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Abstract. Let G = GLN and V be its N-dimensional defining representation. Given
a module M for the algebra of quantum differential operators on G, and a positive
integer n, we may equip the space Fn(M) of invariant tensors in V⊗n ⊗ M, with an
action of the double affine Hecke algebra of type GLn.

In this paper we take M to be the basic module, i.e. the quantized coordinate algebra
M = Oq(G). We describe a weight basis for Fn(Oq(G)) combinatorially in terms of
walks in the type A weight lattice; these are equivalent to standard periodic tableaux,
and subsequently we identify Fn(Oq(G)) with the irreducible “rectangular representa-
tion” of height N of the double affine Hecke algebra.

Keywords: Cherednik algebras, representation theory, quantum differential algebra

1 Introduction

Classic Schur–Weyl duality involves commuting actions of GLN and the symmetric
group Sn on V⊗n where V = CN is the defining representation of GLN. Under this du-
ality, the GLN-invariants yield the N× k rectangular representation of Sn when n = kN.
In this paper Sn is replaced by the double affine Hecke algebra (DAHA) and GLN is
replaced by the algebra of quantum differential operators Dq(GLN). These two algebras
have commuting actions on the invariants in V⊗n ⊗M, where M is a Dq(GLN)-module.
We show that in the case M is the “basic” Dq(GLN)-module that this yields the rectangu-
lar representation of the DAHA. This duality is very useful, as the representation theory
of the DAHA is well-understood in terms of type A algebraic combinatorics, while the
representation theory of Dq(GLN) is much less well-understood.

Throughout the paper, G = GLN, g = glN, n = kN. Associated to the quantum group
Uq(g) is the quantized coordinate algebra Oq(G) and the algebra of quantum differential
operators Dq(G). Dq(G) is a q-deformation of the algebra D(G) of differential operators
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on G. M = Oq(G) is naturally Dq(G)-module, which we call the basic Dq(G)-module.
We show Fn(M) := (V⊗n ⊗ M)inv is the rectangular representation of the DAHA. See
[7] for more details. We do so by restricting Fn(M) to the commutative subalgebra Y of
the DAHA and analyzing its Y-weights, which has a lovely combinatorial description
naturally encoded by standard periodic tableaux. The theory of Y-semisimple DAHA
representations then determines the isomorphism type of Fn(M).

2 Combinatorics in type A: lattice walks & skew tableaux

We fix positive integers N, k and n = kN throughout the paper (except for in specific
examples), and G = GLN, g = glN. V is the N-dimensional defining representation
V = Vε1 of g (or more precisely of Uq(g)).

2.1 The GLN weight lattice

Consider RN, with standard basis, E = {εi | i = 1, . . . , N} and symmetric form 〈 , 〉 with
respect to which E is an orthonormal basis. The weight lattice of g is

Λ =
N⊕

i=1

Zεi = ZN.

Elements of Λ are called integral weights. The dominant integral weights are

Λ+ = {m1ε1 + · · ·+ mNεN | mi ∈ Z, m1 ≥ · · · ≥ mN}.

We remark that E are the weights of V. Let us denote d := ε1 + ε2 + · · ·+ εN.
We introduce a special weight ρ given by

ρ =
1
2
((N − 1)ε1 + (N − 3)ε2 + (N − 5)ε3 + · · ·+ (1− N)εN).

Observe 2ρ ∈ Λ+, although ρ might not be depending on the parity of N.

Definition 2.1. Given a dominant integral weight λ = ∑i miεi ∈ Λ+ we denote by YD(λ)
the diagram (or integer partition) with fewer than N parts,

YD(λ) = (m1 −mN, m2 −mN, . . . , mN−1 −mN, 0).

We will call the diagonal through the upper left box of YD(λ) the principal diagonal,
and we decree that this diagonal is labelled with mN. The other diagonals are labelled
consecutively, so that the next diagonal to the right is labelled mN + 1, etc. Equivalently,
we can say that the upper left box is in row 1 and column mN + 1, and then the diagonal
is the column number minus the row number.
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Note the diagram YD(λ+ rd) is that of YD(λ) shifted r units right, and so its diagonal
labels are incremented +r. Hence, although we draw the same diagram for λ as well as
λ + rd, they are distinguished by their diagonal labels.

Given λ = ∑i miεi, its dual weight is λ∗ := ∑i−miεN+1−i. Observe therefore that if
one takes YD(λ∗) and rotates it 180 degrees, then it is the complement to YD(λ) in a
N × (m1 −mN) rectangle. See Figure 1.

Let us describe the diagonal labels in terms of the inner product on Λ. Consider λ as
compared to λ + εi. The diagram has one extra box and we claim the diagonal of that
box is labeled 〈λ, εi〉 + 1− i = 〈λ + εi, εi〉 − i. The new box in the ith row. Note that
mi = 〈λ, εi〉. The ith row of YD(λ) has length mi −mN, which is to say it ends mi −mN
units to the right of the leftmost column, so the new box is in column mi + 1, and thus
the mi + 1− i diagonal. The diagonal label of the new box is thus

mi + 1− i = 〈λ, εi〉+ 〈ρ, εi〉 − 〈ρ, ε1〉. (2.1)

2.2 Walks on the weight lattice

Definition 2.2. A walk in Λ+ of length n, from weight λ to weight µ is a finite sequence,

u = (λ = u0, u1, . . . , un = µ),

where each ui ∈ Λ+, and each difference ui − ui−1 lies in E . We denote by δi(u) the
index of ui − ui−1 ∈ E , so that ui − ui−1 = εδi(u).

Definition 2.3. A walk in Λ+ of length n which begins at λ and ends at λ + kd is called
a looped walk at λ. We denote byWN,k

λ the set of all looped walks at λ of length n = kN.

Note that the multiset {εδi(u) | 1 ≤ i ≤ n} of steps taken on any looped walk u
consists of E with multiplicity k = n/N. See Figure 2 for an example of a looped walk.

2.3 Skew tableaux

We shall now recall an alternative combinatorial description of WN,k
λ in terms of skew

tableaux. We first associate to a weight λ ∈ Λ+ a skew diagram

DN,k
λ = (YD(λ) + (kN))/ YD(λ).

Equivalently we may obtain DN,k
λ by removing YD(λ) from the upper left, and YD(λ∗),

rotated 180 degrees, from the lower right, of the N× (k+m1−mN) rectangular diagram.
See Figure 1. The skew diagram DN,k

λ inherits diagonal labels from YD(λ) as well as
choice of principal diagonal.

Recall that a standard tableau on a (skew) diagram with n boxes is a filling of its
boxes with {1, 2, . . . , n} such that entries increase across rows and down columns.
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λ

λ∗

λ

λ∗

Figure 1: The skew diagram D7,2
λ in the case N = 7, k = 2, n = 14.

Definition 2.4. Given a weight λ ∈ Λ+, we denote by SKN,k
λ the set of all standard

tableaux on the diagonal-labeled skew shape DN,k
λ .

λ

λ + 2d

ε1

ε2

2 3
1 4

Figure 2: A looped walk u at λ = ε1 of length 4 and the skew tableau T ab(u) with the
dashed line indicating the principal diagonal, which here is labeled 0.

Definition 2.5. Define the map T ab : WN,k
λ → SKN,k

λ from length n = kN looped walks
at λ ∈ Λ+ to standard skew tableaux of shape DN,k

λ as follows: for each i = 1, . . . , n fill
the leftmost vacant box in the δi(u)-th row of DN,k

λ with the symbol i.

Proposition 2.6 ([9]). The map T ab :WN,k
λ

∼−→ SKN,k
λ is a bijection.

Example 2.7. The looped walk in Figure 2 is u = (λ, λ + ε2, λ + ε2 + ε1, λ + ε2 + ε1 +
ε1, λ+ ε2 + ε1 + ε1 + ε2 = λ), and so the sequence (δ1(u), δ2(u), δ3(u), δ4(u)) = (2, 1, 1, 2).
Compare this to the skew tableau T = T ab(u) which places 2 and 3 in the first row, 1
and 4 in the second row.

2.4 Periodic tableaux

For the rectangular shape µ = (kN), we extend it to a “periodic diagram” ∪r∈Zµ[r] which
coincides with the N ×∞ strip as in Figure 3. In terms of coordinates µ[r] = µ + r(0, k).

We always consider the fundamental domain µ[0] to be anchored on the 0-diagonal,
and so extend our diagonal labeling.
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µ[0]µ[−1] µ[1] µ[2]

Figure 3: The diagram µ = (23) is made periodic by shifting horizontally.

Definition 2.8. Let n = kN. An n-periodic standard tableaux of shape µ = (kN) is a
bijection R : Z→ {boxes of N ×∞ strip} such that:

• fillings increase across rows and down columns,
• the fillings of µ[0] are distinct mod n,
• the fillings of µ[r] are those of µ[0] +nr.

We will denote the set of all such tableaux PnSYT(kN).

An R ∈ PnSYT(kN) is completely determined by the fillings of µ[0], see Figure 4.
(However it may happen that the filling of µ[0] is row- and column-increasing, but its
periodization is not standard.) Observe that DN,k

λ is also a fundamental domain of the pe-
riodization of µ = (kN). Similarly, “periodizing” a standard skew tableau in T ∈ SKN,k

λ
(i.e., filling in the rest of the entries according to the periodicity constraint) yields a well-
defined standard periodic tableau in PnSYT(kN), as soon as we specify the compatibility
with the diagonal labelling. In other words, since the filling of T is {1, . . . , n} it is easy
to see its periodization is standard. This shows the map Per below is well-defined.

Definition 2.9. The periodization map,

Per :
⊔

λ∈Λ+

SKN,k
λ → PnSYT(kN) (2.2)

sends T to the unique periodic tableau in PnSYT(kN) agreeing with T in the fundamen-
tal domain of shape DN,k

λ located along the N ×∞ strip so that diagonal labels coincide.

See Figure 4. In that example, note the skew tableaux are only differentiated by their
diagonal labels and likewise for the periodic tableaux.

Proposition 2.10. The map Per is a bijection.

Definition 2.11. Given R ∈ PnSYT(kN), let diagR : Z→ Z be the map such that diagR(i)
is the label of the diagonal on which i lies.

Note diagR(i + n) = diagR(i + kN) = diagR(i) + k.

Definition 2.12. The weight wt(R) ∈ (K×)n of R ∈ SYT(kN) or of R ∈ PnSYT(kN), is the
tuple,

wt(R) =
(

t2diagR(1), t2diagR(2), . . . , t2diagR(n)
)
=: t(2diagR(1),2diagR(2),...,2diagR(n)).
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λ T ∈ SKN,k
λ

Per(T ) wt(Per(T ))(
1
0

)
(t2, t4, t−2, t0)

1 2
3 4

0
−6−3−2 1 2 5 6
−1 0 3 4 7 8 11

0

(
0
−1

)
(t0, t2, t−4, t−2)

1 2
3 4

−1
−3−2 1 2 5 6 9
0 3 4 7 8 11 12

0

(
2
1

)
(t4, t6, t0, t2)

1 2
3 4

1
−7−6−3−2 1 2 5
−4−1 0 3 4 7 8

0

Figure 4: Here N = 2, k = 2. The principal diagonal is marked red. The fundamental
rectangle of Per(T ) is chosen so that the 0th diagonal matches that of T ∈ SKN,k

λ .

3 The rectangular representation of the DAHA

The key result of this section is Theorem 3.7.
Let K denote a field of characteristic zero, and let q, t ∈ K×, and assume neither q

nor t is a root of unity. Typical instances are K = C, C(t), or C(q, t).

Definition 3.1. The extended affine symmetric group is1

Ŝn =

〈
π, si, i ∈ Z/nZ

∣∣∣
sisi+1si = si+1sisi+1 for i ∈ Z/nZ,
sisj = sjsi for j 6≡ i± 1 mod n,
πsi = si+1π for i ∈ Z/nZ,
s2

i = 1 for i ∈ Z/nZ

〉
.

We recall that Ŝn acts on Z by n-periodic permutations, i.e. bijections σ : Z → Z

such that σ(i + n) = σ(i) + n. It also acts on the set (K×)n via:

si · (a1, . . . , ai, ai+1, . . . an) = (a1, . . . , ai+1, ai, . . . , an)

s0 · (a1, a2, . . . , an−1, an) = (qan, a2, . . . , an−1, q−1a1) (3.1)
π · (a1, . . . , an) = (qan, a1, a2, . . . , an−1).

The Ŝn action on Z descends to an action on periodic tableaux, as follows. We set σ · R
to be the tableau where i is replaced with σ(i) .

1We drop the first relation when n = 2.
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The function diagR is compatible with the Ŝn action: diagσ·R(σ(i)) = diagR(i) for
any σ ∈ Ŝn. Furthermore the action intertwines the action (3.1) of Ŝn on (K×)n: we
have wt(σ · R) = σ ·wt(R). (We observe that σ · R need not be standard, even if R is.)
Any domain for the n-periodicity in Definition 2.8 is also a domain for the πn-action.
Note that πn shifts the N ×∞ strip k steps horizontally.

Definition 3.2. The GLn double affine Hecke algebra Hq,t = Hq,t(GLn) is the K-algebra
presented by generators:

T0, T1, . . . Tn−1, π±1, Y±1
1 , . . . , Y±1

n ,

subject to relations2:

(Ti − t)(Ti + t−1) = 0 (i = 0, . . . , n− 1),
TiTjTi = TjTiTj (j ≡ i± 1 mod n), TiTj = TjTi (otherwise),

πTiπ
−1 = Ti+1 (i = 0, . . . , n− 2), πTn−1π−1 = T0,

TiYiTi = Yi+1 (i = 1, . . . , n− 1), T0YnT0 = q−1Y1

TiYj = YjTi (j 6≡ i, i + 1 mod n),

πYiπ
−1 = Yi+1 (i = 1, . . . , n− 1), πYnπ−1 = q−1Y1.

We often refer to the double affine Hecke algebra as the DAHA.
We set Y to be the commutative subalgebra of Hq,t generated by the Y±1

i , 1 ≤ i ≤ n
and H(Y) to be the subalgebra generated by Y and the Ti, 1 ≤ i < n.

3.1 The rectangular representations

In his hallmark paper [3], Cherednik gave a complete classification of irreducible Y-
semisimple representations, i.e. those Hq,t-modules for which the Y-action can be di-
agonalized. His classification builds on the parallel story for the affine Hecke algebra
[5, 4, 2], [10]. Subsequently, the paper [11] built on Cherednik’s classification via peri-
odic skew diagrams combinatorially, connecting standard tableaux on the diagrams to
Y-weights. In this section we detail a very special case of Cherednik’s construction,
when the Young diagram indexing the irreducible module is an N × k rectangle and the
periodicity is purely horizontal, so that the shape is not actually skew but an N ×∞
strip.

3.1.1 Y-semisimple representations

A tuple z = (z1, . . . , zn) ∈ (K×)n is called a Y-weight. Let M be an Hq,t-module. We
define its support to be

supp(M) = {z | M[z] 6= 0} where M[z] = {v ∈ M | Yiv = ziv, 1 ≤ i ≤ n}
2As with Ŝn, we drop the relations on the second line when n = 2.
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is its z-weight space. A non-zero v ∈ M[z] is called a weight vector, or z-weight vector.

Definition 3.3. We call M Y-semisimple if we have an isomorphism M ∼=
⊕

z M[z], as
Y-modules.

Such M are called calibrated in [10]. Note that M is Y-semisimple if and only if it
has a weight basis: a basis consisting of Y-weight vectors. Further, in this case Res

Hq,t
Y (M)

is semisimple as a Y-module.
The structure of Y-semisimple modules is extremely rigid. Given a Y-semisimple

module, one can read its composition factors directly from its support. If M is both
simple and Y-semisimple, its nonzero weight spaces are all one-dimensional. Further
one need only determine a single z ∈ supp(M) in order to determine all of supp(M),
and hence the isomorphism type of M.

The support of a simple Y-semisimple modules has a lovely combinatorial structure.
It is easy to show that if M is simple, then its support is contained in a single Ŝn-orbit. If
additionally M is Y-semisimple, we can say exactly what subset of the Ŝn-orbit we get,
i.e. we can completely determine supp(M). More precisely, given z ∈ supp(M), one can
determine the set S ⊂ Ŝn such that supp(M) = {w · z | w ∈ S}. The following theorem
uniquely characterizes the set S, which depends on choice of z:

Theorem 3.4 ([5, 4, 2, 3], [10]). Let M be a simple and Y-semisimple Hq,t-module. Let z ∈
supp(M). We have:

1. For 1 ≤ i < n, we have M[si · z] = 0 if and only if zi
zi+1
∈ {t2, t−2}. Further

Ti M[z] ⊂ M[z]⊕M[si · z].

2. M[s0 · z] = 0 if and only if qzn
z1
∈ {t2, t−2}. Further T0M[z] ⊂ M[z]⊕M[s0 · z].

3. We have M[π · z] 6= 0, and πM[z] = M[π · z].

Note that Theorem 3.4 allows us to precisely describe the action of the Hq,t-generators
on a weight basis, once we have chosen a sensible normalization or scaling. The proof of
this theorem uses the theory of “intertwiners” [3], for which the reader may also consult
[11].

3.1.2 Induction of the rectangular representation to the DAHA

Associated to the partition µ = (kN) is a finite dimensional irreducible representation of
the finite Hecke algebra 〈Ti, 1 ≤ i < n〉. A basis for this representation is indexed by
the set of standard Young tableaux of shape (kN). We denote by Rect(N, k) the H(Y)-
module obtained by inflating this module via the homomorphism sending Ti 7→ Ti,
Y1 7→ t0 = 1. It is well-known for generic t (i.e. away from small roots of unity) that
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Rect(N, k) is Y-semisimple. Identifying the N × k rectangular diagram (kN) with DN,k
0 ,

we assign diagonal labels as in Section 2. Below we denote standard tableaux of shape
(kN) by SYT(kN).

Proposition 3.5. The irreducible H(Y)-module Rect(N, k) has a Y-weight basis,

{vR | R ∈ SYT(kN)} with YivR = t2diagR(i)vR

when t is generic. In particular each vR has weight wt(R).

Let
M(kN) = Ind

Hq,t
H(Y) Rect(N, k)

denote the induced module Hq,t ⊗H(Y) Rect(N, k). This module has basis

{Tσ ⊗ vR | σ ∈ Ŝn/Sn, R ∈ SYT(kN)}

which can be ordered so that, with respect to this basis, Y acts triangularly. M(kN) thus
has support supp

(
M(kN)

)
= {σ ·wt(R) | σ ∈ Ŝn/Sn, R ∈ SYT(kN)}.

Theorem 3.6. Let q = t−2k. Then M(kN) has unique simple quotient.

It is not hard to show that for any R ∈ SYT(kN) the wt(R) weight space of M(kN) is
one-dimensional, and thus it follows that it has unique simple quotient.

Using the next theorem one may explicitly construct this unique simple quotient and
thereby show it is Y-semisimple.

Theorem 3.7 ([3], [11]). When q = t−2k there exists a unique irreducible representation L(kN)
of Hq,t that is Y-semisimple with support {wt(R) | R ∈ PnSYT(kN)}. In particular we may
realize L(kN) as the linear span over K of

{vR | R ∈ PnSYT(kN)},

such that each vR is a Y-weight vector of weight wt(R), i.e., YivR = t2diagR(i)vR, 1 ≤ i ≤ n.

Corollary 3.8. When q = t−2k, the unique simple quotient of M(kN) is L(kN); in particular it
is Y-semisimple and its support is given in Theorem 3.7.

4 The functor and the isomorphism

4.1 Quantum algebras: Uq(g), Oq(G) and Dq(G)

Recall G = GLN, g = glN.
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We refer to [8] and [7] for detailed definitions, in particular the Serre presentation of
the quantum group Uq(g), the formulas for R-matrices, and the Peter–Weyl theorem.

The algebra of quantum differential operators on G, which we denote by Dq(G), was
studied in many different settings. The presentation as a twisted tensor product

Dq(G) = Oq(G)⊗̃Oq(G), (4.1)

is adapted from the paper [12] (see also [1]).
We denote by ` and ∂C the inclusions into the first and second tensor factor of (4.1),

so that ` ⊗ ∂C : Oq(G) ⊗ Oq(G) → Dq(G) is the tautological isomorphism of Uq(g)-
modules (however it is not an algebra homomorphism). This is a q-deformation of the
tensor decomposition D(G) ∼= O(G)⊗U(g) into functions on G, and the vector fields of
left-translation, hence the notation.

For the purposes of this paper, all we need is

Theorem 4.1 (Peter–Weyl decomposition). As a module for Uq(g) we have an isomorphism:
Oq(G) ∼=

⊕
λ∈Λ+ Vλ ⊗V∗λ .

4.2 The functor Fn

Recall V = Vε1 is the N-dimensional defining representation of Uq(g). We denote by detq
the 1-dimensional representation of Uq(g) that has weight d. Let M be a Dq(G)-module.
Given n ∈ N, we define the functor Fn via setting Fn(M) to be the following space of
detk

q-variants:

Fn(M) =

(
det−k

q (V)⊗V
n
⊗ · · · ⊗V

1
⊗M

)Uq(g)

.

In [6], an action of the double affine Hecke algebra was constructed on the space
FSLN

n . Let us summarize its GL-modification.

Theorem 4.2. Let M be a module for Dq(G), k be a positive integer, and n = kN. When
q = q−2k and t = q, we have an exact functor, Fn : Dq(G)-mod → Hq,t(GLn)-mod such that
the generators of Hq,t(GLn) act on Fn(M) as follows.

1. Ti (i = 1, . . . , n− 1) acts by the braiding σV,V on the V
i+1
⊗V

i
factors.

2. The double braiding on det−k
q (V)⊗V

n
acts as the scalar q−2k.

3. Y1 acts only in the rightmost two tensor factors V
1
⊗M via

Y1 = σMC,V ◦ σV,MC , (the double-braiding of V and M, using ∂C).
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4. X1 acts only in the rightmost two tensor factors V
1
⊗M via

X1 = V ⊗M
∆V⊗IdM−−−−−→ V ⊗Oq(G)⊗M

IdV ⊗ actM−−−−−−→ V ⊗M,

where in the second arrow, Oq(G) acts on M via the homomorphism ` : Oq(G)→ Dq(G).

In the special case M = Oq(G), the above action is compatible with Peter-Weyl de-
composition, in the following sense. Let

Wn
λ =

(
det−k

q (V)⊗V⊗n ⊗Vλ ⊗V∗λ
)Uq(g) ∼= HomUq(glN)(detk

q(V)⊗Vλ, V⊗n ⊗Vλ). (4.2)

Then as vector spaces
Fn(Oq(G)) ∼=

⊕
λ∈Λ+

Wn
λ .

The Pieri rule applied to (4.2) gives Wn
λ
∼=
⊕

u∈WN,k
λ

Lu, a decomposition into one-
dimensional subspaces. Relating the double braiding to the action of the Casimir opera-
tor then yields the following theorem.

Theorem 4.3. Let q = q−2k and t = q. For any v ∈ Lu we have

Yiv = t〈ui+2ρ,ui〉−〈ui−1+2ρ,ui−1〉−〈ε1+2ρ,ε1〉v. (4.3)

4.3 The isomorphism type of Fn(Oq(G))

We are finally ready to prove our main theorem:

Theorem 4.4. Let λ ∈ Λ+, u be a looped walk inWN,k
λ , and R = Per(T ab(u)).

1. Each subspace Lu is a Y-weight space of weight wt(R); for any v ∈ Lu, we have

Yiv = t2diagR(i)v.

2. We have isomorphisms of Hq,t(GLn)-modules Fn(Oq(GLN)) ∼= L(kN).

Proof. All that remains is to simplify the exponent of t appearing in Theorem 4.3.

〈ui + 2ρ, ui〉 − 〈ui−1 + 2ρ, ui−1〉 − 〈ε1 + 2ρ, ε1〉

= 2
(
〈ui−1, εδi(u)〉+ 〈ρ, εδi(u)〉 − 〈ρ, ε1〉

)
= 2(the label of the diagonal on which i lies in T ab(u)), by (2.1)

= 2 diagPer(T ab(u))(i).

Hence we may re-write the scalar (4.3) by which Yi acts as t2diagR(i). Having matched
their support, the isomorphism Fn(Oq(G)) ∼= L(kN) then follows from Theorem 3.7.



12 D. Jordan and M. Vazirani

References

[1] A. Brochier and D. Jordan. “Fourier transform for quantum D-modules via the punctured
torus mapping class group”. Quantum Topol. 8.2 (2017), pp. 361–379. DOI: 10.4171/QT/92.

[2] I. Cherednik. “A new interpretation of Gel’fand-Tzetlin bases”. Duke Math. J. 54.2 (1987),
pp. 563–577. DOI: 10.1215/S0012-7094-87-05423-8.

[3] I. Cherednik. “Double affine Hecke algebras and difference Fourier transforms”. Invent.
Math. 152.2 (2003), pp. 213–303. DOI: 10.1007/s00222-002-0240-0.

[4] I. Cherednik. “On R-matrix quantization of formal loop groups”. Group theoretical methods
in physics, Vol. II (Yurmala, 1985). VNU Sci. Press, Utrecht, 1986, pp. 161–180.

[5] I. Cherednik. “Special bases of irreducible representations of a degenerate affine Hecke
algebra”. Funktsional. Anal. i Prilozhen. 20.1 (1986), pp. 87–88.

[6] D. Jordan. “Quantum D-modules, elliptic braid groups, and double affine Hecke algebras”.
Int. Math. Res. Not. IMRN 11 (2009), pp. 2081–2105. DOI: 10.1093/imrp/rnp012.

[7] D. Jordan and M. Vazirani. “The rectangular representation of the double affine Hecke
algebra via elliptic Schur-Weyl duality”. 2017. arXiv: 1708.06024.

[8] A. Klimyk and K. Schmüdgen. Quantum groups and their representations. Texts and Mono-
graphs in Physics. Springer-Verlag, Berlin, 1997, pp. xx+552. DOI: 10.1007/978-3-642-60896-
4.

[9] R. Orellana and A. Ram. “Affine braids, Markov traces and the category O”. Algebraic
groups and homogeneous spaces. Vol. 19. Tata Inst. Fund. Res. Stud. Math. Tata Inst. Fund.
Res., Mumbai, 2007, pp. 423–473.

[10] A. Ram. “Affine Hecke algebras and generalized standard Young tableaux”. J. Algebra 260.1
(2003). Special issue celebrating the 80th birthday of Robert Steinberg, pp. 367–415. DOI:
10.1016/S0021-8693(02)00663-4.

[11] T. Suzuki and M. Vazirani. “Tableaux on periodic skew diagrams and irreducible repre-
sentations of the double affine Hecke algebra of type A”. Int. Math. Res. Not. 27 (2005),
pp. 1621–1656. DOI: 10.1155/IMRN.2005.1621.

[12] M. Varagnolo and E. Vasserot. “Double affine Hecke algebras at roots of unity”. Represent.
Theory 14 (2010), pp. 510–600. DOI: 10.1090/S1088-4165-2010-00384-2.

https://doi.org/10.4171/QT/92
https://doi.org/10.1215/S0012-7094-87-05423-8
https://doi.org/10.1007/s00222-002-0240-0
https://doi.org/10.1093/imrp/rnp012
https://arxiv.org/abs/1708.06024
https://doi.org/10.1007/978-3-642-60896-4
https://doi.org/10.1007/978-3-642-60896-4
https://doi.org/10.1016/S0021-8693(02)00663-4
https://doi.org/10.1155/IMRN.2005.1621
https://doi.org/10.1090/S1088-4165-2010-00384-2

	Introduction
	Combinatorics in type A: lattice walks & skew tableaux
	The GLN weight lattice
	Walks on the weight lattice
	Skew tableaux
	Periodic tableaux

	The rectangular representation of the DAHA
	The rectangular representations
	Y-semisimple representations
	Induction of the rectangular representation to the DAHA 


	The functor and the isomorphism
	Quantum algebras: Uq(g), Oq(G) and Dq(G)
	The functor Fn
	The isomorphism type of Fn(Oq(G))


