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From generalized permutahedra to Grothendieck
polynomials via flow polytopes

(extended abstract)
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Abstract. We prove that for permutations 1π′ where π′ is dominant, the Grothendieck
polynomial G1π′(x) has saturated Newton polytope and that the Newton polytope of
each homogeneous component of G1π′(x) is a generalized permutahedron. We connect
these Grothendieck polynomials to generalized permutahedra via a family of dissec-
tions of flow polytopes. We naturally label each simplex in a dissection by an integer
sequence, called a left-degree sequence, and show that the sequences arising from
simplices of a fixed dimension in our dissections of flow polytopes are exactly the in-
teger points of generalized permutahedra. This connection of left-degree sequences
and generalized permutahedra together with the connection of left-degree sequences
and Grothendieck polynomials established in earlier work of Escobar and the first au-
thor reveals a beautiful relation between generalized permutahedra and Grothendieck
polynomials.
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1 Introduction

This extended abstract is based on the paper [12] by the authors. We uncover novel re-
lationships between flow polytopes, generalized permutahedra, and Grothendieck poly-
nomials. The flow polytope FG associated to a directed acyclic graph G is the set of all
flows f : E(G)→ R≥0 of size one. Flow polytopes are fundamental objects in combinato-
rial optimization [15], and in the past decade they were also uncovered in representation
theory [1, 10], the study of the space of diagonal harmonics [6, 11], and the study of
Schubert and Grothendieck polynomials [2, 3]. In this abstract, we summarize the con-
nection between flow polytopes and generalized permutahedra, and we explain how this
connection can be used to prove that for certain permutations, the supports of Schubert
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polynomials as well as the homogeneous components of Grothendieck polynomials are
integer points of generalized permutahedra.

A natural way to analyze a convex polytope is to dissect it into simplices. The re-
lations of the subdivision algebra, developed in a series of papers [8, 9, 7], encode dis-
sections of a family of flow (and root) polytopes (see Section 3 for details). The key to
connecting flow polytopes and generalized permutahedra lies in the study of the dissec-
tions of flow polytopes obtained via the subdivision algebra:

(1) How are the dissections of a flow polytope obtained via the subdivision algebra related to each
other?

In Theorem 3.2, we show that while the dissections themselves are different, their multi-
set of left-degree sequences (Definition 3.1) are the same. That the left-degree sequences
do not depend on the particular dissection was previously proved in special cases by
Escobar and the first author [2], and independently from the authors, Grinberg [5] re-
cently showed it in slightly higher generality for arbitrary graphs in his study of the
subdivision algebra.

Since the left-degree sequences are an invariant of the underlying flow polytope and
do not depend on the choice of dissection, it is natural to ask:

(2) What is the significance of the left-degree sequences associated to a flow polytope FG?

The answer to this question is both inspiring and revealing. In Theorem 4.2, we prove
that left-degree sequences of FG with fixed sums are exactly lattice points of generalized
permutahedra, which were introduced by Postnikov in his beautiful paper [14]. More-
over, we show that the left-degree polynomial LG(t) (Section 3) has saturated Newton
polytope (Section 2.3).

In earlier work of Escobar and the first author [2], it was shown that some left-degree
polynomials are Grothendieck polynomials. This brings us to:

(3) What does the answer to (2) imply about Schubert and Grothendieck polynomials?

In Theorem 4.3, we conclude that for all permutations 1π′ where π′ is dominant, the
Grothendieck polynomial G1π′(x) is a weighted integer-point transform of its Newton
polytope, with all weights nonzero. Moreover, the Newton polytopes of the homoge-
neous components of G1π′(x) are all generalized permutahedra. Theorem 4.3 implies in
particular that the recent conjectures of Monical, Tokcan, and Yong [13, Conjectures 5.1
& 5.5] are true for permutations 1π′, where π′ is a dominant permutation.

The outline of this paper is as follows: Section 2 covers the necessary background on
flow polytopes, Grothendieck polynomials, Newton polytopes, and generalized permu-
tahedra; Section 3 covers the dissection procedure for flow polytopes and the resulting
left-degree sequences; Section 4 describes the relation between left-degree sequences and
Grothendieck polynomials and the consequences.
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2 Preliminaries

In this section we summarize notation and give brief introductions to some of the topics
relevant to the main results.

By a graph, we mean a loopless directed graph where multiple edges are allowed, as
described below. Although we sometimes refer to edges by their endpoints, we keep in
mind that E(G) is a multiset. We also adopt the convention of viewing each element of
a multiset as being distinct, so that we may speak of subsets. For any integers m and n,
we will frequently use the notation [m, n] to refer to the set {m, m + 1, . . . , n} and [n] to
refer to the set [1, n].

2.1 Flow Polytopes

Let G be a loopless graph on vertex set [0, n] with edges directed from smaller to larger
vertices. For each edge e, let in(e) denote the smaller (initial) vertex of e and fin(e) the
larger (final) vertex of e. Imagine fluid moving along the edges of G. At vertex i let there
be an external inflow of fluid ai (outflow of −ai if ai < 0), and call a = (a0, . . . , an) the
netflow vector. Formally, a flow on G with netflow vector a is an assignment f : E(G)→
R≥0 of nonnegative values to each edge such that fluid is conserved at each vertex. That
is, for each vertex i

∑
in(e)=i

f (e)− ∑
fin(e)=i

f (e) = ai.

The flow polytope FG(a) is the collection of all flows on G with netflow vector a.
Alternatively, let MG denote the incidence matrix of G, that is let the columns of MG be
the vectors ei − ej for (i, j) ∈ E(G), i < j, where ei is the (i + 1)-th standard basis vector
in Rn+1. Then,

FG(a) = { f ∈ Rn
≥0 : MG f = a}.

From this perspective, note that the number of integer points in FG(a) is exactly the
number of ways to write a as a nonnegative integral combination of the vectors ei− ej for
edges (i, j) in G, i < j, that is the Kostant partition function KG(a) from representation
theory. For brevity, we write FG := FG(1, 0, . . . , 0,−1), and we refer to FG as the flow
polytope of G.

2.2 Grothendieck Polynomials

Theorem 4.1 provides a beautiful relationship between certain Grothendieck polynomi-
als and degree sequences of graphs. Grothendieck polynomials are an inhomogeneous
analogue of Schubert polynomials that arise in the K-theory of the flag manifold. For w0
the longest permutation in Sn, Gw0 is defined to be

Gw0(x1, . . . , xn−1) = xn−1
1 xn−2

2 · · · xn−1.
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For any permutation w ∈ Sn, the Grothendieck polynomial Gw is defined by

Gw(x1, . . . , xn−1) = ∂i(1− xi+1)Gwsi

whenever w(i) < w(i + 1), where si is the ith adjacent transposition and ∂i is the ith
divided difference operator

∂i( f ) =
f − si f

xi − xi+1

The lowest homogeneous component of the Grothendieck polynomial is the Schubert
polynomial Sw.

2.3 Newton Polytopes and SNP

If f is a multivariable polynomial with variables indexed by some finite set I, the support
of f is the set of integral points in RI consisting of the exponent vectors of the monomials
appearing in f with nonzero coefficient. The Newton polytope Newton( f ) ⊆ RI is the
convex hull of the support of f . Following the definition of [13], we say that a polynomial
f has saturated Newton polytope (SNP) if every integral point in Newton( f ) is a vector
in the support of f . In other words, f has SNP if f is a positively weighted integer-point
transform of its Newton polytope.

In their recent paper [13], Monical, Tokcan, and Yong introduced the idea of SNP
and gave a survey of polynomials with SNP in algebraic combinatorics. They showed
many examples of polynomials with SNP and conjectured numerous others. In Theorem
4.3 and Conjecture 4.4, we refine their conjecture, Conjecture 5.5 in [13], regarding the
Grothendieck polynomials and prove our conjecture in a special case.

2.4 Generalized Permutahedra

Generalized permutahedra are a class of polytopes that tie together left-degree sequences
and Grothendieck polynomials. It was conjectured in [13] that Grothendieck polynomi-
als have SNP, and that the Newton polytope of the Schubert polynomial is a generalized
permutahedron.

The standard permutahedron is the polytope in Rn whose vertices consist of all per-
mutations of the entries of the vector (1, 2, . . . , n). A generalized permutahedron is a
deformation of the standard permutahedron obtained by translating the vertices in such
a way that all edge directions and orientations are preserved (edges are allowed to de-
generate to points). Generalized permutahedra are parametrized by certain collections
of real numbers {zI} indexed by nonempty subsets I ⊆ [n], and have the presentation

Pz
n({zI}) =

{
t ∈ Rn : ∑

i∈I
ti ≥ zI for I 6= [n], and

n

∑
i=1

ti = z[n]

}
.
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Postnikov initiated the study of these fascinating polytopes in [14], and they have since
been studied extensively.

3 Dissections of Flow Polytopes and Degree Sequences

For graphs with a special source and sink, there is a systematic way to dissect the flow
polytope FG̃, studied in [7]. Let G be a graph on [0, n], and define G̃ on [0, n]∪{s, t} with
s being the smallest vertex and t the biggest vertex by setting E(G̃) = E(G)∪{(s, i), (i, t) :
i ∈ [0, n]}. The systematic dissections can be expressed algebraically in the language of
the subdivision algebra [8, 9] or combinatorially in terms of reduction trees [7, 12]. We
use the language of reduction trees in this abstract.

Let G0 be a graph on [0, n] with edges (i, j) and (j, k) for some i < j < k. By a
reduction on G, we mean the construction of three new graphs G1, G2 and G3 on [0, n]
given by:

E(G1) = E(G)\{(j, k)} ∪ {(i, k)}
E(G2) = E(G)\{(i, j)} ∪ {(i, k)} (3.1)
E(G3) = E(G)\{(i, j), (j, k)} ∪ {(i, k)}

We say that the above reduction is at vertex j, on the edges (i, j) and (j, k). Up to integral
equivalence, the flow polytopes FG̃1

and FG̃2
subdivide FG̃0

and intersect in FG̃3
, which

is a facet of both.
Iterating this subdivision process produces a dissection of FG̃0

into simplices. This
process can be encoded using a reduction tree. A reduction tree of G is constructed as
follows. Let the root node of the tree be labeled by G. If a node has any children, then
it has three children obtained by performing a reduction on that node and labeling the
children with the graphs defined in (3.1). Continue this process until the graphs labeling
the leaves of the tree cannot be reduced. See Figure 1 for an example.

Given a reduction tree R(G) of G, the leaves L with the same number of edges as
G label the full-dimensional simplices in the dissection, and the rest of the leaves label
intersections of these simplices. Due to the choices inherent in building the reduction tree
however, the actual leaves are dependent on the particular reduction tree constructed.

One way to get around this problem is the following: to each leaf L in R(G) associate
a sequence (a1, a2, . . . , an) where ai is the number of edges in L incoming to vertex i,
called a left-degree sequence.

Definition 3.1. Denote by LD(G) the multiset of left-degree sequences of leaves in a reduction
tree of G.

This multiset is surprisingly well-defined, as the following theorem states.
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1 3 0 4 0 3

Figure 1: A reduction tree for a graph on three vertices. The edges involved in each
reduction are shown in bold. The left-degree sequences of the leaves are shown in
blue.

Theorem 3.2 ([12], Theorem A; [5], Theorem 1.7). For any graph G on [0, n] the multiset of
left-degree sequences LD(G) in any reduction tree of G is independent of the choice of reduction
tree.

This result was also found independently of the authors by Grinberg [5] in a more
general context using the subdivision algebra. In [12, Theorem A] the authors of this
abstract prove a more involved result than Theorem 3.2, which also includes a useful
technical characterization of left-degree sequences.

4 Left-Degree Sequences and Grothendieck Polynomials

To relate LD(G) (Definition 3.1) to polynomials, we encode the left-degree sequences of
a graph in a polynomial LG, called the left-degree polynomial and defined by

LG(t1, . . . , tn) = ∑
a∈LD(G)

(−1)codim(a)ta1
1 ta2

2 · · · t
an
n

where codim(a) = #E(G)− a1 − · · · an is the codimension of the simplex indexed by a
in any dissection of FG̃.

The motivation for defining LG this way is the following crucial result, which ties
together Grothendieck polynomials and degree sequences. Recall that a permutation w
is dominant if there do not exist integers i < j < k with w(i) < w(k) < w(j).
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Theorem 4.1 ([2], Theorem 5.3). Let π ∈ Sn+1 be of the form π = 1π′ where π′ is a dominant
permutation of {2, 3, . . . n + 1}. Then, there is a tree T(π) and nonnegative integers gi = gi(π)
such that

R̃T(π)(t) =

(
n

∏
i=1

tgi
i

)
Gπ−1(t−1

1 , . . . , t−1
n ).

where R̃G is the reduced right-degree polynomial of a graph G.

A few technical remarks are in order due to the different conventions of [2]. Right-
degree sequences of a graph are defined exactly like left-degree sequences except that
they count outgoing edges instead of incoming edges. The associated multiset RD(G)
and polynomial RG are defined analogously to their left-degree counterparts, and enjoy
the same properties. In fact, up to a flipping and relabeling operation on graphs, right-
degree and left-degree sequences are the same. The reduced right degree polynomial
R̃G is a particular relabeling of RG, see [2] for details.

This result shows that the Newton polytopes of certain Grothendieck polynomials are
isomorphic to the Newton polytopes of certain left-degree polynomials. Consequently,
any results about the Newton polytopes of left-degree polynomials translate into results
about the Newton polytopes of this family of Grothendieck polynomials.

In particular, if Lk
G(t) denotes the degree #E(G) − k homogeneous component of

LG(t), then we have the following result.

Theorem 4.2 ([12], Theorem B). Each integer point point of Newton(LG(t)) is a left-degree
sequence, so LG has SNP. Moreover, for each k ≥ 0 there exist numbers {z(k)I } such that
Newton(Lk

G(t)) is the generalized permutahedron

Newton(Lk
G(t)) = Pz

n{z
(k)
I }I⊆[n].

Furthermore, each integer point of Pz
n{z

(k)
I } is a left-degree sequence, so Newton(LG,F(t)) has

SNP.

Thus, applying Theorem 4.1 proves:

Theorem 4.3. Let π ∈ Sn+1 be of the form π = 1π′ where π′ is a dominant permutation of
{2, 3, . . . n + 1}. Then the Grothendieck polynomial Gπ has SNP and the Newton polytope of
each homogeneous component of Gπ is a generalized permutahedron. In particular, the Schubert
polynomial Sπ has SNP and Newton(Sπ) is a generalized permutahedron.

Theorem 4.3 implies that several recent conjectures of Monical, Tokcan, and Yong [13,
Conjecture 5.1 & 5.5] are true for permutations of the form 1π′, where π′ is a dominant
permutation. The following conjecture, discovered jointly with Alex Fink, is a strength-
ening of [13, Conjecture 5.5]. We have tested it for all w ∈ Sn, for n ≤ 8. It has recently
been proven in the case of Grassmannian permutations in [4] by Escobar and Yong.

Conjecture 4.4. For each w ∈ Sn, the Grothendieck polynomial Gw has SNP and the Newton
polytope of each homogeneous component of Gw is a generalized permutahedron.
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