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Bijection from multiline queues to rhombic
tableaux for the inhomogeneous 2-TASEP
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Abstract. The 2-TASEP is a model describing the dynamics of first and second class
particles hopping in one direction on a finite 1D lattice. For the 2-TASEP with periodic
boundary conditions, there is a well-known description for the stationary probabilities
in terms of multiline queues of Ferarri and Martin. On the other hand, for the 2-TASEP
with open boundary conditions, there is a rich connection to tableaux combinatorics:
its stationary probabilities are described using rhombic alternative tableaux. In this ar-
ticle, we unify the two approaches by defining a new object, the toric rhombic tableaux
and describing a simple bijection between these tableaux and multiline queues for the
2-TASEP with periodic boundary conditions. Furthermore, with a natural modification
of both the rhombic alternative tableaux and the toric rhombic tableaux, we obtain a
tableaux interpretation for probabilities of the inhomogeneous 2-TASEP both with pe-
riodic and open boundary conditions, in which different classes of particles hop with
different rates. Through our bijection, our result generalizes a result of Ayyer and
Linusson on multiline queues.
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1 Introduction

The 2-TASEP is a Markov chain describing class 1 and 2 particles hopping in one direc-
tion on a finite 1D lattice with n sites, with priority given to the class 2 particles. The
2-TASEP with open boundaries is strongly connected to a rich garden of combinatorial
objects, including tableaux (alternative tableaux [13], permutation tableaux [5], staircase
tableaux [6, 4]). More specifically, stationary probabilities for states of the 2-TASEP with
open boundaries can be expressed as a sum over weighted fillings of certain tableaux
[12]. The 2-TASEP with periodic boundary conditions, on the other hand, is a special
case of the k-TASEP on Z/nZ, which has been studied primarily using multiline queues
of Ferrari and Martin [7]: stationary probabilities for states of the 2-TASEP with peri-
odic boundary conditions can be expressed by enumerating the corresponding multiline

∗olya@math.brown.edu. Olya Mandelshtam was supported by the Postdoctoral Presidential Fellowship
and NSF grant DMS-1704874.

mailto:olya@math.brown.edu


2 Olya Mandelshtam

queues [2]. Our goal is to draw a parallel between the two methods by describing a
bijection between certain tableaux and multiline queues in the 2-TASEP case.

The 2-TASEP of size n has sites numbered 1 through n with each site occupied by 1,
2, or 0, representing the particles of class 1 and 2 and holes, respectively. The possible
transitions of the 2-TASEP chain are the following, all occurring with rate 1:

X 2 0 Y 1→ X 0 2 Y, X 2 1 Y 1→ X 1 2 Y, X 1 0 Y 1→ X 0 1 Y,

where X, Y are words in {2, 1, 0}. In the open boundary case, the bulk transitions are
the same as above, with parameters α and β dictating the rates of boundary transitions:

0 Y α→ 2 Y, Y 2
β→ Y 0.

In Section 2, we define the multiline queues (MLQ) and rhombic alternative tableaux
(RAT), which are the main objects we work with. Our first main result is in Section 3,
in which we define the cylindric rhombic tableaux (CRT) and give a direct bijection ΨCRT
with MLQs.

Theorem 1.1. For X a state of the 2-TASEP and CRT(X) denoting the set of associated cylindric
rhombic tableaux, the stationary probability of X is proportional to |CRT(X)|.
Theorem 1.2. For X a state of the 2-TASEP and MLQ(X) denoting the set of associated multi-
line queues, ΨCRT : MLQ(X)→ CRT(X) is a bijection.

The inhomogeneous 2-TASEP with periodic boundary conditions is a generalization
with additional parameters x2, x1, which are the respective rates of the transitions 21→
12 and 10 → 01 (by normalization, 20 → 02 still has rate 1). In their paper studying a
Markov chain on permutations similar to the inhomogeneous k-TASEP with transition
rates xij between particles of class i and j for k ≥ i > j ≥ 0, Lam and Williams conjectured
that stationary probabilities for this process are proportional to polynomials in the xij’s
with positive integer coefficients [8]. This conjecture was solved when x1 = 1 by Ayyer
and Linusson for the 2-TASEP [3]. Using our tableaux approach, in Section 4 we present
a simple solution incorporating x2 and x1 for the 2-TASEP case by putting weights wt(T)
on CRT; our solution recovers the result of [3].

Theorem 1.3. For X a state of the inhomogeneous 2-TASEP with periodic boundary conditions
and with transition rates x2, x1, the stationary probability of X is proportional to ∑T∈CRT(X) wt(T).

Finally, we are able to naturally extend our results to the inhomogeneous 2-TASEP
with open boundaries: in Section 4.1, we use our bijection to define acyclic multiline
queues which are in bijection with the RAT, and put weights wtM(T) on the RAT to
obtain an analogous formula for the stationary probabilities.

Theorem 1.4. For X a state of the inhomogeneous 2-TASEP with open boundaries and with
transition rates x2, x1, the stationary probability of X is proportional to ∑T∈RAT(X) wtM(T).

This is an extended abstract of the article [11].
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2 Preliminaries

A state of the 2-TASEP is represented by a word X = X1 . . . Xn where Xi ∈ {2, 1, 0}.
For the 2-TASEP with periodic boundary conditions, we consider X1 and Xn to be adja-
cent. To distinguish between the different 2-TASEPs we study, we will write TASEP(n, r)
representing states of the 2-TASEP with open boundaries with n particles and exactly
r class 1 particles, and TASEP(k, r, `) representing states of the 2-TASEP with periodic
boundary conditions and exactly k class 2 particles, r class 1 particles, and ` holes.

We define the two main objects we work with in the 2-TASEP context: multiline
queues (MLQs) and rhombic alternative tableaux (RAT).

2.1 Multiline queues

An MLQ of size (k, r, l) with n := k + r + ` is a choice of ` and `+ r locations in the top
and bottom rows, respectively, of a 2× n array. Locations are labeled from left to right
with [1, n]. We identify the left and right edges of the array, making it a cylinder; thus
location 1 is to the right of and adjacent to location n.

1 2 3 · · · n

ℓ

ℓ + r

Each MLQ corresponds uniquely to a state of the TASEP(k, r, `), which we call its
type. To determine the type of an MLQ, we describe a ball drop algorithm, consisting of
balls from the top row dropping to occupy balls in the bottom row.

0 00

00 2 00 21 00 21 1

Figure 1: The steps of Algorithm 2.1 for an MLQ of type X = 12200120200. The white
(occupied) bottom row balls are the 0-balls, and the weight vector is (1, 1, 0, 0, 2).

Algorithm 2.1 (Ball drop). Let y1 < · · · < y` be the locations of the top row balls in the
MLQ. For i = `, . . . , 1:

Ball drop of yi. Drop the top row ball at yi to the bottom row to occupy the first
unoccupied bottom row ball weakly to its right, while marking every unmarked vacancy
it hits on its path. The bottom row ball it occupies is marked as a 0-ball. The hitting weight
of the occupied 0-ball is the number of vacancies that were marked during the drop.
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Output. All bottom row balls that are not 0-balls (i.e. were not hit by a dropping
top row ball) are marked as 1-balls. A state of the 2-TASEP is read off the bottom
row by associating 0-balls, 1-balls, and vacancies to holes, class 1, and class 2 particles,
respectively. The output of the algorithm is the type X of the MLQ and a weight vector
(w1, . . . , w`) of hitting weights from left to right.

See Figure 1 for an example of Algorithm 2.1.

Lemma 2.2. Given the output of the type X ∈ TASEP(k, r, `) and weight vector (w1, . . . , w`)
of Algorithm 2.1, one can uniquely determine the locations of the top row balls of an MLQ.

Lemma 2.2 is proved by reversing Algorithm 2.1 with weight vector (w1, . . . , w`) and
“lifting” the 0-balls at locations x1 < · · · < x` such that the 0-ball at xi marks the first wi
unmarked vacancies to its left. Observe that at the end of Algorithm 2.1, each marked
vacancy will have been marked by exactly one dropping ball. Consequently, it can be
shown that when the lifts are performed from left to right, the original locations of the
top row balls of the MLQ are recovered.

20 1 1 1 0 0 1 0 0

Figure 2: MLQ(X) for X = 12020 with weight vectors (0, 2), (1, 1), (1, 0), (0, 1), (0, 0).

Since the ` balls in the top row and the r + ` balls in the bottom row are chosen
independently, there is a total of (n

`)(
n
k) MLQs of size (k, r, `). The following theorem

of Ferrari and Martin gives an elegant expression for probabilities of the 2-TASEP with
periodic boundary conditions. We remark that this theorem also holds for the k-TASEP
with a more general definition of MLQs. Let MLQ(X) be the set of MLQs of type X.

Theorem 2.3 ([7]). Let X ∈ TASEP(k, r, `) for n := k + r + ` be a state of the 2-TASEP with
periodic boundary conditions. Then the stationary probability of X is Pr(X) = 1

(n
k)(

n
`)
|MLQ(X)|.

Example 2.4. From Figure 2, for X = 12020 we obtain Pr(X) = 5
(5

2)(
5
2)
= 1

20 .

2.2 Rhombic alternative tableaux

The RAT were defined by the author and Viennot in [12] as a solution for the more
general 2-ASEP model with open boundaries, in which the parameter q dictates the rate
at which particles can hop in the opposing direction (setting q = 0 recovers the 2-TASEP).
In this section, we give a definition of the subset of RAT corresponding to the q = 0 case.

The RAT are fillings with up-arrows and left-arrows of a tiling of a closed shape
whose boundary is composed of south, southwest, and west edges on a triangular lattice.
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The tiles are three types of rhombic tiles which we call 20-tiles, 10-tiles, and 21-tiles.
Each tile can contain an arrow that points either towards its left vertical edge or the top
horizontal edge with the condition that any tile that is “pointed to” by an arrow must be
empty; we call them left-arrows and up-arrows respectively. We give a precise definition
below.

Definition 2.5. Let X ∈ TASEP(n, r) such that X has k 2’s and ` 0’s with k + r + ` = n.
Define a lattice path P(X) as follows: reading X from left to right, draw a south edge
for a 2, a southwest edge for a 1, and a west edge for a 0. From the northeast corner
of P(X), draw ` west edges followed by r southwest edges, followed by k south edges,
thus obtaining a closed region Γ(X), whose southeast boundary is P(X). We call Γ(X) a
rhombic diagram.

Call a rhombus with south and west edges a 20-tile, a rhombus with west and south-
west edges a 10-tile, and a rhombus with south and southwest edges a 21-tile. Choose a
tiling T with the 20-tiles, 21-tiles, and 10-tiles on Γ(X).

Definition 2.6. A north-strip is a connected strip composed of adjacent 20- and 10-tiles. A
west-strip is a connected strip composed of adjacent 20- and 21-tiles. The 20-tile and the
21-tile can contain a left-arrow, while the 20-tile and the 10-tile can contain an up-arrow.
See Figure 3.

Definition 2.7. A tile is pointed at by an arrow if it is in the same west-strip to the left of
a left-arrow or if it is in the same north-strip above an up-arrow. Conversely, a tile is free
if it is not pointed at by any arrow (a tile containing an arrow is considered free).

(a.) (b.)

P (X) P (X)

(c.)

Figure 3: (a.) 20-, 21-, and 10-tiles; (b.) left-arrows and up-arrows and the tiles they
point to; (c.) all west-strips and north-strips in Γ(X) for X = 122001200.

Definition 2.8. A rhombic alternative tableau of type X ∈ TASEP(n, r) is a rhombic diagram
Γ(X) with some tiling T that is filled with up-arrows and left-arrows such that:

(i.) a tile must be empty if it is pointed at by an up-arrow or a left-arrow, and
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(ii.) a free tile must contain an up-arrow or a left-arrow.

Definition 2.9. The weight of a RAT R of size (n, r) with ufree(R) north-strips free of up-
arrows and lfree(R) west-strips free of left-arrows is wt(R) = αn−r−ufree(R)βn−r−lfree(R).

For X ∈ TASEP(n, r), we define RATT (X) to be the set of fillings of Γ(X) with some
fixed tiling T . Because it turns out ∑R∈RATT (X) wt(R) is independent of the tiling (see
Prop 2.8 of [12]), we define weight(X) = ∑R∈RATT (X) wt(R) for arbitrary tiling T .

The following result is Theorem 3.1 in [12], and is proved with the canonical Matrix
Ansatz technique.

Theorem 2.10 ([12]). Let X ∈ TASEP(n, r) be a state of the 2-TASEP with open bound-
ary conditions. The stationary probability of X is Pr(X) = 1

Zn,r
weight(X), where Zn,r =

∑X∈TASEP(n,r) weight(X).

3 Cylindric rhombic tableaux

We introduce tableaux that we call cylindric rhombic tableaux (CRT), related to the RAT,
for an analogous formula for the stationary probabilities of the 2-TASEP with periodic
boundary conditions.

H(X)

P (X)

Figure 4: For X = 1120200120, (a.) X-strip and (b.) cylindric diagram H(X).

Let X = X1 . . . Xn ∈ TASEP(k, r, `) with n := k + r + `. Define an X-strip to be a
connected strip of 20-tiles and 21-tiles, which is built from right to left by reading X
from left to right and appending a 20-tile for every 0 and a 21-tile for every 1. We define
the cylindric diagram H(X) to be a stack of k X-strips on top of each other with P(X) as
in Definition 2.5 superimposed (see Figure 4).

Identify the vertical edges on the left boundary of H(X) with the corresponding
vertical edges belonging to the same west-strip on the right boundary, making H(X)
a cylinder. We carry over all definitions of tiles, strips, and arrows from the RAT. Set
each west-strip to start at the tile directly west of P(X) and end at the tile directly east of
P(X). We break symmetry with north-strips, however, by setting each north-strip (which
are by construction composed of strips of k 20-tiles) to run from bottom to top of H(X),
disregarding the position of P(X).
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Definition 3.1. A CRT of type X is a filling of the tiles of H(X) with left-arrows and
up-arrows according to same rules as the RAT in Definition 2.8. We denote the set of
CRT by CRT(X).

Figure 5: The set CRT(X) for X = 1220120102.

Our main result is the following, illustrated by Figure 5.

Theorem 3.2. Let X ∈ TASEP(k, r, `) be a state of the 2-TASEP with periodic boundary condi-
tions, with n := k + r + `. Then Pr(X) = 1

(n
k)(

n
`)
|CRT(X)|.

The proof for Theorem 3.2 is a straightforward Matrix Ansatz argument nearly iden-
tical to that for Theorem 3.1 in [12]. We proceed directly to show CRT(X) is in bijection
with MLQ(X).

3.1 Bijections from multiline queues to CRT

Our bijection is based on a technical condition on the weight vector (w1, . . . , w`) associ-
ated to an MLQ via the ball drop of Algorithm 2.1.

Lemma 3.3. Let X = X1 . . . Xn ∈ TASEP(k, r, `) with Xx1 = · · · = Xx` = 0. For i ∈ [1, `],
define bi = max{j < xi : Xj = 1} to be the locations of the nearest 1’s to the left of each 0 in
X. Let (w1, . . . , w`) be the weight vector of M ∈ MLQ(X). The conditions on (w1, . . . , w`) are:

∑
j: bi<xj≤xi

wj + 1 ≤ xi − bi.

for each i. In other words, there are enough vacancies left of each xi so that it can have weight wi.

We call a list (w1, . . . , w`) that satisfies the condition in Lemma 3.3 an X-consistent
list. Lemma 2.2 states that each X-consistent list corresponds uniquely to an MLQ in
MLQ(X). By the same principles, it turns out that an X-consistent list also corresponds
uniquely to a CRT in CRT(X).

Lemma 3.4. Let R ∈ CRT(X) with ai the number of left-arrows in the i’th north-strip of R
from right to left. Then (a1, . . . , a`) is an X-consistent list. Moreover, for any X-consistent list
(a1, . . . , a`), there exists a unique filling of CRT(X) with this property.
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The second statement of Lemma 3.4 is proved by construction: when filling the north-
strips from right to left, the left-arrows must be placed in consecutive free tiles from
bottom to top (see Prop 3.1 in [9]).

Definition 3.5. Let M ∈ MLQ(X) have weight vector (w1, . . . , w`). Construct ΨCRT(M) ∈
CRT(X) so the i’th north-strip of ΨCRT(M) from right to left has wi left-arrows for each
i.

00 21 1

ΨCRT

Figure 6: The weights of the MLQ M are (1, 1, 0, 0, 2), which is also the number of
left-arrows in each north-strip from right to left in the CRT ΨCRT(M).

See Figure 6 for an example of the map ΨCRT. It is similarly easy to define the
inverse of ΨCRT by Lemmas 3.4 and 2.2 and reversing Algorithm 2.1, thus establishing
that ΨCRT : MLQ(X)→ CRT(X) is indeed a bijection.

Remark 3.6. Using nested lattice paths, one obtains a bijection from MLQs to CRT that
is different from ΨCRT. A multiline queue naturally has an interpretation in terms of
weighted lattice paths, where each row of the MLQ is mapped to a path on a triangular
lattice. At q = 0, fillings of RAT are in bijection with weighted nested lattice paths [10],
and indeed one can show this property is preserved in the case of the CRT using the
canonical lattice path bijection of Catalan paths and Catalan tableaux (see [9, 14]).

4 Inhomogeneous 2-TASEP

We define the transitions on the inhomogeneous 2-TASEP with periodic boundary con-
ditions as follows: for arbitrary words X, Y ∈ {2, 1, 0},

X20Y 1→ X02Y, X21Y
x2→ X12Y, X10Y

x1→ X01Y

where 0 ≤ x2, x1 ≤ 1 are parameters describing the hopping rates. When x2 = x1 = 1,
we recover the usual 2-TASEP. When x1 = 1, we recover the inhomogeneous 2-TASEP in
[3] (our solution specializes to the latter after some manipulation).

We introduce a weight on the CRT, which is a monomial in x2, x1 to give a formula
for the probabilities of the inhomogeneous 2-TASEP with periodic boundary conditions.
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Definition 4.1. Let X ∈ TASEP(k, r, `) and R ∈ CRT(X). The weight wt(R) is defined as

wt(R) = xk−Left(R)
2 x`−Up(R)

1 ,

where Left(R) is the number of 20-tiles in R containing a left-arrow and Up(R) is the
number of 20-tiles in R containing an up-arrow. Set weight(X) = ∑R∈CRT(X) wt(R).

Example 4.2. The CRTs in Figure 5 have respective weights x2x3
1, x2

2x2
1, x2

2x2
1, x3

2x1, x4
2x1.

A straightforward Matrix Ansatz argument gives the following result.

Theorem 4.3. Let X ∈ TASEP(k, r, `) be a state of the inhomogeneous 2-TASEP with periodic
boundary conditions. Then Pr(X) = 1

Zk,r,`
weight(X), whereZk,r,` = ∑X∈TASEP(k,r,`) weight(X).

Using ΨCRT, one can define statistics umv and rest on MLQs that correspond to Left
and Up respectively on CRT, the former being a natural statistic, but the latter slightly
cumbersome.

Definition 4.4. For M ∈ MLQ, let umv denote the number of unmarked vacancies in the
bottom row of M after Algorithm 2.1. We call a restricted 0-ball a 0-ball such that at the
time it is hit during Algorithm 2.1, between it and the nearest 1-ball to its left, there are
zero unmarked vacancies. Let rest(M) denote the number of such restricted 0-balls.

Example 4.5. In Figure 1, the 2nd and 5th 0-balls from the left are restricted, since after
they are hit, there are no unmarked vacancies to their left with no 1-ball in between. At
termination there are no unmarked vacancies, so umv(M) = 0 and rest(M) = 2.

Lemma 4.6. For M ∈ MLQ, umv(M) = Left(ΨCRT(M)) and rest(M) = Up(ΨCRT(M)).

Thus by applying Lemma 4.6 to Theorem 4.3, we obtain the following corollary, which
is equivalent to the solution of [3] for the inhomogeneous 2-TASEP at x1 = 1.

Corollary 4.7 ([3]). Let X ∈ TASEP(k, r, `) be a state of the inhomogeneous 2-TASEP with
periodic boundary conditions. Then Pr(X) is proportional to ∑M∈MLQ(X) x−umv(M)

2 .

4.1 Inhomogeneous 2-TASEP with open boundaries and acyclic mul-
tiline queues

A nice consequence of our CRT-MLQ bijection is that we can apply the same methods to
obtain analogous results for the inhomogeneous 2-TASEP with open boundaries. In this
generalization, α and β dictate the rates of entry and exit of class 2 particles at the left
and right boundaries of the lattice, while 1, x2, x1 dictate the rates at which the respective
transitions 20→ 02, 21→ 12, and 10→ 01 occur.

In the expected way, to obtain probabilities for the inhomogeneous process, we mod-
ify the weight of a RAT by counting its tiles of different types that contain arrows.
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Definition 4.8. For R ∈ RAT(n, r), set

wtM(R) = x−Left(R)
2 x−Up(R)

1 αn−r−ufree(R)βn−r−lfree(R)

where Left(R) and Up(R) are statistics carried over from the CRT.

Using a Matrix Ansatz argument, we obtain that the stationary probability of a state
X ∈ TASEP(n, r) of the inhomogeneous 2-TASEP is proportional to ∑R∈RATT (X) wtM(R).

Observe that we can obtain a simple bijection c : CRT(1X1) → RATTX(X) by simply
taking the restriction of T ∈ CRT(1X1) to the region corresponding to Γ(X) above the
path P(1X1) and appending the necessary 10-tiles and up-arrows in a deterministic
way, as in Figure 8. (Here TX the restriction of the canonical tiling of H(X) to Γ(X).)
Consequently, in the next section we use ΨCRT to introduce a new object, the acyclic
multiline queue, which is derived from the usual MLQ, and is in bijection with the RAT.

4.2 Acyclic multiline queues

Definition 4.9. An acyclic MLQ (AMLQ) of type X ∈ TASEP(n, r) is an MLQ of size
(k, r, `) for any 0 ≤ k ≤ n− r that is not on a cylinder, with the following restriction: for
each 1 ≤ i ≤ `, the i’th top row ball (from the left) has at least i bottom row balls weakly
to its right. We denote the set of AMLQs of type X by AMLQ(X), and by AMLQ(n, r)
the set of acyclic MLQs of size (n, r).

In other words, an AMLQ is an MLQ configuration in which every top row ball
occupies a bottom row ball to its right without wrapping. See Figure 7 for an example.

0 0 1

1 2 0

0 1 0

1 2 2

0 1 2

2 0 1

0 2 1

2 0 1

1 0 0

2 1 0

1 0 2

2 1 2

1 2 0

2 2 1

1 2 0

0 1 2

Figure 7: The acyclic MLQs of size (3, 1) are shown. The final marked configuration is
not an AMLQ since the top row ball must wrap around to occupy the bottom row.

Let A ∈ AMLQ(X). Construct e(A) by appending a column containing a vacancy
in the top row and a 1-ball in the bottom row to the left and right of A. The leftmost
column of e(A) trivially contains a 1-ball, and since every top row ball in A occupies
some ball weakly to its right without wrapping around, the bottom row ball at the
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rightmost location of the e(A) must be a 1-ball; thus e(A) ∈ MLQ(1X1) and is moreover
a bijection. Now set ΨRAT = c ◦ΨCRT ◦ e. See Figure 8.

Definition 4.10. The weight of an AMLQ A ∈ AMLQ(n, r) is

wtM(A) = αn−r−ufree(A)βn−r−lfree(A)xlfree(A)−umv(A)
2 xufree(A)−rest(A)

1

where ufree(A) is the number of restricted 0-balls to the left of the leftmost 1-ball in A,
and lfree(A) is the number of unmarked vacancies to the right of the rightmost 1-ball.

Lemma 4.11. The maps Ψ̃CRT : AMLQ(X) → RAT(X) is a weight-preserving bijection with
the following properties: (i.) ufree(A) = ufree(ΨRAT(A)), (ii.) lfree(A) = lfree(ΨRAT(A)),
(iii.) umv(A) = Left(ΨRAT(A)), (iv.) rest(A) = Up(ΨRAT(A)), and finally (v.) wtM(A) =
wtm(ΨRAT(A)).

Combining Lemma 4.11 and the usual Matrix Ansatz proof, we obtain our final result.

Theorem 4.12. Let X be a state of the inhomogeneous 2-TASEP of size (n, r). Then Pr(X) is
proportional to

∑
A∈AMLQ(X)

wtM(A) = ∑
R∈RATT (X)

wtM(R).

00 21 1

e

00 21 1

ΨCRT
c

Figure 8: Let X = 2200120200. We have: A ∈ AMLQ(X) ←→ e(A) ∈ MLQ(1X1) ←→
ΨCRT(e(A)) ∈ CRTTX (1X1) ←→ ΨRAT(A) = c(ΨCRT(e(A))) ∈ RAT(X). The high-
lighted columns in e(A) correspond to the highlighted diagonal strips in ΨCRT(e(A)).

5 Conclusion

Although tableaux are limited to the 2-species context, their capacity for containing
much structure makes the connection with TASEP more transparent than that of the
MLQs. For instance the intuitive tableaux solution for the inhomogeneous process is
superior to the MLQ solution; it is also much more natural to define a Markov chain that
projects to the TASEP on the tableaux rather than on the MLQs. Moreover, in the open
boundary case we get solutions for generalizations of the 2-TASEP with larger numbers
of parameters (see [12, 4]). Multiline queues, on the other hand, generalize well to a
k-TASEP on a ring [1], but are thus far limited to the q = 0 case. Thus by linking these
two families of objects in the 2-TASEP context, we hope to both generalize the MLQs to
obtain solutions for the k-ASEP with additional parameters, as well as to generalize the
tableaux method for more species of particles.
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