a) ⊂ Rm encodes the set of
flows on G with net flow on its vertices given by a′ := (a1, . . . , an,−∑n

i=1 ai). The number
of such integer-valued flows is the number of integer lattice points of FG(a); it is known
in the literature as a Kostant partition function and is denoted by KG(a′). Also of interest
is the normalized volume of FG(a) (hereafter called simply the volume of FG(a)), which
is the Euclidean volume times the factorial of the dimension of the polytope.

For certain graphs G and vectors a, the volume and number of lattice points of FG(a)
have nice combinatorial formulas. We highlight a few examples involving various special
graphs and the vectors a = (1, 0, . . . , 0) and a = (1, . . . , 1). See [4, 9] for other examples.

(i) When G is the complete graph Kn+1 and a = (1, 0, . . . , 0), FG(a) is called the Chan–
Robbins–Yuen polytope [3], and in the case a = (1, . . . , 1), FG(a) is called the Tesler
polytope [8]. Both volume formulas feature products of Catalan numbers:

volFKn+1(1, 0, . . . , 0) =
n−2

∏
i=1

Ci, volFKn+1(1, . . . , 1) =
(n

2)!

∏n−1
i=1 (2i− 1)n−i

n−1

∏
i=1

Ci,

where Ck := 1
k+1(

2k
k ). The only known proofs of these formulas use a variant of the

Morris constant term identity, but these product formulas suggest that combinato-
rial proofs should be attainable.

(ii) When G is the zigzag graph Zign+1 (see Figure 1) and a = (1, 0, . . . , 0), Stanley [11]
proved that the polytope FZign+1

(a) has volume volFZign+1
(a) = En−1, where En−1

is half the number of alternating permutations on n− 1 letters.

(iii) When G is the graph denoted by PSn+1 (see Figure 1) and a = (1, . . . , 1), the
polytope FPSn+1(a) is affinely equivalent to the Pitman–Stanley polytope [12]. The
number of lattice points in FPSn+1(a) is KPSn+1(a

′) = Cn and volFPSn+1(a) = nn−2.

(iv) Consider the graph on n + 1 vertices created by adding to the graph PSn (with
indices incremented by one) an extra source vertex 1 and the edges (1, 2), . . . , (1, n).
We call this the caracol graph and denote it by Carn+1. (Caracol is the Spanish word
for snail–see Figure 1.) When a = (1, 0, . . . , 0), Mészáros, Morales and Striker [9]
proved that FCarn+1(a) is equivalent to the order polytope of the poset [2]× [n− 2].
They also showed that volFCarn+1(a) = Cn−2, by counting the number of linear
extensions of that poset.

In this article, we introduce new combinatorial structures, called gravity diagrams and
unified diagrams, which are based on classical combinatorial objects known as Dyck paths
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PSn+1

1 2 3 4
· · ·

n− 1 n n + 1

Carn+1

1 2 3 4 5
· · ·

n− 1 n n + 1

Zign+1

1 2 3 4 5
· · ·

n− 1 n n + 1

Figure 1: The Pitman-Stanley, caracol, and zigzag graphs.

and parking functions, and whose enumeration provide combinatorial interpretations
for terms in the Lidskii volume formulas of Baldoni and Vergne [1]. In particular, Theo-
rem 2.1 proves that gravity diagrams provide a combinatorial interpretation for KG(a′),
and Theorem 3.1 proves that unified diagrams give a combinatorial interpretation of
volFG(a). These objects permit us to give new proofs for some of the above-mentioned
formulas, and they allow us to compute in Theorem 4.6 the volume of the flow polytope
(referred to as the caracol polytope) for Carn+1 with net flow a = (1, . . . , 1),

volFCarn+1(1, . . . , 1) = Cn−2 · nn−2, (1.1)

whose formula, like the CRY polytope, also features a product of combinatorial numbers.
Our model also allows us to obtain formulas for volFG(a) for other net flow vectors such
as a = (a, b, . . . , b) and a = (1, 1, 0, . . . , 0), which addresses problems that had previously
seemed unapproachable.

Moreover, in the upcoming preprint [2], we are able to show via the Aleksandrov–
Fenchel inequalities that the sequences associated to a graph G and net flow vector a
defined by our level-i unified diagrams Ui

G(a) are log-concave. This includes the Entringer
numbers (which are entries of the Euler–Bernoulli triangle [10, A008282]), and entries
in a new triangle of numbers that we call the parking triangle (see Table 1), which arises
from our study of the volume of the caracol polytope.

The organization of this extended abstract is as follows. We provide background on
flow polytopes, the Lidskii formula and Kostant partition functions in the remainder
of this section. Section 2 introduces gravity diagrams for general graphs and net flow
vectors, and provides their combinatorial interpretation. Section 3 builds on gravity
diagrams and parking functions to define unified diagrams, and proves that they provide
a combinatorial interpretation for volFG(a). Section 4 focuses on proving the formula
for volFCarn+1(1, . . . , 1), and in the process, we uncover the fascinating parking triangle.

https://oeis.org/A008282
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1.1 Flow polytopes

Let G be a connected directed graph on the vertex set V(G) = {1, 2, . . . , n + 1} and
directed edge set E(G), where each edge (i, j) satisfies i < j, and let m = |E(G)|. Given
a vector a = (a1, . . . , an) in Zn, an a-flow on G is a tuple (bij)(i,j)∈E(G) of real numbers
such that for j = 1, . . . , n,

∑
(j,k)∈E(G)

bjk − ∑
(i,j)∈E(G)

bij = aj. (1.2)

We view an a-flow on G as an assignment of flow bij to each edge (i, j) such that the net
flow at each vertex j ∈ [n] := {1, . . . , n} is aj and the net flow at vertex n + 1 is −∑n

j=1 aj.
Let FG(a) denote the set of a-flows of G. We view FG(a) as a polytope in Rm and call
it the flow polytope of G with net flow a. In this article, both a and a′ will be referred to as
the net flow vector depending on the context, since they refer to the same information.

1.2 The Lidskii formula and Kostant partition functions

Associate to every directed edge (i, j) ∈ E(G) the vector ei − ej = αi + · · ·+ αj−1, where
αi := ei − ei+1 for 1 ≤ i ≤ n, and let Φ+

G denote the set of such vectors, so that we can
view an a-flow on G as a linear combination of positive roots in the type A root system.
In this setting, Equation (1.2) is equivalent to writing a′ = ∑(i,j)∈E(G) bij[αi + · · ·+ αj−1]
as a linear combination of the vectors αi + · · ·+ αj−1. When the a-flow (bij) is integral,
this is an instance of a vector partition of a′. The number of integral a-flows on G is called
the Kostant partition function of G evaluated at a′ and we denote it by KG(a′).

Lidskii volume formula. Baldoni and Vergne proved a remarkable formula for calcu-
lating the volume of a flow polytope using residue techniques [1, Theorem 38]. This
formula has also been proved by Mészáros and Morales using polytope subdivisions [7,
Theorem 1.1]. Let G be a directed graph on n + 1 vertices. Let t = (t1, . . . , tn) be the
shifted out-degree vector whose i-th entry is one less than the out-degree of vertex i. Let
G|n denote restriction of G to the first n vertices, and let a = (a1, . . . , an) be a nonnegative
integer vector. Then

volFG(a) = ∑
sBt

(
m− n

s

)
· as · KG|n(s− t), (1.3)

where the sum is over weak compositions s = (s1, . . . , sn) of m − n that dominate the
vector t, that is, ∑k

i=1 si ≥ ∑k
i=1 ti for every k ≥ 1. This is denoted by s B t. We also use

the standard notation as := as1
1 as2

2 · · · a
sn
n and (r

s) := r!
s1!s2!···sn! for multinomial quantities.

The next equation is an immediate corollary of Equation (1.3).

volFG(1, 0, . . . , 0) = KG|n(m− n− t1,−t2, . . . ,−tn). (1.4)
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2 A combinatorial interpretation of vector partitions

2.1 Gravity diagrams

A line-dot diagram is a pictorial representation of a vector partition. Given a partition of
c′ = ∑n+1

i=1 ciei = ∑n
i=1(c1 + · · ·+ ci)αi into positive roots in Φ+

G , where ci is a nonnegative
integer for 1 ≤ i ≤ n, we create a two-dimensional array of dots with c1 + · · ·+ ci dots
in column i. A part [αi + · · ·+ αj−1] of the vector partition is represented by drawing a
line through dots from column i to column j− 1. Two line-dot diagrams are said to be
equivalent if they represent the same vector partition of c′, and we let GDG(c′) denote
the set of such equivalence classes. An equivalence class is called a gravity diagram, and
the choice of a class representative will depend on the graph G. By construction we have
the following result.

Theorem 2.1. For any graph G on n + 1 vertices and for any net flow vector c′ ∈ Zn,

KG(c′) =
∣∣GDG(c′)

∣∣.
We highlight the use of gravity diagrams in the computation of flow polytope vol-

umes in the next two examples.

Example 2.2. For the caracol graph G = Carn+1 we have from Equation (1.4),

volFCarn+1(1, 0, . . . , 0) = KG|n((n− 2)α1 + (n− 3)α2 + · · ·+ αn−2),

where Φ+
G|n = {αi | 1 ≤ i ≤ n − 1} ∪ {α1 + · · · + αi | 2 ≤ i ≤ n − 1}. A gravity

diagram in GDG|n(c
′) where c′ = (n − 2)α1 + · · · + αn−2 is a triangular array of n − 2

columns of dots, and we make the canonical choice of a class representative to be the
diagram whose lines are left-justified, and longer lines are bottom-justified (hence the
name gravity diagram). See Figure 2.

The enumeration of gravity diagrams leads to a combinatorial proof of a formula that
first appeared in Mészáros–Morales–Striker [9].

Proposition 2.3. The volume of the flow polytope FCarn+1(1, 0, . . . , 0) is the Catalan number
Cn−2.

Proof. There is a simple bijection between the set of gravity diagrams for (Carn+1)|n, and
the set of Dyck paths from (0, 0) to (n− 2, n− 2).

Example 2.4. For the zigzag graph G = Zign+1, we similarly have

volFZign+1
(1, 0, . . . , 0) = KZign

((n− 2)α1 + (n− 3)α2 + · · ·+ αn−2),
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Figure 2: The set of gravity diagrams GD(Car6)|5(3,−1,−1,−1, 0).

Figure 3: The set of gravity diagrams GD(Zig6)|5(3,−1,−1,−1, 0).

where Φ+
Zign

= {αi | 1 ≤ i ≤ n− 1} ∪ {αi + αi+1 | 1 ≤ i ≤ n− 2}. A gravity diagram
in GDZign

(c′) where c′ = (n− 2)α1 + · · ·+ αn−2 is a triangular array of n− 2 columns
of dots, and lines may only connect dots in two consecutive columns. A canonical class
representative in this case is constructed by placing lines from right to left such that each
line occupies the lowest available dots in their respective columns. See Figure 3.

Using gravity diagrams for the zigzag graph, we obtain a new direct proof of a
formula that was first proved by Stanley [11].

Proposition 2.5. The volume of the flow polytope FZign+1
(1, 0, . . . , 0) is the (n− 1)-th Euler

number En−1 [10, A000111].

Proof. The Entringer numbers E(n, k) [10, A008282] are entries in the Euler–Bernoulli tri-
angle and they enumerate down-up alternating permutations of n + 1 beginning with
k + 1. Let GDZign

(c′, k) denote the subset of gravity diagrams whose first column is in-
cident to exactly k lines. These gravity diagrams satisfy the same recurrence equation
as the Entringer numbers, and in fact, |GDZign

(c′, k)| = E(n− 2, n− 2− k), so applying
Theorem 2.1, the volume of FZign+1

(1, 0, . . . , 0) is the number of gravity diagrams

|GDZign
(c′)| =

n−2

∑
k=0
|GDZign

(c′, k)| =
n−2

∑
k=0

E(n− 2, n− 2− k) = En−1.

3 A combinatorial interpretation of the Lidskii formula

3.1 Labeled t-Dyck paths and a generalization of parking functions

A standard way to represent a (classical) Dyck path is as an {N, E}-word of length 2n
written in the form Ns1 ENs2 E · · ·Nsn E such that s = (s1, . . . , sn) is a weak composition of

https://oeis.org/A000111
https://oeis.org/A008282
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n, and in every initial segment of the word, the number of Ns is greater than or equal to
the number of Es. This condition can be reframed so that we may view a Dyck path as a
weak composition s that dominates the vector t = (1, . . . , 1), and allows us to generalize
Dyck paths in the following way. Let t = (t1, . . . , tn) be a nonnegative integer vector. The
set of t-Dyck paths is the set of weak compositions s of |t| that dominate t.

A labeled t-Dyck path is a pair (s, σ) where s is a t-Dyck path and σ is a permutation
of |t| whose descents occur possibly in positions s1 + · · · + si for 1 ≤ i ≤ |t| − 1. It
is well-known that labeled (1, . . . , 1)-Dyck paths are in bijection with parking functions
(see Haglund [6, Proposition 5.0.1]), so for this reason, we let PFt denote the set of
labeled t-Dyck paths, and these may be viewed as a generalization of parking functions.
The labeled t-Dyck path (s, σ) may be visualized as a lattice path from (0, 0) to (n, |t|)
which lies above shaded boxes along a diagonal representing t and whose north steps
are labeled by the permutation σ.

3.2 Unified diagrams

As the number of labeled t-Dyck paths is |PFt | = ∑sBt (
|t|
s ) (see [2]), we can reformulate

the Lidskii volume formula (1.3) in terms of generalized parking functions:

volFG(a) = ∑
(s,σ)∈PFt

as · KG|n(s− t). (3.1)

This equation leads us to create a new family of combinatorial diagrams, each of which
consists of a tuple U = (s, σ, ϕ, D) where (s, σ) is a labeled t-Dyck path, ϕ ∈ [a1]

s1 ×
· · · × [an]sn ⊂ Z

|s|
>0, and D is a gravity diagram in GDG|n(s− t).

To define a unified diagram associated to a directed graph G and net flow vector a,
begin with a labeled t-Dyck path (s, σ). We supplement the parking function labels on
the north steps of the t-Dyck path with net flow labels by placing a number from {1, . . . , ai}
on each of the north steps with x-coordinate i− 1. Furthermore, since s B t, then s− t =

∑n−1
d=1

(
∑d

k=1 sk − tk

)
αd, so a gravity diagram D ∈ GDG|n(s− t) has ∑d

k=1 sk − tk dots in
column d, which is precisely the number of cells in column d between the lattice path s
and t. Therefore, we may embed a gravity diagram into U. Let UG(a) denote the set of
unified diagrams associated to G and a. See Figure 4 for an example.

By construction, we have the following result.

Theorem 3.1. For any graph G on n + 1 vertices and for any nonnegative net flow vector
a ∈ Zn,

volFG(a) =
∣∣UG(a)

∣∣.
When a = (1, . . . , 1), all net flow labels are 1, so net flow labels are omitted from the

unified diagrams in this case. We apply Theorem 3.1 to give a new proof of a classical
result of Pitman and Stanley [12].
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1
3
4
5

2
6

Figure 4: A unified diagram U = (s, σ, ϕ, D) for G = Car6 with a = (1, . . . , 1) (net
flow labels suppressed) and shifted out-degree vector t = (3, 1, 1, 1, 0). The t-Dyck
path is s = (4, 2, 0, 0, 0) with parking label σ = 134526, and D is a gravity diagram in
GDG|5(1, 1,−1,−1) = GDG|5(α1 + 2α2 + α3).

Proposition 3.2. The volume of the flow polytope FPSn+1(1, . . . , 1) is the number of parking
functions |PFn−1 | = nn−2.

Proof. For G = PSn+1, the shifted out-degree vector is t = (1, . . . , 1, 0) and G|n is simply
the path on n vertices. Therefore, for every s B t, there is a unique gravity diagram
consisting only of dots with no lines connecting the dots. As such, a unified diagram in
UG(a) is completely characterized by its labeled t-Dyck path, which is a parking function
in PFn−1 = PF(1n−1,0) with an additional east step at the end.

4 The volume of FCarn+1(1, . . . , 1)

4.1 Refined unified diagrams

We enumerate unified diagrams by refining them according to the first east step of the
underlying t-Dyck path. For i ≥ 0, the level-i unified diagrams Ui

G(a) is the set of unified
diagrams whose north steps along the first column are omitted, and whose first east step
is along the horizontal line labeled by i. This labeling scheme is shown in Example 4.4 for
a level i = 4 unified diagram. Furthermore, the parking function labels on the remaining
north steps of the t-Dyck path are standardized to lie in the set [i].

As there are ( |t||t|−i) = (|t|i ) choices for the parking function labels and a|t|−i
1 choices for

net flow labels on the north steps in the first column, we have the following proposition.

Proposition 4.1. Let G be a graph on n+ 1 vertices with shifted out degree vector t = (t1, . . . , tn),
and let a ∈ Zn be a nonnegative net flow vector. Then

|UG(a)| =
|t|

∑
i=0

(
|t|
i

)
a|t|−i

1 |Ui
G(a)|. (4.1)
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4.2 The parking triangle and FCarn+1(1, . . . , 1)

For the remainder of this section, we re-index by setting r = n − 2 and consider the
caracol graph G = Carn+1 = Carr+3. It has shifted out-degree vector t = (r, 1, . . . , 1, 0),
so |t| = 2r. Since initial east steps only occur at levels 0 through r, the numbers defined
by

T(r, i) :=
∣∣∣Ui

Carr+3
(1, . . . , 1)

∣∣∣ for r ≥ 0 and 0 ≤ i ≤ r (4.2)

contain all the information necessary to compute volFCarr+3(1, . . . , 1). As a special case
of Proposition 4.1, we have

∣∣UCarr+3(1, . . . , 1)
∣∣ = r

∑
i=0

(
2r
i

)
T(r, i). (4.3)

We call the array of numbers T(r, i) the parking triangle. See Table 1 for a table of
values. As there are no north steps in a level-0 unified diagram, then the Dyck path in
such diagrams can only have east steps, so T(r, 0) is the number of gravity diagrams for
Carr+3, which was shown in Proposition 2.3 to be the Catalan number Cr. On the other
hand, since the first east step of the Dyck path in a level-r unified diagram occurs at
level r, and the associated gravity diagrams for (Carr+3)|r+2 can only have lines justified
to the leftmost column, then an associated gravity diagram cannot contain any lines. It
follows that T(r, r) = (r + 1)r−1 is the number of parking functions of r. We thus have
the following result.

Proposition 4.2. The r-th row of the parking triangle interpolates between the Catalan number
T(r, 0) = Cr and the number of parking functions T(r, r) = (r + 1)r−1.

r \ i 0 1 2 3 4 5 6 7 8
0 1
1 1 1
2 2 3 3
3 5 10 16 16
4 14 35 75 125 125
5 42 126 336 756 1296 1296
6 132 462 1470 4116 9604 16807 16807
7 429 1716 6336 21120 61440 147456 262144 262144
8 1430 6435 27027 104247 360855 1082565 2657205 4782969 4782969

Table 1: Values of the parking triangle T(r, i) for r = 0, . . . , 8.
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We provide another family of objects that give a combinatorial interpretation to the
parking triangle numbers T(r, i) which allow us to find a closed formula for these num-
bers. For r ≥ 0 and 0 ≤ i ≤ r, let M(r, i) be the set of labeled Dyck paths from (0, 0)
to (r, r) whose north steps are labeled by the multiset {0r−i, 1, . . . , i} such that the labels
on consecutive north steps are non-decreasing. We call these objects multi-labeled Dyck
paths.

Theorem 4.3. For r ≥ 0, there is a bijection

Φ : Ui
Carr+3

(1, . . . , 1) −→ M(r, i). (4.4)

Outline of proof. Let G = Carr+3 and a = (1, . . . , 1). Recall that a level-i unified diagram
U = (s, σ, D) ∈ Ui

G(a) consists of a Dyck path s of the form ENs1 ENs2 · · · ENsr+1 E, a
permutation σ of [i], and a gravity diagram D for (Carr+3)|r+2 with lines extending from
the first column of cells to the multi-set of columns {1c1 , . . . , rcr} such that ∑r

j=1 cj = r− i.
Let Φ(U) ∈ M(r, i) be a multi-labeled Dyck path obtained by deleting the first and

last east steps of the Dyck path of U, and by inserting cj north steps with x-coordinate j,
each labeled 0, into the Dyck path of U. The new path is of the form Ns1+c1 E · · ·Nsr+cr E,
with r east steps and r north steps labeled by {0r−i, 1, . . . , i}.

Example 4.4. The following figure depicts a level-4 unified diagram U ∈ U4
Car11

(1, . . . , 1)
and its corresponding multi-labeled Dyck path M ∈ M(8, 4) under the bijection Φ. The
four lines of the gravity diagram in U extend to cells in columns {2, 2, 3, 6}, and these
correspond to the locations of the zero labels in M.

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

2
4

3
1

...

2
4

3

1

Φ //

0
0

0
0

We now present a vehicle-parking scenario that models multi-labeled Dyck paths,
analogous to the one for classical parking functions (see [6]). With this model, we are
able to prove a closed formula for the entries T(r, i) of the parking triangle.

Suppose that there are r parking spots on a one-way street, r− i identical motorcycles
x 0, . . . ,x 0, and i distinct cars labeled ) 1, . . . ,) i. The vehicles have preferred parking
spots, and this information is recorded as a preference pair, which contains a multiset of
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2
4

3

1
0

0

0
0

one-way street

1 2 3 4 5 6 7 8

)2 )3 )1 )4x0 x0 x0 x0

Figure 5: The multi-labeled Dyck path ((2, 3, 1, 0, 0, 2, 0, 0), 24003001) ∈ M(8, 4) cor-
responds to the parking preference pair p = {2, 2, 3, 6} × (6, 1, 2, 1); the final parking
arrangement is given on the right.

cardinality r − i, indicating parking preferences for the motorcycles, and a vector of
length i whose k-th entry contains the parking preference of the car ) k. The vehicles
advance down the street with the motorcycles parking first and the cars following in
numerical order. As in the classical case, all r vehicles will find a parking spot if and
only if the preference pair can be uniquely represented by a multi-labeled Dyck path.

Theorem 4.5. For r ≥ 0 and 0 ≤ i ≤ r, T(r, i) = (r + 1)i−1(2r−i
r ).

Outline of proof. We adapt an idea of Pollack [5, p.13]. If there are r + 1 parking spots on
a circular one-way street, then every preference pair for the r− i motorcycles and i cars
will allow every vehicle to park, with one empty space left. There is a cyclic action of
the group Zr+1 on the set of preference pairs defined by

a · p := {p1 + a, . . . , pr−i + a} × (q1 + a, . . . , qi + a) mod r + 1

for a ∈ Zr+1 and a preference pair p, so that each orbit has r + 1 elements under the
group action, and the unique element with the (r + 1)-st space empty corresponds to a
multi-labeled Dyck path.

There are (2r−i
r ) multisets of preferences for the r − i motorcycles, and (r + 1)i pref-

erence vectors for the i cars, and since each Zr+1-orbit has r + 1 elements, there are
(r + 1)i−1(2r−i

r ) multi-labeled Dyck paths in M(r, i).

This was the last piece of the puzzle needed to prove the main theorem in this
manuscript.

Theorem 4.6. The volume of the flow polytope FCarn+1(1, . . . , 1) is Cn−2 · nn−2.

Proof. For a = (1, . . . , 1), Theorem 3.1, Equation (4.3), and Theorem 4.5 combine to give

volFCarn+1(a) = |UCarn+1(a)| =
n−2

∑
i=0

(
2(n− 2)

i

)
T(n− 2, i) = Cn−2 · nn−2.
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