Séminaire Lotharingien de Combinatoire 80B (2018) Proceedings of the 30" Conference on Formal Power
Article #97, 6 pp. Series and Algebraic Combinatorics (Hanover)

Visualizing combinatorial objects in Macaulay?2

Brett Barwick*!, Thomas Enkosky'?, Branden Stone3, and Jim
Vallandingham§4

' Division of Mathematics and Computer Science, University of South Carolina Upstate, 800
University Way, Spartanburg, SC 29303

2Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston, MA 02215
3 Mathematics Department, Hamilton College, 198 College Hill Road, Clinton, NY 13323
Data Visualization Engineer, http: //vallandingham. me/

Abstract. Using JavaScript, this package creates interactive visualizations of a variety
of objects in a modern browser. The user has the ability to manipulate the object, run
various tests, and compute invariants. Once finished, the user can export the result
back to the Macaulay2 session.

Keywords: Macaulay2, Graph, Poset, Simplicial Complex, Newton Polytope

1 Introduction and Current State

The computer algebra system (CAS) Macaulay? [5] has been funded by the National Sci-
ence Foundation since 1992 and focuses mainly on algebraic geometry and commutative
algebra. However, the Macaulay? community has also created many great packages to aid
in the study of algebraic combinatorics. For example, the Simplicial Complexes package al-
lows users to compute the f-vector, homology, and Alexander dual of a given simplicial
complex, among other important invariants. The Posets package provides functionality
for analyzing poset structures such as the intersection lattice of a hyperplane arrange-
ment or an LCM lattice. In this note we discuss a new package, Visualize, which allows
users to visually interact with combinatorial objects created by previously established
packages such as these. This interaction has the potential to aid in both teaching and
research.

The Visualize package for Macaulay? utilizes the JavaScript library D3 [1] to bind
mathematical objects to a document object model (DOM). Once bound, these objects can
be displayed and interacted with in a modern browser. The browser then becomes a
portal to Macaulay2, allowing the user to visually edit, test, and manipulate the object

*bbarwick@uscupstate.edu. B.B. was partially supported by NSA Grant No. H98230-10-1-0361.
ftomenk@bu.edu

ibstone@hamilton.edu

§Vlandham@gmaﬂ.Com

http://vallandingham.me/
mailto:bbarwick@uscupstate.edu
mailto:tomenk@bu.edu
mailto:bstone@hamilton.edu
mailto:vlandham@gmail.com

2 Brett Barwick, Thomas Enkosky, Branden Stone, and Jim Vallandingham

before sending it back to Macaulay2? for analysis with more sophisticated tools. For
example, if the user wants to delete an edge from a graph, they can simply select the
edge with the cursor and press the delete key. Adding an edge to a graph is as simple as
dragging and dropping the edge from one existing vertex to another. Once the desired
graph is constructed, the object can be sent back to Macaulay? for further study.

Currently Visualize supports interaction with the Graphs, Posets, and Simplicial Com-
plexes packages and a stable version is integrated in Macaulay2, version 1.10. The pack-
age also has the ability to create a Newton polytope associated to a monomial ideal in
a polynomial ring in 2 or 3 variables and allows the user to export each visualization as
TikZ code, suitable for inclusion in a manuscript. Unfortunately Visualize will not work
on the Macaulay?2 server [6] or with CoCalc [7] as there is no display environment. As
such, Macaulay2 must be installed on the user’s machine in order to use Visualize; this
process will be discussed in Section 4.

In Section 2 we give examples of the functionality of Visualize and a basic work-
flow. Further, we provide comparisons to other programs with similar functionality in
Section 3.

2 Main Functionalities and Applications

The primary function of the Visualize package is to create an interactive user interface
with Macaulay? via a modern browser. The user experience is centered around 3 meth-
ods: openPort, visualize, and closePort. The basic workflow for this package begins
by requiring the user to open a port for communication between Macaulay2 and the web
browser. Once the port is open, the visualize method can be used freely. The general
workflow is as follows:

1. Load or install the Visualize package.

2. Open a port with the openPort method for communication with the browser. It is
up to the user to choose a port and also to close the port when finished.

3. Define an object to visualize. For example, a graph, poset, digraph, etc.

4. Run the visualize method, passing the previously created object as an input. This
will open the browser with an interactive interface. This session is in communica-
tion with Macaulay? through the open port above. At this point, the user can edit
and manipulate the created object.

5. End the session, which automatically exports any edits made to the object back to
Macaulay?.

Visualizing combinatorial objects in Macaulay? 3

6. Continue manipulating and studying the object in Macaulay2, repeating steps 3-5
as necessary.

7. When finished, either close the port with closePort or restart Macaulay?.

2.1 Visualizing Data

In the following we give an application of the visualize method in conjunction with the
Graphs package. As mentioned above, the Posets and SimplicialComplexes packages are
also supported.

In order to use the visualize method, the user must first open a port on their ma-
chine. This could potentially be dangerous as someone could be listening on that port.
However, the open port is only accessible to the localhost and is most vulnerable if the
package is being run on a server. The user may choose any port number they wish.
Common ports are 8080 and 8081. For example,

il : needsPackage "Visualize"
ol = Visualize
ol : Package

i2 : openPort "8080"
--Port $localhost:8080 is now open.

With an open port, constructing an object in the browser is not much different than
constructing the object normally. For example, to create a graph in Macaulay2 we would
use the following commands.

i3 : needsPackage'"Graphs"
03 = Graphs
o3 : Package

i4 : G = graph({{1,2},{1,3},{2,3},{3,4}},Singletons=>{5});
To visualize this in the browser, we use the visualize method.

i5 : visualize G
-- Visualizing. Your browser should open automatically.
-- Click ’End Session’ in the browser when finished.

At this point the user’s default browser will open with an interactive session similar
to what is shown in Figure 1. With the graph displayed in the browser, the user has
many options available. While the specific options vary depending on the object being
visualized, the general concepts are all the same. Using the mouse, the vertices of the

4 Brett Barwick, Thomas Enkosky, Branden Stone, and Jim Vallandingham

Menu

Force variables
Charge:
Links:

® Enable editing
Hide labels

Highlight neighbors
. Reset nodes
Turn off force
. ¥ Generate TikZ code
. Boolean tests ~
Numerical invariants ~

End session

Figure 1: An interactive visualization of the graph in the browser.

graph can be moved around and pinned to the canvas. Further, creation (and deletion)
of edges and vertices is possible by simply clicking and dragging.

The menu on the right side of the session provides options to enable/disable editing,
show /hide labels, highlight neighbors of vertices, reset the positions of the nodes, and
turn off the D3 force environment (which causes the vertices to move and naturally settle
into an attractive layout). The browser interface also allows for exporting TikZ code of
the graph as seen on the screen (currently only in grayscale) as well as the ability to run
boolean tests or calculate numerical invariants that the Graphs package supports.

Once the graph has been modified and/or tested, clicking "End session” will export
the graph in the browser back to Macaulay2 for more sophisticated calculations and
constructions. When finished, the closePort command will close the port that was
opened.

i6 : closePort()
--Port $localhost:8080 is now closing. This could take a few seconds.

Restarting or quitting Macaulay? will also close the port.

3 Comparison with Existing Software

Graphing and interacting with objects is not a new feature for computer algebra soft-
ware. In fact, almost all major platforms (Maple, Mathematica, MATLAB, SageMath,
etc.) have interactive plotting capabilities. However, these interactions are usually cen-
tered around a sliding bar which may be used to adjust a parameter, causing a static

Visualizing combinatorial objects in Macaulay? 5

image to refresh. Using JavaScript, the combinatorial objects pictured by Visualize are
not static and move across the screen when created. The user is then able to tweak the
particular layout of the image, directly manipulating the object without a frame of ref-
erence to center the image. Also, the object can be edited and tested directly from the
browser interface, creating a new object that can be sent back to Macaulay?2 for further
investigation. To the best of the authors” knowledge, there is no other current program
with this functionality that supports all of the structures supported by the Visualize pack-
age. The closest comparable open source software package we could find is GraphViz
[3]. This program has been in development for almost two decades, and as such provides
more robust visualization options than our package for graphs and digraphs, especially
with a large number of vertices and edges. However this software cannot interface di-
rectly with Macaulay? and also does not natively handle posets or simplicial complexes.
While some applets and software packages have been developed for visualizing posets
and/or simplicial complexes (for example [8], [2], and [10]), these software packages
also do not interface natively with any computer algebra system and most do not allow
the user to interact with and manipulate the objects in real-time.

Before Visualize, Macaulay2 did not have any interactive visualizations for the sup-
ported packages. While some packages did support the generation of static images of
graphs, posets, and Newton polytopes, the user did not have any control over the design
of the image or any way to interact visually with the object.

4 Ease of Use and Sustainability

The Visualize package has been available with Macaulay?2 starting with version 1.10. The
user only needs to run needsPackage "Visualize" as detailed above to have access to
the package. Funded by the NSF since 1992, Macaulay?2 is open source and available for
download at http://macaulay2.com for Linux and MacOS platforms. Full documenta-
tion for Visualize is available on the Macaulay2 website as well as locally by running the
following in Macaulay?.

i7 : installPackage "Visualize"

i8 : viewHelp Visualize

The documentation contains detailed examples for each of the supported packages. Cur-
rently Visualize only supports three packages: Graphs, Posets, and Simplicial Complexes.
The authors plan to continue development and extend support to other packages in the
future.

As of version 0.8, Visualize does not have any tests implemented. Most of the code is
written in JavaScript and relies on connection to the Macaulay?2 server for the visualiza-
tions to be created. As far as we know, the unit testing framework available in Macaulay?2

http://macaulay2.com

6 Brett Barwick, Thomas Enkosky, Branden Stone, and Jim Vallandingham

is not able to handle this situation. As such, we currently rely on users to post issues to
the development repository on GitHub [13].

Acknowledgements

We are grateful to the following people who have generously contributed code or worked
on our code at various Macaulay? workshops: Ata Firat Pir, Elliot Korte, Will Smith, and
Julio Urenda. We are also extremely thankful to Dan Grayson and Mike Stillman for
their help in facilitating communication between Macaulay? and the browser.

Finally, we are thankful to the authors of the open source JavaScript libraries [1, 4, 9,
11, 12]. These libraries greatly enhanced the aesthetics and functionality of our package.

References

[1] M. Bostock. “D3.js Version 3”. Available at https://d3js.org.
[2] R. Freese. “Lattice Drawing Component”. Available at http://www.latdraw.org/.

[3] E.R. Gansner and S.C. North. “An open graph visualization system and its applications to
software engineering”. SOFTWARE - PRACTICE AND EXPERIENCE 30.11 (2000), pp. 1203—
1233.

[4] L. Gersen. “noUiSlider.js v8.5.1”. Available at http:/ /refreshless.com/nouislider/.

[5] D.R. Grayson and M.E. Stillman. “Macaulay?2, a software system for research in algebraic
geometry”. Available at http://www.math.uiuc.edu/Macaulay2/.

[6] F. Hinkelmann, L. Kastner, and M.E. Stillman. “Macaulay?2 server”. Available at
http:/ /web.macaulay2.com.

[7] SageMath Inc. CoCalc Collaborative Computation Online. Available at
https:/ /cocalc.com.

[8] P.Jipsen. “Interactive Poset and Lattice Drawing Java Applet”. Available at
http:/ /www1.chapman.edu/ jipsen/gap/posets.html.

[9] A.Lombardo. “BootSideMenu.js”. Available at
https:/ /github.com/AndreaLombardo/BootSideMenu/.

[10] A. Nikolaev. “visualsc: A simplicial complex visualization tool similar to GraphViz”. Avail-
able at https://github.com/a-nikolaev /visualsc/.

[11] M. Otto and J. Thornton. “Bootstrap.js v3.3.6”. Available at http://getbootstrap.com/.
[12] Z. Rocha. “clipboard.js v1.5.10”. Available at https://clipboardjs.com.

[13] B. Stone, B. Barwick, T. Enkosky, and J. Vallandingham. “Visualize Package for Macaulay2”.
Available at https:/ /github.com/b-stone/Visualize-M2/.

https://d3js.org
http://www.latdraw.org
http://refreshless.com/nouislider/
http://www.math.uiuc.edu/Macaulay2/
http://web.macaulay2.com
https://cocalc.com
http://www1.chapman.edu/~jipsen/gap/posets.html
https://github.com/AndreaLombardo/BootSideMenu/
https://github.com/a-nikolaev/visualsc/
http://getbootstrap.com/
https://clipboardjs.com
https://github.com/b-stone/Visualize-M2/

	Introduction and Current State
	Main Functionalities and Applications
	Visualizing Data

	Comparison with Existing Software
	Ease of Use and Sustainability

