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Abstract. In the proceedings of FPSAC 2017, the authors introduced the notion of
Whitney duality of graded posets. Two graded posets are Whitney dual if their Whit-
ney numbers of the first and second kind are (up to a sign) switched. In this extended
abstract, we present new results in the study of Whitney duals. We present new types
of edge and chain-edge labelings of graded posets which we call Whitney labelings.
We prove that every graded poset with a Whitney labeling has a Whitney dual and
we show how to explicitly construct a Whitney dual using a technique that involves
quotient posets. As an application, we explicitly construct a Whitney dual for the lat-
tice of noncrossing partitions. We also show that a graded poset P with a Whitney
labeling admits a local action of the 0-Hecke algebra on the set of maximal chains of P.
The characteristic of the associated representation is Ehrenborg’s flag quasisymmetric
function of P.
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1 Introduction

Throughout this extended abstract all partially ordered sets (or posets) considered will be
finite, graded, and contain a minimum element (denoted by 0̂). Moreover, P will denote
a finite graded poset with a 0̂, with a rank function denoted by ρ and µ(x, y) will denote
the Möbius function of the interval [x, y] in P. For background on posets the reader may
visit [7, Chapter 3] and [9].

This extended abstract is mainly concerned with two invariants that we can associate
to a graded poset P and that play an important role in many areas of combinatorics.
These invariants are the Whitney numbers of the first and second kind. The kth Whitney
number of the first kind, wk(P), is defined by

wk(P) = ∑
ρ(x)=k

µ(0̂, x), (1.1)
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and the kth Whitney number of the second kind, Wk(P), is defined by

Wk(P) = |{x ∈ P | ρ(x) = k}|. (1.2)

González D’León and Wachs noticed, while studying a poset of weighted partitions
in [4], the existence of several familiar pairs of graded posets (P, Q) whose Whitney
numbers of first and second kind (up to sign) were switched with respect to each other.
This phenomenon motivated the following definition in [3].

Definition 1.1. [3] Let P and Q be graded posets. We say that P and Q are Whitney duals
if for all k ≥ 0 we have that

|wk(P)| = Wk(Q) and |wk(Q)| = Wk(P). (1.3)

Remark 1.2. Note that according to this definition for any graded poset P, a Whitney
dual Q is not necessarily unique. Indeed, the authors show in the full version of this
extended abstract ([2]) examples of posets with multiple nonisomorphic Whitney duals.

In [3], the authors proved that every geometric lattice has a Whitney dual. One
example of this is the lattice of set partitions Πn, which was shown in [3] to be Whitney
dual to a poset of increasing spanning forests.

In this extended abstract we present new types of edge and chain-edge labelings that
we call Whitney labelings. The main result that relates these new types of labelings with
Whitney duality is the following.

Theorem 1.3. Let P be a graded poset with a Whitney labeling λ. Then P has a Whitney dual.
Moreover, using λ we can explicitly construct a Whitney dual Qλ(P) of P.

In addition to giving sufficient conditions for Whitney duality, we are also able to
show the following connection between Whitney labelings and representation theory.

Theorem 1.4. Let P be a graded poset with a Whitney labeling λ. Then there exists a local
0-Hecke algebra action on the set of maximal chains of P. The characteristic of the associated
representation is Ehrenborg’s flag quasisymmetric function.

This extended abstract is organized as follows. In Section 2 we describe the main
ingredients used in the proof of Theorem 1.3. In Section 3 we present an example of
a poset with a Whitney labeling, namely the lattice of noncrossing partitions NCn. We
also give a combinatorial description of its Whitney dual QλNC (NCn). In Section 4 we
discuss the steps involved in the proof of Theorem 1.4. We also show that the action
described in Theorem 1.4 can be transported to an action on the set of maximal chains
of the Whitney dual Qλ(P). In this case, the characteristic of this action is Ehrenborg’s
flag quasisymmetric function of Qλ(P) after ω (the well-known involution in the ring
of quasisymmetric functions) is applied. We then use results of McNamara [5] to prove
some structural properties of the posets Qλ(P).
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2 Whitney labelings and Whitney duality

We say that x ∈ P is covered by y ∈ P and write xl y if x < y and there is no z ∈ P
such that x < z < y. The Hasse diagram of P is the directed graph on P whose directed
edges are the covering relations xl y in P. An edge labeling or E-labeling of P is a map
λ : E(P) → Λ where E(P) is the set of edges of the Hasse diagram of P and Λ is some
other poset of labels. An edge labeling is said to be an ER-labeling if in every interval [x, y]
of P there is a unique saturated or unrefinable chain c : (x = x0l x1l · · ·l x`−1l x` = y)
that is increasing, i.e., such that

λ(x0l x1) < λ(x1l x2) < · · · < λ(x`−1l x`).

We say that an edge labeling is an ER∗-labeling if in each closed interval [x, y] of P,
there is a unique ascent-free saturated chain from x to y. That is, a chain c such that
λ(xi−1l xi) 6< λ(xi l xi+1), for all i = 1, . . . , `− 1.

A consequence of a theorem of Stanley (Theorem 3.14.2 in [7]) is that ER and ER∗-
labelings are useful for the determination of Möbius values and hence also of Whitney
numbers. We summarize this relation in the following proposition.

Proposition 2.1. Let P be a graded poset with an ER-labeling (ER∗-labeling). Then |wk(P)|
is the number of ascent-free (increasing) saturated chains starting at 0̂ of length k. Moreover,
Wk(P) is the number of increasing (ascent-free) saturated chains starting at 0̂ of length k.

Let λ be an edge labeling of P. We say that λ has the rank two switching property if
for every maximal chain c : (0̂ = x0 l x1 l · · ·l xk−1 l xk) that has an increasing step
λ(xi−1l xi) < λ(xi l xi+1) at rank i there is a unique maximal chain

c′ : (0̂ = x0l x1l · · ·l xi−1l x′i l xi+1l · · ·l xk−1l xk),

whose labels are the same as the ones from c except that λ(xi−1l x′i) = λ(xil xi+1) and
that λ(x′i l xi+1) = λ(xi−1l xi). In this case, we say that the chain c′ is obtained from c
by a quadratic exchange at rank i.

Definition 2.2. An EW-labeling of P is an ER-labeling with the rank two switching prop-
erty and with the property that in every interval [x, y] of P each ascent-free maximal
chain is determined uniquely by its sequence of labels from bottom to top.

Remark 2.3. In [2] the authors also define the notion of a CW-labeling that has the same
implications with respect to Whitney numbers and Whitney duality as an EW-labeling,
but where the underlying labeling is a chain-edge labeling (or C-labeling) as defined by
Björner and Wachs (see [9] for the context about C-labelings). We will refer in general to
a Whitney labeling in any result that applies to both types of labelings.
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Remark 2.4. In [3] the authors defined the related concept of an EW-labeling. The reason
for the use of an overline in that article is that the conditions are far more restrictive and
are just special cases of EW-labelings. While the definition of an EW-labeling greatly
simplifies the proofs of the theorems we present in this article, there are posets with
EW-labelings, but no known EW-labelings.

In addition to using edge labelings, we use the following notion of a quotient poset.

Definition 2.5. Let ∼ be an equivalence relation on a graded poset P such that if x ∼ y,
then ρ(x) = ρ(y). We define the quotient poset P/ ∼ to be the set of equivalence classes
ordered by X ≤ Y if and only if there exists x ∈ X, y ∈ Y and z1, z2, . . . , zk ∈ P such that

x = z0 ≤ z1 ∼ z2 ≤ · · · ≤ zn−1 ∼ zk ≤ zk+1 = y.

Definition 2.6. Given a graded poset P, let C(P) denote the poset whose elements are
saturated chains of P starting at 0̂ ordered by inclusion. We call C(P) the chain poset of P.
Suppose that λ is a Whitney labeling of P. Let ∼λ be the equivalence relation on C(P)
defined by c ∼λ c′ if and only if there is a common chain c′′ that can be reached, after
applying a sequence of quadratic exchanges, from both c and c′. We will use Qλ(P) to
denote C(P)/ ∼λ.

We now describe the main steps taken in the proof of Theorem 1.3. The complete
details of the proof can be found in the full version of this article ([2]). We first define
an edge labeling λ∗ on Qλ(P) and prove that this labeling is an ER∗-labeling. We then
show that there is a label preserving bijection between the saturated chains of length k
starting at 0̂ in P and the saturated chains of length k starting at 0̂ in Qλ(P). These steps,
together with Proposition 2.1, imply that P and Qλ(P) are Whitney duals.

To define the labeling on Qλ(P), let S(c) be the multiset of labels on the chain c. Note
that, by the definition of a quadratic exchange, c ∼λ c′ implies S(c) = S(c′). In light of
this, we will use S(X) to denote the multiset of labels along any chain in the equivalence
class X ∈ Qλ(P). If XlY in Qλ(P) then there exists a unique element in S(Y) \ S(X).
Define the edge labeling λ∗ on Qλ(P) by

λ∗(XlY) = S(Y) \ S(X). (2.1)

Proposition 2.7. Let P be a graded poset and let λ be a Whitney labeling of P. Then the labeling
λ∗ of Qλ(P) given by Equation (2.1) is an ER∗ labeling.

Proposition 2.8. Let λ be a Whitney labeling of P. There is a label preserving bijection from
the set of saturated chains from [0̂] of length k in Qλ(P) and the set of saturated chains from 0̂
of length k in P. In particular, there is a label preserving bijectionMQλ(P) →MP, whereMP
denotes the set of maximal chains of P.

We omit the proofs of Propositions 2.7 and 2.8 because they are rather technical to
be part of this extended abstract (see [2] for details). As mentioned earlier, these two
propositions together with Proposition 2.1 imply Theorem 1.3.
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Figure 1: NC4.

2.1 A simpler description of Qλ(P)

Even though Theorem 1.3 gives a constructive proof for the existence of Whitney duals,
the description of a Whitney dual as a quotient is somewhat unsatisfying combinatori-
ally. We now give a more combinatorial description of this quotient. We will use this
description in Section 3 to describe a Whitney dual of the lattice of noncrossing parti-
tions.

Let Λ be any poset and let w be a word with letters in the alphabet Λ. Assume that
whenever wi < wi+1 we are allowed to do exchanges on w of the form

w1w2 · · ·wi−1wiwi+1wi+2 · · ·wn
i→ w1w2 · · ·wi−1wi+1wiwi+2 · · ·wn.

It is not hard to check that there is a unique ascent-free word w′ that is related to w in
this manner. We define sort(w) := w′ to be this unique ascent-free word.

Definition 2.9. Let P be a poset with a Whitney labeling λ. Let Rλ(P) be the poset whose
elements are pairs (x, w) where x ∈ P and w is the word of labels that uniquely deter-
mines an ascent-free saturated chain c in [0̂, x]; and such that (x, w)l (y, u) whenever
xl y and u = sort(wλ(c, xl y)) (wv here means concatenation of the words w and v).

Theorem 2.10. If λ is a Whitney labeling of P, then Rλ(P) ∼= Qλ(P).

3 A Whitney labeling of the noncrossing partition lattice

We say a partition π = B1/B2/ · · · /Bk of [n] is noncrossing if there are no a < b < c < d
such that a, c ∈ Bi and b, d ∈ Bj for some i 6= j. For example, 124/35/67 is not a
noncrossing partition since 2 < 3 < 4 < 5 and {2, 4} and {3, 5} are in two different
blocks, but 127/45/36 is noncrossing. The noncrossing partition lattice, denoted NCn, is
the set of noncrossing partitions of [n] ordered by refinement. As the name suggest, NCn
is a lattice and has many nice combinatorial properties (see [8] for more information).
Figure 1 depicts NC4.
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Figure 2

In [8], Stanley found a beautiful connection between NCn and a set of combinatorial
objects known as parking functions. A parking function of length n is a sequence of
n positive integers (p1, p2, . . . , pn) with the property that when rearranged in weakly
increasing order pi1 ≤ pi2 ≤ · · · ≤ pin , we have that pik ≤ k for all k. In [8], an edge
labeling of NCn is defined with the property that the words of labels along the maximal
chains are exactly the parking functions of length n − 1. To describe this labeling of
Stanley, first note that the cover relation in NCn is given by merging exactly two blocks
together. Suppose that σ is obtained from π by merging Bi and Bj, where min Bi <
min Bj. Then define

λNC(πl σ) = max{a ∈ Bi | a < min Bj}. (3.1)

Figure 1 depicts this labeling for NC4 encoded using line styles and colors.

Theorem 3.1. The labeling λNC is an EW-labeling ofNCn. Hence Qλ(NCn) is a Whitney dual
of NCn.

Idea of the proof. One can check that λNC satisfies that in each interval of NCn there is a
unique strictly increasing chain and so λNC is an ER-labeling. The work in [8] considers a
local action of the symmetric group Sn−1 on the set of maximal chains of NCn. Showing
that this action is well-defined also implies that λNC has the rank two switching property
(see section 4 of [8]). The fact that maximal chains are uniquely determined by parking
functions implies that ascent-free chains are determined by their sequences of labels in
each interval.

We will now use Theorem 2.10 to provide a more familiar combinatorial description
of the Whitney dual QλNC (NCn) of NCn. Recall that a Dyck path of order n is a lattice
path from (0, 0) to (n, n) that never goes below the line y = x and only takes steps in the
directions of the vectors (1, 0) (East) and (0, 1) (North). We will consider Dyck paths D
that come with a special labeling. Given an increasing sequence b1 < b2 < · · · < bn+1 of
positive integers, we label the point (i− 1, 0) of D by bi. In Figure 2a we illustrate two
labeled Dyck paths.

We now define a process of “merging” two labeled Dyck paths D1 and D2 to obtain
a new labeled Dyck path D. Suppose that D1 and D2 have disjoint and noncrossing
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label sets B = {b1, b2, . . . , bj} and C = {c1, c2, . . . , ck}, where both sets are written in
increasing order and b1 < c1. Since the sets are noncrossing then there exists an i such
that bi < c1 < c2 < · · · < ck < bi+1 (where we use the convention bj+1 = ∞). Then,
the new lattice path D, will be a path from (0, 0) to (j + k, j + k) whose labels along
the bottom row are b1, b2, . . . bi, c1, c2, . . . , ck, bi+1, . . . , bj. From left to right until we reach
the vertical line labeled bi, D looks exactly the same as D1. In the line labeled bi in D
we add all the north steps that D1 had originally at bi plus one additional north step
followed by an additional east step from the line labeled bi to the line labeled c1. Then
we glue D2 where we left off in the line labeled c1. After we finish gluing D2, we glue the
remaining part of D1 that goes from the line labeled bi to the line labeled bj. In Figure
2b we illustrate the step by step construction of the labeled Dyck path D obtained by
merging the two labeled Dyck paths D1 and D2 of Figure 2a. Note that in this example,
1 is the largest element in {1, 5, 6, 7} smaller than all the elements of {2, 3, 4}.

In order to verify that the resulting labeled lattice path is also a labeled Dyck path
(that is, it has the same number of north and east steps and is always above the diagonal),
we rely on an equivalent definition of a Dyck path. A ballot sequence of length 2n is a
{0, 1}-string s1s2 · · · s2n with the same number of 1’s and 0’s and such that for every
i ∈ [2n] the subword s1s2 · · · si has at least as many 1’s as 0’s. It is well-known that a
lattice path that takes only north and east steps is a Dyck path if and only if the sequence
obtained associating to each north step a 1 and to each east step a 0 is a ballot sequence.
Relying on this equivalent definition, we see that in the resulting path D the number of
north steps and east steps is equal and the construction never breaks the property that
every preamble in D contains at least as many north steps as east steps. Hence D is a
well-defined labeled Dyck path.

Let NCDyckn be the set whose objects are collections of labeled Dyck paths such that
their underlying sets of labels form a noncrossing partition of [n]. We provide NCDyckn
with a partial order by defining for F, F′ ∈ NCDyckn the cover relation Fl F′ whenever
F′ can be obtained from F by merging exactly two of the labeled Dyck paths in F. Note
here that each labeled Dyck path can be represented by its set of labels together with
an exponent for each label. The exponent of an element i being the number of north
steps in the vertical line labeled i in its Dyck path. This notation extends to the elements
in NCDyckn. For example, we can denote the collection of Dyck paths in Figure 2a by
12506170/213140. In Figure 3 we illustrate NCDyck4.

Theorem 3.2. For all n ≥ 1, QλNC (NCn) ∼= NCDyckn.

Idea of Proof. Theorem 2.10 characterizes the poset QλNC (NCn) as being isomorphic to
the poset RλNC (NCn) whose elements are pairs (π, w) where π ∈ NCn and w is the
word of labels of an ascent-free chain in [0̂, π]. Since maximal chains are labeled with
parking functions, when π = {[n]} is the partition with a single block, we have that w is
a weakly decreasing parking function of length n− 1, which are known to be in bijection
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Figure 3: NCDyck4

with Dyck paths. The bijection assigns to a parking function with ki occurrences of the
label i the Dyck path with ki north steps on the line x = i− 1. In our notation, the pairs
([4], w) are represented as 13203040, 12213040, 11223040, 12203140 and 11213140. Now,
it is not hard to see that any interval of the form [0̂, B1/B2/ · · · /Bk] is isomorphic to
the product of smaller noncrossing partition lattices NCB1 ×NCB2 × · · · × NCBk , where
NCBj is the lattice of noncrossing partitions of Bj ⊂ [n]. Note that the description of
λNC given in Equation (3.1) is equivalent to the definition of merging labeled Dyck
paths. Using this relation, the reader can also verify that a cover relation in RλNC (NCn)
corresponds to the merging of two labeled Dyck paths.

It is interesting to note the well-known fact that the Möbius function value of NCn
is (up to a sign) the Catalan number Cn−1. This information is recovered here since
NCDyckn is a Whitney dual of NCn and its maximal elements are Dyck paths of order
n− 1 which are Catalan objects.

We finish this section by noting that in the full version of this paper [2] we show that
in addition to geometric lattices and the noncrossing partition lattice; the weighted par-
tition poset studied by González D’León–Wachs [4] and the R∗S-labelable posets studied
by Simion–Stanley [6] (satisfying a certain consistency condition), all have Whitney la-
belings (and hence Whitney duals). The noncrossing partition lattices of types B and C,
and Greene’s poset of shuffles belong to this latter family.

4 Hn(0)-actions and Whitney labelings

In this section we describe an action of the 0-Hecke algebra on the maximal chains of a
poset with a Whitney labeling. The techniques we describe here closely follow the work
of Simion–Stanley [6] and McNamara [5].

Suppose that P is a graded poset of rank n. Moreover, suppose that λ is a Whitney
labeling of P. We define maps Ui :MP →MP acting on the setMP of maximal chains
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of P. For c ∈ MP define

Ui(c) =

{
c′ if c has an ascent at position i,
c otherwise,

where c′ is the maximal chain obtained by applying a quadratic exchange at rank i to c.
As an example, consider the maximal chain c : (1/2/3/4l 13/2/4l 123/4l 1234) in
NC4 (see Figure 1). Since there is no ascent at rank 1, U1(c) = c. However, there is an
ascent at rank 2, and U2(c) = 1/2/3/4l 13/2/4l 134/2l 1234.

The following proposition is a consequence of the definitions of the maps Ui’s, the
rank two switching property and the fact that ascent-free maximal chains are uniquely
determined by their sequence of labels.

Proposition 4.1. The maps U1, U2, . . . , Un−1 have the following properties:

1. For all c ∈ MP, Ui(c) and c are the same except possibly at rank i.

2. U2
i = Ui for all i.

3. UiUj = UjUi for all i, j such that |i− j| > 1.

4. UiUi+1Ui = Ui+1UiUi+1 for all i.

The 0-Hecke algebra of type A is defined by abstract generators satisfying the same
properties of those in Proposition 4.1. Thus the properties described in the proposition
imply that there is an action of the generators of the 0-Hecke algebra Hn(0) on the set
MP. This action is said to be local since the chains Ui(c) and c are the same except
possibly at rank i. Moreover, this action gives rise to a representation of the 0-Hecke
algebra on the space CMP linearly spanned byMP.

4.1 The characteristic of this action

We will use χP to denote the character of the representation of Hn(0) on CMP. It
turns out that the characteristic of this representation is a well-known quasisymmetric
function. Before we look at this characteristic, we need to review some material on
quasisymmetric functions associated with posets.

Ehrenborg [1] introduced the following formal power series known as the flag qua-
sisymmetric function. Given a graded poset P with a 0̂ and 1̂, it is defined by

FP(x) = FP(x1, x2, . . . ) := ∑
0̂=t1≤t2≤···≤tk−1<tk=1̂

xrk(t0,t1)
1 xrk(t1,t2)

2 · · · xrk(tk−1,tk)
k

where the sum is over all multichains from 0̂ to 1̂ where 1̂ appears exactly once. As
the name suggests, FP(x) belongs to the ring QSym of quasisymmetric functions. In
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addition to being quasisymmetric, FP(x) also keeps track of the flag f -vector and the
flag h-vector of P as we describe next.

Let P be a graded poset of rank n with a 0̂ and a 1̂. For S ⊆ [n− 1] define αP(S) to
be the number of maximal chains of the rank-selected subposet PS, that is, the induced
subposet of P generated by the elements with ranks in S. The function given by αP :
2[n−1] → Z is called the flag f-vector of P. We also define βP(S) = ∑T⊆S(−1)|S\T|αP(T)
known as the flag h-vector of P. The reason for the names flag f -vector and flag h-vector
is that they refine the classical f -vector and h-vector of the order complex of P. See [7,
Section 3.13] for more details.

When P has a 0̂ and 1̂, there is a nice relationship between FP(x) and βP(S). Indeed,
it is well-known that if P has rank n, then

FP(x) = ∑
S⊆[n−1]

βP(S)LS,n(x),

where LS,n is Gessel’s fundamental quasisymmetric function associated to S ⊆ [n− 1].
The original definition of FP(x) requires that P has a 1̂. We extend this definition to

more general posets, defining

FP(x) = ∑
m

F[0̂,m](x),

where the sum is over all maximal elements m of P. Note that in the case that P has a 1̂,
this is just Ehrenborg’s classical definition.

In the representation theory of Hn(0), it is known that there are 2n−1 irreducible
representations, all of them one-dimensional and hence they can be indexed by subsets
of [n− 1]. We denote by χS the irreducible representation indexed by S ⊆ [n− 1]. The
(quasisymmetric) characteristic of χS is defined by ch(χS) = LS,n(x).

Theorem 4.2. Let P be a graded poset of rank n and λ a Whitney labeling of P. The local
Hn(0)-action previously described is such that

ch(χP) = FP(x).

Remark 4.3. The proof of this theorem is almost identical to the proof in [5, Proposition
4.1]. The difference lies in that our definition of FP(x) involves possibly more than one
maximal interval and in our case the operators Ui remove ascents instead of descents as
in McNamara’s work.

Now suppose that λ is an ER-labeling of P and that P has a 0̂ and a 1̂. Recall that
MP denotes the set of maximal chains in P. For c : (x0l x1l x2l · · ·l xn) ∈ MP, the
descent set of c is defined to be D(c) = {i | λ(xi−1, xi) ≮ λ(xi, xi+1)}. It was shown by
Stanley [7, Theorem 3.14.2] that βS(P) is the number of maximal chains with descent set
S.



Whitney labelings and 0-Hecke algebra actions on graded posets 11

Example 4.4. We compute FP(x) for P = NC4. Recall from Section 3 that the labels on
the set MNC4 of maximal chains of NC4 correspond to parking functions of length 3,
see Figure 1. So NC4 has 16 maximal chains with label words given by (1, 1, 1), the
three permutations of each (1, 1, 2) (1, 1, 3) and (1, 2, 2); and the six permutations of
(1, 2, 3). Considering the descent sets of each of these sequences we can compute that
βNC4(∅) = 1, βNC4({1}) = 5, βNC4({2}) = 5 and βNC4({1, 2}) = 5. Thus,

FNC4(x) = L∅,3(x) + 5L{1},3(x) + 5L{2},3(x) + 5L{1,2},3(x).

The quasisymmetric function FNCn(x) is in fact symmetric. Stanley [8] showed that
ω(FNCn(x)) is Haiman’s Parking Function Symmetric Function of n, where ω is the involu-
tion on the ring of quasisymmetric functions given by ω(LS,n) = LSc,n where Sc is the
complement of S in [n− 1].

A simple modification of Stanley’s proof of the combinatorial description of the
numbers βP(S), shows that if λ is an ER∗-labeling of a poset P with 0̂ and 1̂, then
βP(S) = {c ∈ MP | D(c) = Sc} for any S ⊆ [n − 1]. With this information, one can
show that FNCDyck4(x) = 5L∅,3(x) + 5L{1},3(x) + 5L{2},3(x) + L{1,2},3(x). The reader may
have noticed that FNC4(x) = ω(FNCDyck4(x)). This is no coincidence as we will see.

Proposition 2.8 implies that there is a bijection between maximal chains of P and
Qλ(P) which preserves labels. It follows that the local Hn(0)-action on MP can also be
transported to an Hn(0)-action on MQλ(P). It turns out that this action on the maximal
chains of Qλ(P) is also local.

Lemma 4.5. Let P be a graded poset with a Whitney labeling λ. The 0-Hecke algebra action on
MQλ(P) is local.

We denote by χQλ(P) the representation of Hn(0) on CMQλ(P). Note that since the
action on Qλ(P) is local, this representation restricts to representations χI on CMI where
I is any maximal interval of Qλ(P). We obtain the following Proposition whose proof
follows a similar idea of the one of Theorem 4.2, but noticing that Qλ(P) has an ER∗-
labeling instead of an ER-labeling.

Proposition 4.6. Let P be a graded poset with a Whitney labeling λ. For any maximal interval
I in Qλ(P),

ch(χI) = ω(FI(x)).

We obtain the following theorem as a corollary.

Theorem 4.7. Let P be a graded poset with a Whitney labeling λ. Then

Fp(x) = ch(χP) = ch(χQλ(P)) = ω(FQλ
(x)).

Idea of the proof. Note that FQλ(P)(x) = ∑I(FI(x)) and that χP = χQλ(P) = ∑I χI , where
the sums are over maximal intervals I of Qλ(P).
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We finish with some structural results concerning the maximal intervals of Qλ(P). A
poset P is called bowtie-free if there does not exist distinct a, b, c, d ∈ P with cl a, dl a,
cl b and dl b. In [5], McNamara showed that a bowtie-free poset P with a 0̂ and a 1̂ has
a local Hn(0)-action with the property that the characteristic of this action is ω(Fp(x))
if and only if P is snellable. Additionally, he showed that if P is a lattice, then P is
supersolvable. Proposition 4.6 then implies the following corollary.

Corollary 4.8. Let P be a graded poset with a Whitney labeling λ. If I is a maximal interval of
Qλ(P) and is bowtie free, then I is snellable. Moreover, if I is a lattice, then I is supersolvable.
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