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Abstract. Let M be a regular matroid. The Jacobian group Jac(M) of M is a finite abelian
group whose cardinality is equal to the number of bases of M. This group generalizes
the definition of the Jacobian group (also known as the critical group or sandpile
group) Jac(G) of a graph G (in which case bases of the corresponding regular matroid
are spanning trees of G).

There are many explicit combinatorial bijections in the literature between the Jacobian
group of a graph Jac(G) and spanning trees. However, most of the known bijections
use vertices of G in some essential way and are inherently “non-matroidal”. In this
work, we construct a family of explicit and easy-to-describe bijections between the
Jacobian group of a regular matroid M and bases of M, many instances of which
are new even in the case of graphs. We first describe our family of bijections in a
purely combinatorial way in terms of orientations; more specifically, we prove that
the Jacobian group of M admits a canonical simply transitive action on the set G(M)

of circuit-cocircuit reversal classes of M, and then define a family of combinatorial
bijections βσ,σ∗ between G(M) and bases of M. (Here σ (resp σ∗) is an acyclic signature
of the set of circuits (resp. cocircuits) of M.) We then give a geometric interpretation
of each such map β = βσ,σ∗ in terms of zonotopal subdivisions which is used to verify
that β is indeed a bijection.

Finally, we give a combinatorial interpretation of lattice points in the zonotope Z; by
passing to dilations we obtain a new derivation of Stanley’s formula linking the Ehrhart
polynomial of Z to the Tutte polynomial of M.
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1 Overview of results

1.1 The main bijection in the case of graphs

Let G be a connected finite graph. The Jacobian group Jac(G) of G (also called the sandpile
group, critical group, etc.) is a finite abelian group canonically associated to G whose
cardinality equals the number of spanning trees of G. Although there is no canonical
bijection1 between Jac(G) and the set T (G) of spanning trees of G, many constructions
of combinatorial bijections starting with some fixed additional data are known. We
mention, for example: the Cori–Le Borgne bijections that use an ordering of the edges
as well as a fixed vertex [11], Perkinson, Yang and Yu’s bijections that use an ordering of
the vertices [21], and Bernardi’s bijections that use a cyclic ordering of the edges incident
to each vertex [7].

In this work we describe a new family of combinatorial bijections between Jac(G)
and T (G). Our bijections are very simple to state, though proving that they are indeed
bijections is not so simple. Another feature is that our bijections are formulated in a
“purely matroidal” way, and in particular they generalize from graphs to regular matroids.
We will first state the main result of this paper in the language of graphs, and then give
the generalization to regular matroids.

What we will in fact do is establish a family of bijections between T (G) and the set
G(G) of cycle-cocycle equivalence classes of orientations of G. The latter was introduced by
Gioan [16, 14] and is known to be a torsor2 for Jac(G) in a canonical way. By fixing a
class in G(G) to correspond to the identity element of Jac(G), we then obtain a bijection
between Jac(G) and T (G). (By definition, G(G) is the set of equivalence classes of
orientations of G with respect to the equivalence relation generated by directed cycle
reversals and directed cut reversals. We will write [O] to denote the equivalence class
containing an orientation O.)

To state our main bijection for graphs, let C(G) (resp. C∗(G)) denote the set of simple
cycles (resp. simple cuts, i.e., bonds) of G, and define a cycle signature (resp. cut
signature) on G to be a choice, for each C ∈ C(G) (resp. C ∈ C∗(G)), of an orientation of
C, identified with an element of the cycle lattice Λ(G) (resp. the cut lattice Λ∗(G)). We
call a cycle signature σ (resp. cut signature σ∗) acyclic if whenever aC are nonnegative
reals with

∑
C∈C(G)

aCσ(C) = 0

in Λ(G) (resp. ∑C∈C∗(G) aCσ∗(C) = 0 in Λ∗(G)) we have aC = 0 for all C.

1Consider, for example, a 3-cycle: since Aut(G) acts transitively on the set of spanning trees, there can
be no distinguished member of this 3-element set corresponding to the identity element of Jac(G).

2This means that there is a canonical simply transitive group action of Jac(G) on G(G).
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Example 1.1. Fix a total order and reference orientation on the set E(G) of edges of G, and orient
each simple cycle (resp. simple cut) C compatibly with the reference orientation of the smallest
edge in C. This gives an acyclic signature of C(G) (resp. C(G)).

Recall that if T is a spanning tree of G and e 6∈ T (resp. e ∈ T), there is a unique
simple cycle C(T, e) (resp. simple cut C∗(T, e)) contained in T ∪ {e} (resp. containing
T\{e}), called the fundamental cycle (resp. fundamental cut) associated to T and e. With
this notation in place, we can now state our main bijection in the case of graphs:

Theorem 1.2. Let G be a connected finite graph, and fix acyclic signatures σ and σ∗ of C(G)
and C∗(G), respectively. Given a spanning tree T ∈ T (G), let O(T) be the orientation of G in
which we orient each e 6∈ T according to its orientation in σ(C(T, e)) and each e ∈ T according
to its orientation in σ∗(C∗(T, e)). Then the map T 7→ [O(T)] is a bijection between T (G) and
G(G).

The bijection in Theorem 1.2 appears to be new even in the special case where σ and
σ∗ are defined as in Example 1.1 As we now explain, by specializing our choice of σ and
σ∗, we can recover some previously known bijections.

Let G be a graph, and fix a vertex q of G. In [1], the authors prove that the break
divisors of G are the divisors associated to q-connected orientations offset by a chip at q.
In other words (in the notation of [1, Lemma 3.3]), a divisor D is a break divisor if and
only if D = (q) + νO for some q-connected orientation O. They also show that break
divisors of the corresponding metric graph Γ induce a canonical subdivision of the g-
dimensional torus Picg(Γ) into parallelepiped indexed by spanning trees of G, with the
vertices of the subdivision corresponding to the break divisors of G. By applying a small
generic shift to the vertices, this yields a family of “geometric bijections” between break
divisors and spanning trees (cf. [1, Remark 4.26]).

We claim that the geometric bijections defined in [1] can be thought of as special cases
of the bijections afforded by Theorem 1.2. To see this, note first that by [24, Theorem 10],
each geometric bijection gives rise in a natural way to an acyclic orientation σ of the
cycles of G. To orient the cocycles of G, we fix a spanning tree T0 of G. Orient the
edges of T0 away from q and label them e1 through en−1 in a way such that every edge
has a larger label than its ancestors. Extend this data on T0 arbitrarily to a total order
and reference orientation of E(G). Let σ∗ be the corresponding acyclic orientation of the
set of cocircuits of G given by Example 1.1. Given a spanning tree T, the orientation
OT associated to the pair (σ, σ∗) by Theorem 1.2 will have the property that every edge
e in T (considered as a tree rooted at q) is oriented away from q, and therefore OT is
q-connected [2, Section 3]. Let DT = νOT + (q) be the corresponding break divisor. Then
T 7→ DT will be the geometric bijection we started with.

For another application of Theorem 1.2, suppose that G is a plane graph and define
σ by orienting each simple cycle of G counterclockwise. Similarly, define σ∗ by orient-
ing each simple cycle of the dual graph G∗ clockwise and composing with the natural
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bijection between oriented cuts of G and oriented cycles of G∗. In this case, the simply
transitive action of Jac(G) on T (G) afforded by Theorem 1.2 coincides with the “Bernardi
torsor” defined in [5] and a posteriori with the “rotor-routing torsor” defined in [9, 10].
In particular, we get a new “geometric” proof of the bijectivity of the Bernardi map.

1.2 Generalization to regular matroids

As mentioned previously, an interesting feature of the bijection given by Theorem 1.2 is
that it admits a direct generalization to regular matroids.

Regular matroids are a particularly well-behaved and widely studied class of ma-
troids which contain graphic (and co-graphic) matroids as a special case. More precisely,
a regular matroid can be thought of as an equivalence class of totally unimodular integer
matrices3.

If G is a graph, one can associate a regular matroid M(G) to G by letting A be the
modified adjacency matrix of G, where we choose a vertex q ∈ V(G) and the rows
of A are indexed by V(G)\{q}. By a theorem of Whitney, the equivalence class of A
determines the graph G up to “2-isomorphism” (and in particular determines G up to
isomorphism if G is assumed to be 3-connected).

Let M be a regular matroid. In Section 4.3 of his Ph.D. thesis, Criel Merino defined
the critical group (which we will call the Jacobian) Jac(M) of M, generalizing the critical
group of a graph. The group Jac(M) is a finite abelian group whose cardinality is equal
to the number of bases of M.4

One can also define the set C(M) of signed circuits of M (resp. the set C∗(M) of
signed cocircuits of M) in a way which generalizes the corresponding objects when M =
M(G). Similarly, one has a set B(M) of bases of M, generalizing the notion of spanning
tree for graphs, and a set G(M) of cycle-cocycle equivalence classes generalizing the
corresponding set for graphs. By results of Merino and Gioan, the cardinalities of Jac(M),
B(M), and G(M) all coincide. (Our results in this paper give independent proofs of these
facts.)

Generalizing the known case of graphs [3], we prove:

Theorem 1.3. G(M) is canonically a torsor for Jac(M).

3An r×m integer matrix A with r ≤ m is called totally unimodular if every k× k submatrix has deter-
minant in {0,±1} for all 1 ≤ k ≤ r. We say that totally unimodular r×m matrices A, A′ are equivalent if
one can transform A into A′ by multiplying on the left by an r× r unimodular matrix U, then permuting
columns or multiplying columns by −1.

4The fact that these cardinalities are equal is essentially a translation of the natural extension of Kirch-
hoff’s Matrix-Tree theorem to regular matroids [19], [20, Theorem 4.3.2]. A “volume proof” of the Matrix-
Tree theorem for regular matroids based on zonotopal subdivisions is given in [12]. These authors do
not consider the problem of giving explicit combinatorial bijections between bases of M and the Jacobian
group.
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In view of this result, in order to construct a bijection between elements of Jac(M) and
bases of M, it suffices to give a bijection between B(M) and G(M). One can generalize the
notion of acyclic signature and fundamental cycles (resp. cuts) in a straightforward way
from graphs to regular matroids. Theorem 1.2 then admits the following generalization
to regular matroids:

Theorem 1.4. Let M be a regular matroid, and fix acyclic signatures σ and σ∗ of C(M) and
C∗(M), respectively. Given a basis B ∈ B(M), let O(B) be the orientation of M in which we
orient each e 6∈ B according to its orientation in σ(C(B, e)) and each e ∈ B according to its
orientation in σ∗(C∗(B, e)). Then the map B 7→ [O(B)] gives a bijection β : B(M)→ G(M).

Most known combinatorial bijections between elements of Jac(G) and spanning trees
of a graph G do not readily extend to the case of regular matroids, as they use vertices
of the graph in an essential way. The only other work we are aware of giving explicit
bijections between elements of Jac(M) and bases of a regular matroid M are the papers
of Gioan and Gioan–Las Vergnas [15, 17]5 and the as-yet unpublished recent work of
Shokrieh [23]. Our family of combinatorial bijections appears to be quite different from
those of Gioan–Las Vergnas.

1.3 Brief overview of the proof of the main combinatorial bijections

Although the statement of Theorem 1.2 and its generalization Theorem 1.4 to regular
matroids M are completely combinatorial, we do not know any simple combinatorial
proof. Our proof involves the geometry of a zonotopal subdivision associated to a matrix
A representing M.

Concretely, fix a totally unimodular r × m matrix A representing M, where r is the
rank of A. Denote by V∗ ⊆ RE the row space of A and by πV∗ the orthogonal projection
from RE to V∗. Let ue ∈ RE be the standard coordinate vector corresponding to e ∈ E.
The column zonotope ZA ⊂ Rr (resp. row zonotope Z̃A ⊂ RE) associated to A is defined
to be the Minkowski sum of the columns of A (resp. the Minkowski sum of the vectors
πV∗(ue) for e ∈ E). One checks easily that the linear transformation L : v 7→ Av gives an
isomorphism from V∗ to Rr taking Z̃A to ZA. In particular, the r-dimensional zonotopes
Z̃A and ZA are isomorphic via a unimodular transformation.

An orientation O of M is a function E → {−1, 1}. An orientation O is compatible
with a signed circuit C of M if O(e) = C(e) for all e in the support of C. If O is an
orientation and C is a signed circuit compatible with O, we can perform a circuit reversal
taking O to the orientation O′ defined by O′(e) = O(e) if e is not in the support of C
and O′(e) = −O(e) if e is in the support of C. Let σ be an acyclic signature of C(M). We

5 Technically speaking, Gioan and Las Vergnas do not produce a bijection between bases and elements
of Jac(M); they produce a bijection between B(M) and X (M; σ, σ∗) (see Definition 1.8), where (σ, σ∗) are
determined by a total order on the edges and a reference orientation.
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say that O is σ-compatible if every signed circuit C of M compatible with O is oriented
according to σ.

Theorem 1.5. Every circuit-reversal equivalence class of orientations contains a unique σ-
compatible orientation.

The connection between σ-compatible orientations and the zonotopes defined above
is given by the following result. For the statement, given an orientation O of M and
e ∈ E, define we ∈ Rr to be 0 if O(e) = −1 and to be the eth column of A if O(e) = 1.
Define ψ(O) ∈ ZA by

ψ(O) := ∑
e∈E

we ∈ ZA. (1.1)

Theorem 1.6. The map ψ induces a bijection between circuit-reversal classes of orientations of
M and lattice points of the zonotope ZA.

Fix a reference orientation O0 of M. Each acyclic signature σ of C(M) gives rise
to a subdivision of ZA into smaller zonotopes Z(B), one for each basis B of M, in the
following way. Let B be a basis of M. For each e 6∈ B, define ve ∈ V∗ to be 0 if the
reference orientation of e coincides with the orientation of e in σ(C(B, e)), and to be the
eth column of A otherwise. Define

Z(B) := ∑
e∈B

[0, Ae] + ∑
e 6∈B

ve ⊆ ZA ⊂ Rr.

Note that Z(B) is itself a zonotope, as it is congruent via translation to ∑e∈B[0, Ae].
Let Z̃(B) be the corresponding subset L−1(Z(B)) of Z̃A. The following result can be
paraphrased as saying that the various Z(B)’s give a zonotopal subdivision6 Σ of ZA.

Theorem 1.7. The union of Z(B) over all bases B of M is equal to ZA, and if B, B′ are distinct
bases then the intersection of Z(B) and Z(B′) is a (possibly empty) face of each.

Definition 1.8. We now explain briefly how these results are used to prove Theorem 1.4. Let
σ, σ∗ be acyclic signatures of C(M) and C∗(M), respectively. An orientation is called (σ, σ∗)-
compatible if it is both σ-compatible and σ∗-compatible, and we denote the set of such orienta-
tions by X (M; σ, σ∗).

Theorem 1.9. Let β̂ be the map which sends a basis B to the orientation OB defined in Theo-
rem 1.4. Let χ be the map which sends an orientation O to its circuit-cocircuit reversal class [O],
so that β = χ ◦ β̂.

1. The image of β̂ is contained in X (M; σ, σ∗), and β̂ gives a bijection between B(M) and
X (M; σ, σ∗).

6Also known in the literature on zonotopes as a fine tiling of ZA.
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2. The map χ restricted to X (M; σ, σ∗) induces a bijection between X (M; σ, σ∗) and G(M).

Remark 1.10. The proofs of Theorem 1.3 and Theorem 1.4 do not assume a priori that |B(M)| =
|X (M; σ, σ∗)| = |G(M)| = |Jac(M)| for a regular matroid, thus our work provides an indepen-
dent proof of these equalities. Furthermore, we will shows that |B(M)| = |X (M; σ, σ∗)| for any
matroid representable over R, which is Theorem 1.13 below.

Choose a vector w ∈ RE which is compatible with σ∗, in the sense that w · σ∗(C) > 0
for each cocircuit C of M. (The existence of such a vector is guaranteed by a simple
application of the Farkas Lemma.) Since oriented circuits are orthogonal to oriented
cocircuits, and the row space V∗ of A is the span of the oriented cocircuits, modifying w
by an element of (V∗)⊥ will give the same inner product w · σ∗(C) for each circuit C of
M. Therefore it is natural to consider the orthogonal projection w′ of w onto V∗. Note
that the zonotopal subdivision Σ̃ of Z̃A depends only on σ (and the reference orientation
O0) and the vector w′ depends only on σ∗.

The following theorem shows that the combinatorially defined map β̂ : B(M) →
X (M) can be interpreted geometrically as first identifying a basis with a maximal cell in
our zonotopal subdivision and then applying a “shifting map”.

Theorem 1.11. 1. Let B be a basis of M. For all sufficiently small ε > 0 the image of Z̃(B)
under the map v 7→ v + εw′ contains a unique lattice point z̃B of Z̃A, which corresponds
to a unique σ-compatible discrete orientation O′B.

2. The map φ which takes each basis B to the orientation O′B coincides with the map β̂ ap-
pearing in the statement of Theorem 1.4; and φ (hence β̂) is a bijection between B(M) and
X (M; σ, σ∗).

See Figure 1 for an example of this shifting map. Theorem 1.4 is a simple consequence
of Theorem 1.9 and Theorem 1.11.

1.4 Continuous orientations

It is useful to give a combinatorial interpretation of all points of the zonotope ZA (not just
the lattice points) in terms of equivalence classes of continuous orientations of M. Recall
that an orientation is a function E → {−1, 1}. We define a continuous orientation of M to
be a function E→ [−1, 1];

If we fix an acyclic signature σ of C(M), there is a natural way (generalizing the
discrete case) to pick out a distinguished σ-compatible orientation from each continuous
circuit-reversal class. We will show:

Theorem 1.12. There is a natural bijection between circuit-reversal classes of continuous orien-
tations of M and points of the zonotope ZA.
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Figure 1: An illustration of Theorem 1.11 for K3.

We use this result to give an alternate description of the zonotopal subdivisions Σ
and Σ̃ of ZA and Z̃A, respectively, which were defined above.

1.5 A Partial Extension to Oriented Matroids over R

The equality |B(M)| = |G(M)| = |Jac(M)| is not true for general oriented matroids
(indeed, Jac(M) is not even well-defined in the general case). Nevertheless, the notions
of acyclic circuit/cocircuit signatures and (σ, σ∗)-compatible orientations are still valid
for an oriented matroid over R. Furthermore, the geometric setup used to prove The-
orem 1.11 as well as the first half of Theorem 1.9 does not require M to be regular but
only realizable over R. Therefore we have the following bijectivity result.

Theorem 1.13. Let M be a oriented matroid over R and let σ, σ∗ be acyclic signatures of
C(M), C∗(M), respectively. Then the map β̂ : B(M)→ X (M; σ, σ∗) is a bijection.

1.6 Random sampling of bases

As in [4], any computable bijection between bases and elements of Jac(M) gives rise to
an algorithm for randomly sampling bases of M. The idea is simple: by computing the
Smith Normal Form of a matrix A representing M, we can explicitly compute Jac(M) as
a direct sum of finite abelian groups, and it is clear how to uniformly sample elements
of such a group.

In order to make this into a practical method, one needs efficient algorithms for com-
puting both the element of Jac(M) associated to a given basis and vice-versa. We provide
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Figure 2: An identification of the lattice points in 2ZA with σ-compatible orientations
of 2K3.

polynomial-time computable algorithms for these tasks with respect to the family of bi-
jections given by Theorem 1.4. Both our algorithm for computing the inverse of the map
β (resp. β̂) from Theorem 1.4 and our algorithm for computing the group action use
ideas from linear programming.

1.7 Connections to Ehrhart theory and the Tutte polynomial

Every matroid M of rank r has an associated Tutte polynomial TM(x, y), and every lattice
polytope P (e.g. the zonotope ZA) has an associated Ehrhart polynomial EP(q) which
counts the number of lattice points in positive integer dilates of P. Using the relationship
between ZA and σ-compatible (discrete or continuous) orientations of M (see Figure 2),
we obtain a new proof of the following identity originally due to Stanley:

EZ(q) = qrTM(1 + 1/q, 1). (1.2)

The proof involves defining a “dilation” qM of M for each positive integer q, with
associated zonotope qZA. We also describe a direct bijective proof (without appealing to
Ehrhart reciprocity) of the fact that the number of interior lattice points in qZA is

qrTM(1− 1/q, 1).
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1.8 Related literature

The study of zonotopal tilings, i.e. tilings of a zonotope by smaller zonotopes, is a
classical topic in the theory of oriented matroids first initiated by Shepard [22]. The
central theorem in this area is the Bohne–Dress Theorem [8, 13], which states that the
poset of zonotopal tilings ordered by refinement is isomorphic to the poset of 1-element
lifts of the associated oriented matroid M. It should be possible to use the Bohne–Dress
Theorem and the results in [6] to prove that the set of tilings of ZA arising from acyclic
orientations of C(M) is precisely the set of regular tilings of ZA (which correspond
to the realizable lifts in the Bohne–Dress Theorem). It should also be possible to use
the results of [18] to give a more high-level explanation, in terms of Lawrence polytopes,
Lawrence ideals, and Gröbner bases, of the relationship between continuous and discrete
σ-compatible orientations. Farbod Shokrieh has indicated to us that his forthcoming
paper [23] may shed some light on these connections.

Acknowledgements

The first author thanks Sam Hopkins for introducing him to the connection between
zonotopes and Tutte polynomial evaluations, and Raman Sanyal for explaining that reg-
ular tilings of a zonotope can alternately be viewed as dual to generic perturbations of
the associated hyperplane arrangement. The second author’s work was partially sup-
ported by the NSF research grant DMS-1529573. The third author thanks Yin Tat Lee for
the discussion on linear programming.

References

[1] Y. An, M. Baker, G. Kuperberg, and F. Shokrieh. “Canonical representatives for divisor
classes on tropical curves and the matrix-tree theorem”. Forum Math. Sigma 2 (2014), e24,
25 pp. DOI: 10.1017/fms.2014.25.

[2] S. Backman. “Partial graph orientations and the Tutte polynomial”. Adv. in Appl. Math. 94
(2018), pp. 103–119. DOI: 10.1016/j.aam.2017.05.003.

[3] S. Backman. “Riemann-Roch theory for graph orientations”. Adv. Math. 309 (2017), pp. 655–
691. DOI: 10.1016/j.aim.2017.01.005.

[4] M. Baker and F. Shokrieh. “Chip-firing games, potential theory on graphs, and spanning
trees”. J. Combin. Theory Ser. A 120.1 (2013), pp. 164–182. DOI: 10.1016/j.jcta.2012.07.011.

[5] M. Baker and Y. Wang. “The Bernardi Process and Torsor Structures on Spanning Trees”.
Int. Math. Res. Not. IMRN 2018.16 (2017), pp. 5120–5147. DOI: 10.1093/imrn/rnx037.

[6] M.M. Bayer and K.A. Brandt. “Discriminantal arrangements, fiber polytopes and formal-
ity”. J. Algebraic Combin. 6.3 (1997), pp. 229–246. DOI: 10.1023/A:1008601810383.

https://doi.org/10.1017/fms.2014.25
https://doi.org/10.1016/j.aam.2017.05.003
https://doi.org/10.1016/j.aim.2017.01.005
https://doi.org/10.1016/j.jcta.2012.07.011
https://doi.org/10.1093/imrn/rnx037
https://doi.org/10.1023/A:1008601810383


Geometric bijections for regular matroids, zonotopes, and Ehrhart theory 11

[7] O. Bernardi. “Tutte polynomial, subgraphs, orientations and sandpile model: new connec-
tions via embeddings”. Electron. J. Combin. 15.1 (2008), Research Paper 109, 53 pp. URL.

[8] J. Bohne. “Eine kombinatorische Analyse zonotopaler Raumaufteilungen”. MA thesis. Uni-
versität Bielefeld, 1992.

[9] M. Chan, T. Church, and J.A. Grochow. “Rotor-routing and spanning trees on planar
graphs”. Int. Math. Res. Not. IMRN 11 (2015), pp. 3225–3244. DOI: 10.1093/imrn/rnu025.

[10] M. Chan, D. Glass, M. Macauley, D. Perkinson, C. Werner, and Q. Yang. “Sandpiles,
spanning trees, and plane duality”. SIAM J. Discrete Math. 29.1 (2015), pp. 461–471. DOI:
10.1137/140982015.

[11] R. Cori, T.H.D. Phan, and T.T.H. Tran. “Signed chip firing games with symmetric sand-
pile models on the cycles”. RAIRO Theor. Inform. Appl. 47.2 (2013), pp. 133–146. DOI:
10.1051/ita/2012023.

[12] A. Dall and J. Pfeifle. “A Polyhedral Proof of the Matrix Tree Theorem”. 2014. arXiv:
1404.3876.

[13] A.W.M. Dress. “Oriented matroids and Penrose-type tilings”. Lecture at the “Symposium
on Combinatorics and Geometry”, organized by A. Björner, KTH Stockholm. 1989.

[14] E. Gioan. “Circuit-cocircuit reversing systems in regular matroids”. Ann. Comb. 12.2 (2008),
pp. 171–182. DOI: 10.1007/s00026-008-0345-2.

[15] E. Gioan. “Correspondance naturelle entre bases et réorientations des matroïes orientés”.
MA thesis. University of Bordeaux 1, 2002.

[16] E. Gioan. “Enumerating degree sequences in digraphs and a cycle-cocycle reversing sys-
tem”. European J. Combin. 28.4 (2007), pp. 1351–1366. DOI: 10.1016/j.ejc.2005.11.006.

[17] E. Gioan and M. Las Vergnas. “Activity preserving bijections between spanning trees and
orientations in graphs”. Discrete Math. 298.1-3 (2005), pp. 169–188. URL.

[18] B. Huber, J. Rambau, and F. Santos. “The Cayley trick, lifting subdivisions and the Bohne-
Dress theorem on zonotopal tilings”. J. Eur. Math. Soc. 2.2 (2000), pp. 179–198. URL.

[19] S.B. Maurer. “Matrix generalizations of some theorems on trees, cycles and cocycles in
graphs”. SIAM J. Appl. Math. 30.1 (1976), pp. 143–148. DOI: 10.1137/0130017.

[20] C. Merino. “Matroids, the Tutte polynomial, and the chip-firing game”. MA thesis. Uni-
versity of Oxford, 1999.

[21] D. Perkinson, Q. Yang, and K. Yu. “G-parking functions and tree inversions”. Combinatorica
37.2 (2017), pp. 269–282. DOI: 10.1007/s00493-015-3191-y.

[22] G.C. Shephard. “Combinatorial properties of associated zonotopes”. Canad. J. Math. 26
(1974), pp. 302–321. DOI: 10.4153/CJM-1974-032-5.

[23] F. Shokrieh. “Matroids and their Jacobians”. In preparation.

[24] C.H. Yuen. “Geometric bijections between spanning trees and break divisors”. J. Combin.
Theory Ser. A 152 (2017), pp. 159–189. DOI: 10.1016/j.jcta.2017.06.004.

https://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1r109
https://doi.org/10.1093/imrn/rnu025
https://doi.org/10.1137/140982015
https://doi.org/10.1051/ita/2012023
https://arxiv.org/abs/1404.3876
https://doi.org/10.1007/s00026-008-0345-2
https://doi.org/10.1016/j.ejc.2005.11.006
https://doi.org/10.1016/j.disc.2005.04.010
https://doi.org/10.1007/s100970050003
https://doi.org/10.1137/0130017
https://doi.org/10.1007/s00493-015-3191-y
https://doi.org/10.4153/CJM-1974-032-5
https://doi.org/10.1016/j.jcta.2017.06.004

	Overview of results
	The main bijection in the case of graphs
	Generalization to regular matroids
	Brief overview of the proof of the main combinatorial bijections
	Continuous orientations
	A Partial Extension to Oriented Matroids over R
	Random sampling of bases
	Connections to Ehrhart theory and the Tutte polynomial
	Related literature


