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Abstract. In this paper we explore the combinatorial structure of dual equivalence
graphs Gλ. The vertices are Standard Young tableaux of a fixed shape λ that allows
us to further understand the combinatorial structure of Gλ, and the edges are given by
dual Knuth equivalences. The graph Gλ is the 1-skeleton of a cubical complex Cλ, and
one can ask whether the cubical complex is CAT(0); this is a desirable metric property
that allows us to describe the combinatorial structure of Gλ very explicitly. We prove
that Cλ is CAT(0) if and only if λ is a hook.
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1 Introduction

Dual equivalence graphs are rooted in the exploration of Hall–Littlewood polynomials,
Macdonald polynomials, and Schur positivity [4, 7, 8, 15]. More recently, dual equiv-
alence graphs have been used to generalize these polynomials [4, 9, 10]. Much of the
graphical structure of dual equivalence graphs has been explored. We wish to expand on
this knowledge by providing a geometric description of these graphs as the 1-skeleton
of a cubical complex.

The theory of reconfigurable systems and transition graphs have been used to analyze
the space of potential states a particular object can take. Considering the 1-skeleton of a
transition graph as a cubical complex, one may ask if the metric property called CAT(0)
holds. This allows for questions of optimization, computational complexity, and feasible
state spaces to be addressed. In their seminal work, Abrams–Ghrist [1] developed this
theory and gave a path-optimizing algorithm with respect to time from one robot state
to another. Building on this work, Ardila–Baker–Yatchak [2] showed how to find the
optimal path between any two robotic arm states with respect to distance, number of
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moves, number of steps of simultaneous moves, as well as time. Furthermore, Billera–
Holmes–Vogtmann [5] used this theory to determine classes of comparable phylogenetic
trees.

A purely combinatorial characterization of CAT(0) cubical complexes was introduced
by Ardila–Owen–Sullivant who gave a bijection between these complexes and posets
with inconsistent pairs [3]. This description provides combinatorial motivation for seek-
ing the CAT(0) property of cubical complexes of various objects, in addition to the tradi-
tional questions outlined above.

In this paper we take a new perspective regarding Gλ as the 1-skeleton of a cubical
complex, Cλ. We analyze whether Cλ has the CAT(0) property and shed light on the
combinatorics of dual equivalence graphs.

This paper is organized as follows. Section 2 provides necessary background, Section
3 reviews cubical complexes and the CAT(0) property in terms of posets with inconsis-
tent pairs, and Section 4 presents our main results.

2 Background

For the remainder of this paper we assume all permutations are presented in one line
notation.

Standard Young tableaux

Denote the partition λ = (λ1, λ2, . . . , λk) of n as λ ` n, where λ1 ≥ λ2 ≥ · · · ≥ λk
and |λ| = ∑k

i=1 λi = n.

Definition 2.1. The Ferrers diagram, or shape, of λ is an array of n boxes having k left-
justified rows with row i containing λi boxes for 1 ≤ i ≤ k. A standard Young tableau, SYT,
is a Ferrers diagram where the boxes are filled with elements from [n] such that no element is
repeated and rows and columns are strictly increasing.

Example 2.2. Let λ ` 8 be the partition λ = (4, 2, 1, 1). Then a SYT Q of shape λ is

1 3 4 6
2 7
5
8

.

The row reading word of Q, denoted rw(Q), is the permutation πQ formed by reading
the entries, row by row, of a SYT Q from bottom to top and left to right. Note that the
row reading word of a SYT is a permutation.

The (descent) signature of a permutation π, denoted sig(π), is a sequence of +’s and
−’s such that position i is a + if and only if i comes before i + 1 in π, and − otherwise.
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As in [4], we extend this definition to tableau so that the signature of a SYT Q is sig(Q) =
sig(πQ).

The row reading word and signature of example 2.2 are πQ = rw(Q) = 85271346
and sig(Q) = −++−+−−.

Dual Knuth equivalence

Dual Knuth equivalence, introduced by Haiman [7], may be defined as the following
function on permutations.

Definition 2.3. A dual Knuth equivalence, denoted di, is a function that reorders the values
i− 1, i and i + 1 in a permutation of Sn. Explicitly, the function di acts in the following way:

di(· · · i · · · i− 1 · · · i + 1 · · · ) = (· · · i + 1 · · · i− 1 · · · i · · · ),
di(· · · i · · · i + 1 · · · i− 1 · · · ) = (· · · i− 1 · · · i + 1 · · · i · · · ),

or it leaves the permutation unchanged if i is between i − 1 and i + 1. Two permutations are
dual equivalent if a sequence of dual Knuth equivalences transforms one into the other.

It is not hard to check that the dual Knuth relations form an equivalence relation on
Sn.

Example 2.4. The non-trivial dual Knuth equivalence classes for S4.

1243
d3∼= 1342

d2∼= 2341 2314
d2∼= 1324

d3∼= 1423 1432
d2∼= 2431

d3∼= 3421
3241

d3∼= 4231
d2∼= 4132 2134

d2∼= 3124
d3∼= 4123 3214

d2 , d3∼= 4213
2413

d2 , d3∼= 3412 2143
d2 , d3∼= 3142

We would like to note that dual Knuth equivalence is related to the well-known Knuth
equivalence, an equivalence among permutations defined by swaps performed on values
of the permutation. More precisely, the permutations π and σ are dual equivalent if and
only if π−1 and σ−1 are Knuth equivalent. Another characterization of dual equivalence
is in terms of SYT. The Robinson–Schensted correspondence bijectively assigns to each
permutation π a pair of SYT (P(π), Q(π)) of the same shape λ. Two permutations are
dual equivalent if they map to the same Q tableau under the RS algorithm [8, 11, 14].

Dual equivalence can also be performed on entries of SYT Q by applying di to the row
word of Q. Thus, the equivalence relation passes to the SYT, as stated in the following
theorem.

Theorem 2.5 ([7, Proposition 2.4]). Two SYT on partition shapes λ and τ are dual equivalent
if and only if λ = τ.
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Furthermore, by [7, Lemma 2.3] dual equivalence acts on SYT nicely,

di(Q(π)) = Q(di(π)),

which will be useful in the proof of our main theorem.

Dual equivalence graphs

We now define dual equivalence graphs, first introduced by Assaf [4] and recently
extended by Roberts [9, 10].

Definition 2.6. For a given λ ` n, the dual equivalence graph is a graph Gλ whose vertices
are the set of SYT of shape λ. Each vertex is labeled by the associated tableau signature and an
edge labeled i exists between dual equivalent tableaux Q and Q

′
such that di(Q) = Q

′
.

Example 2.7. All dual equivalence graphs for partitions of n = 4.

1
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4

���

1 2
3 4

+ � +

1 3
2 4

� + �
1 2 3 4

+ + +

1 2
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2
4

� + �

1 4
2
3

�� +

1 2 3
4

+ + �

1 2 4
3

+ � +

1 3 4
2

+ + �

1

3
3

2
2

2, 3

3 CAT(0) Cubical Complexes and Posets with Inconsistent
Pairs

Informally, a reconfigurable system is a collection of states with a set of reversible moves
that are used to navigate from one state to another. These moves are tethered to partic-
ular states and can only be used to traverse back and forth between them. Moves are
commutative if they are physically independent of one another, and thus can be done
simultaneously. The notion of reconfigurable system is formalized in [1, 6].

Definition 3.1 ([1, 6]). A cubical complex X is a polyhedral complex formed by joining cubes
of various dimensions such that the intersection of any two cubes is a face of both.
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Definition 3.2. In this paper we consider a certain cubical complex associated to dual equivalence
graphs. Define Cλ to be the cubical complex whose 1-skeleton is the dual equivalence graph Gλ

for a given λ.

Definition 3.3. The state complex S(R) of a reconfigurable system R is a cubical complex
whose vertices correspond to the states of R. There is an edge between two states if they differ by
an application of a single move. The k-cubes are associated to k-tuples of commutative moves.

Remark 3.4. The 1-skeleton of S(R) is the transition graph T (R), a graph whose ver-
tices are the states of the system and whose edges correspond to the permissible moves
between them.

Definition 3.5. A metric space X is said to be CAT(0) if:

• there is a unique geodesic (shortest) path between any two points in X, and

• X has non-positive global curvature.

The second property of being CAT(0) can be described as follows. Let X be a metric
space with a unique geodesic (shortest) path between any two points. Consider a triangle
T in X with side lengths a, b, and c, and construct a comparison triangle T′ with the same
lengths in Euclidean space. If every chord in the comparison triangle T′ is of equal or
greater length than the corresponding chord in T (in Figure 1, |xy| ≤ |x′y′|), for every
triangle T in X, then we say that X is CAT(0).

x x’ 

y y’ 

a 

b 

c 

a 

b 

c 

T T′

Figure 1: The CAT(0) property: X has non-positive global curvature.

There are several characterizations of being CAT(0). Combinatorial descriptions were
introduced by Sageev [13] and Roller [12]. We utilize a similar, but more compact char-
acterization given by Ardila–Owen–Sullivant [3] in terms of partially ordered sets with
inconsistent pairs (PIPs).
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Definition 3.6. If X is a CAT(0) cubical complex and v is any vertex of X, then (X, v) is a
rooted CAT(0) cubical complex rooted at v. This can be thought of as identifying a home state
if the cubical complex is a state complex.

Definition 3.7. A poset with inconsistent pairs (PIP) is a locally finite poset P of finite width,
together with a collection of inconsistent pairs {p, q}, such that:

• If p and q are inconsistent, then there is no r such that r ≥ p and r ≥ q.

• If p and q are inconsistent and p′ ≥ p and q′ ≥ q, then p′ and q′ are inconsistent.

The corresponding Hasse diagram of a PIP is constructed by taking the poset and
appending a dotted line between minimal inconsistent pairs. An order ideal of P is a
subset I of P such that if a ≤ b and b ∈ I then a ∈ I. A consistent order ideal is an order
ideal that contains no inconsistent pairs. An antichain is a collection of elements in the
poset such that any pair of these elements is incomparable.

We provide the following definition which describes the relationship between PIPs
and cubical complexes.

Definition 3.8. If P is a poset with inconsistent pairs, we construct the cube complex of P, which
we denote X(P). The vertices of X(P) are identified with the consistent order ideals of P. There
will be a cube C(I, M) for each pair (I, M) of a consistent order ideal I and a subset M ⊂ Imax,
where Imax is the set of maximal elements of I. This cube has dimension |M|, and its vertices are
obtained by removing from I the 2|M| possible subsets of M. The cubes are naturally glued along
their faces according to their labels.

Remark 3.9. When P has no inconsistent pairs, this is precisely the bijection between
posets P and distributive lattices J(P) = L. To recover P from L = J(P), we consider the
poset of join-irreducibles of L.

See Figure 3 for an example a cubical complex X(P) and the associated PIP P.

Theorem 3.10 ([3]). The map P → X(P) is a bijection between posets with inconsistent pairs
and rooted CAT(0) cube complexes.

Theorem 3.10 provides a method of proving a cubical complex has the desirable
CAT(0) property, namely, by constructing the associated PIP after choosing a root for the
cubical complex.

4 CAT(0) Dual Equivalence Graphs

In this section we will prove that the only tableau whose dual equivalence graph Gλ is
the 1-skeleton of a CAT(0) cubical complex is the hook, namely for λ = (n− k, 1k). We
will also show that when λ contains (2, 2) then the cubical complex Cλ is not CAT(0).
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Definition 4.1. Define a hook to be a partition of the form (n− k, 1k).

Note that we need only consider hooks λ = (n− k, 1k) for k ≤ bn
2 c since conjugate

partitions produce isomorphic equivalence graphs, as stated in the following proposi-
tion.

Proposition 4.2 ([4]). Given partition λ and its conjugate λ′, then

Gλ
∼= Gλ′ .

We first establish that if λ contains shape (2, 2) then the cubical complex Cλ, whose
1-skeleton is Gλ, is not CAT(0).
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Figure 2: Dual equivalence graph of λ = (3, 1, 1, 1).
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Theorem 4.3. Let the shape λ contain (2, 2). Then Cλ is not a CAT(0) cubical complex.

Proof. Assume the shape λ contains (2, 2). By definition, Gλ will have a vertex labeled
with a SYT Q whose row word is of the form π = . . . 3412 . . . . This means Gλ will have
a double edge connecting the vertices π = . . . 3412 . . . and π

′
= . . . 2413 . . . because

d2(π) = d3(π) = π
′
. Note these dual equivalences are dependent and therefore do not

commute. This implies the edges form a hole and so there are two shortest geodesics
between π and π′. Thus Cλ is not a space with unique geodesics, and therefore cannot
be CAT(0).

As noted earlier, dual equivalence on SYT and their row words translates nicely. It is
particularly nice when SYT Q is a hook shape. The action of di(Q) literally swaps entries
i − 1, i, and i + 1 in Q. The signature of Q is similarly affected. The function di swaps
signs of entries i − 1 and i, i.e. +− becomes −+. See Figure 2 to see how successive
applications of di effectively pushes + to the right or left of the signatures.

Theorem 4.4. When λ is a hook, then Cλ is a CAT(0) cubical complex.

Proof. We begin by describing the vertex labels of Gλ in terms of SYT and signatures.
Our goal is to provide a new, simpler vertex-edge labeling of Gλ. Since any Q in Gλ

is a hook, then rw(Q) = w1w2 . . . wk1wk+2 . . . wn where w1 > w2 > · · · > wk and
1 < wk+2 < · · · < wn. This implies the only valid dual Knuth operation for any Q is of
the form

di(· · · i · · · i− 1 · · · i + 1 · · · ) = (· · · i + 1 · · · i− 1 · · · i · · · ).
Moreover, this means a dual Knuth move di on any tableaux Q of Gλ will also swap
the signs of sig(Q) in positions i− 1 and i. For example, consider the SYT Q such that
rw(Q) = n, n + 1, . . . , n − k + 1, 1, 2, . . . , n − k. The associated signature is sig(Q) =
++ · · ·+−− · · · −, where the first k− 1 positions are + and it has length n− 1. Then
compositions of dual Knuth functions applied to Q effectively push the +’s of sig(Q) to
the right.

Since Gλ is uniquely determined by either the tableau or signature labeling, we shall
consider only the signatures. We now describe the edges of the graph in terms of the
signatures. There is an edge between two signatures when they differ by sign in a pair of
adjacent opposite signed positions. As noted above, a dual Knuth operation on a tableau
swaps the signs of a pair of adjacent opposite signed entries. Thus, we can introduce
a new edge labeling in terms of signatures. An edge is labeled i when positions i − 1
and i change signs between adjacent signatures. See Figure 2 for an example of this
vertex-edge labeling.

Next we define a poset structure Lλ on the vertices of Gλ and prove it is a distributive
lattice. The signature labeling of Gλ produces a natural component-wise ordering on its
vertices, where − < +. For signatures s = (i1, i2, . . . , in−1) and s′ = (j1, j2, . . . , jn−1) in
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Lλ, we say s ≤Lλ
s′ if and only if ir < jr for the first r where s and s′ differ. Define the

function max: Lt
λ → Lλ to be the component-wise maximum. Define the function min

similarly. Since Lλ is finite, then max and min are well defined. Moreover, since max
and min are distributive on each component, it follows that they are distributive on Lλ

as well. Thus, (Lλ,≤Lλ
) is a distributive lattice.

By Birkhoff’s representation theorem [16] there exists a poset of order ideals isomor-
phic to Lλ. We now construct the poset Pλ such that Lλ

∼= J(Pλ). We construct Pλ by
describing the join-irreducible elements of Lλ. The order on Pλ will follow from the
component-wise order on Lλ.

We now describe the cubical complex, Cλ, whose 1-skeleton is Gλ. The vertices of Cλ

are labeled by signatures of SYT of shape λ. Consider the following edge labeling of Cλ.
The edge between signatures s′ and s is labeled di(j) to indicate that s′ and s differ by
the jth + in either position i − 1 or i. Another way to read this is di(j)(s′) = s means
signature s is produced by pushing the jth + of s′, which is in position i− 1, to position i
and putting a − in position i− 1. As these edges correspond to dual Knuth moves in Gλ,
we will refer to the label di(j) as a move. See Figure 3(b) for an example of this labeling.
Since λ is a hook, there are no double edges in Cλ so this labeling is well defined.

The join-irreducible elements of Lλ are those that have a unique cover relation. For
a signature this means there is only one pair of adjacent positions of opposite sign that
can be toggled to produce a signature still in Lλ. When s has a unique cover relation, we
identify it with the move di(j). Define Pλ to be the set of moves di(j) associated with the
join-irreducible elements s ∈ Lλ with the order induced by Lλ. By construction,

di(j) ∈ Pλ for 2 ≤ i ≤ n− 1 and 1 ≤ j ≤ k− 1,

where 1 ≤ i− j ≤ k. It follows from the component-wise order on Lλ that the order on
Pλ is di(j) ≤Pλ

da(b) if either b < j and i− 1 ≤ a, or b = j and i ≤ a. Thus Pλ is just the
product of two chains (k)× (n− k− 1). Therefore

Lλ
∼= J((k)× (n− k− 1)).

We will now regard Pλ as a PIP with no inconsistent pairs. We will show that the
CAT(0) cubical complex X(Pλ) from Definition 3.8 is isomorphic to the cubical complex
Cλ rooted at signature s = ++ · · ·+−− · · · −, where s has length n− 1 and the first
k − 1 positions are +. To do this we will first describe explicitly the bijection between
the vertices of X(Pλ) and those of Cλ which follows directly from Birkhoff’s theorem.
In particular, the order ideal I generated by the set of moves {di(j)} corresponds to
the following signature s(I). The a-th entry of s(I) is determined by the move that is
maximal among all moves in I, in position a. For example, consider Pλ as in Figure 3(b).
The ideal generated by {d3(1)} is I = {d3(2), d4(2), d2(1), d3(1)}. Move d3(1) is maximal
among all di(1) ∈ I and d4(2) is maximal among all di(2) ∈ I. Thus, the corresponding
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vertex in Cλ is the signature s(I) = (− − + + −). Similarly, I = {d2(1), d3(2), d4(2)}
gives s(I) = (−+−+−).

To complete the proof, we give an explicit bijection between m-dimensional cubes
of X(Pλ) and m-dimensional cubes of Cλ. By Definition 3.8, this equates to giving a
bijection between a set of subideals of a consistent ideal of Pλ and a set of vertices that
form a m-cube in Cλ. Since all ideals of Pλ are consistent, consider any I ∈ X(Pλ). We
know I corresponds to a vertex s(I) = (i1, i2, . . . , in−1) of Cλ. Let M be the set of moves
determined by the entries of s(I). For example, for I = {d2(1), d3(2), d4(2)}, we have
s(I) = (−+−+−) and M = {d2(1), d4(2)}. Then I is equal to the ideal generated by
M.

Let Mmax = Imax and m = |Mmax|. Then vertices of a m-cube in X(Pλ) are obtained
by removing from I the 2m possible subsets of Mmax. For M′ ⊂ Mmax, removing M′

from I corresponds to changing the signs of entries s(I) in positions i − 1, i for every
di(j) ∈ M′. So the set of 2m subsets of I obtained by removing subsets M′ corresponds to
the set of 2m vertices of Cλ achieved by changing signs of signature s(I) in all positions
determined by M′. This completes the bijection and concludes the proof.

Theorems 4.3 and 4.4 can be combined and restated in the following theorem.

Theorem 4.5. The cubical complex Cλ, whose 1-skeleton is the dual equivalence graph Gλ, is a
CAT(0) cubical complex if and only if λ is a hook.

We have shown the CAT(0) property holds only for cubical complexes associated with
dual equivalence graphs for hook shape tableaux. Still, one may hope for something
to be said about cubical complexes arising from non-hook tableaux dual equivalence
graphs. Two further directions one may take are the following.

There is a notion of restricting Gλ to subgraphs whose labeled edges are in a positive
interval I. One can explore whether there are intervals that produce meaningful sub-
graphs without double edges. This would be the first indication that a CAT(0) property
may hold for cubical complexes arising from subgraphs of dual equivalence graphs of
any tableau shape.

A definition of dual equivalence graphs exists for skew tableaux. Perhaps the CAT(0)
property can be extended to the dual equivalence graphs of certain skew tableaux. One
can examine the graphs of skew tableaux in search of the appropriate analogue of hooks.
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