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Abstract. We give a new formula for the irreducible spin characters of the symmetric
groups. This formula is analogous to Stanley’s character formula for the usual (linear)
characters of the symmetric groups.
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The spin symmetric group S̃n is the double cover of the symmetric group Sn. This
group is generated by t1, . . . , tn−1, z subject to the relations:

z2 = 1,

zti = tiz, t2
i = z for i ∈ [n− 1],

(titi+1)
3 = z for i ∈ [n− 2],

titj = ztjti for |i− j| ≥ 2;

we use the convention that [k] = {1, . . . , k}. This group was introduced by Schur [12]; it
is essential for studying projective representations of the usual symmetric group Sn.

Schur proved that, roughly speaking1, the conjugacy classes of S̃n which are non-
trivial from the viewpoint of the character theory are indexed by odd partitions of n,
i.e. partitions (π1, . . . , πl) of n such that π1 ≥ · · · ≥ πl are odd positive integers. The set
of such odd partitions of n will be denoted by OPn. We set OP =

⋃∞
n=0 OPn.

The central element z ∈ S̃n acts on each irreducible representation by ±1. An irre-
ducible representation of S̃n is said to be spin if z corresponds to −1. Schur also proved
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x

y

Figure 1: Strict partition ξ = (6, 5, 2) shown as a shifted Young diagram and its double
D(ξ) = (7, 7, 5, 3, 2, 2).

that the irreducible spin representations of S̃n, roughly speaking2, correspond to strict
partitions of n, i.e. to partitions (ξ1, . . . , ξl) of n which form a strictly decreasing sequence
ξ1 > · · · > ξl of positive integers. The set of such strict partitions of n will be denoted by
SPn. We will represent them as shifted Young diagrams, cf. Figure 1. We set SP =

⋃∞
n=0 SPn.

For an odd partition π ∈ OPn (which corresponds to a conjugacy class of S̃n) and
a strict partition ξ ∈ SPn (which corresponds to its irreducible spin representation) we
denote by φ̃ξ (π) the corresponding spin character (for some fine details related to this
definition we refer to [5, Section 2] and [9]). Our goal is to give a closed formula
for such spin characters which would be useful for the purposes of the asymptotic
representation theory, i.e. which would allow good understanding of the limit ξ → ∞.

In the following it will be more convenient to pass to quantities

Xξ (π) := 2
`(ξ)−`(π)

2 φ̃ξ (π) ,

where `(π) denotes the number of parts of a partition π, cf. [5, Proposition 3.3].

1 Normalized characters

The usual way of viewing the linear characters χλ (π) of the symmetric group Sn is
to fix the irreducible representation λ and to consider the character as a function of the
conjugacy class π. The dual approach, initiated by Kerov and Olshanski [6], suggests to do
the opposite: fix the conjugacy class π and to view the character as a function of the irreducible
representation λ. In order for this approach to be successful one has to choose the most
convenient normalization constants which we review in the following.

For a fixed integer partition π the corresponding normalized linear character on the

2For an exact statement see [9].
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conjugacy class π (cf. [6]) is the function on the set of all Young diagrams given by

Chπ(λ) :=

n↓k
χλ(π∪1n−k)

χλ(1n)
if n ≥ k,

0 otherwise,

where n = |λ| and k = |π| and n↓k = n(n− 1) · · · (n− k + 1) denotes the falling power.
Above, for partitions λ, σ ` n we denote by χλ (σ) the irreducible linear character of
the symmetric group which corresponds to the Young diagram λ, evaluated on any
permutation with the cycle decomposition given by σ.

Following Ivanov [5], for a fixed odd partition π ∈ OP the corresponding normalized
spin character is a function on the set of all strict partitions given by

Chspin
π (ξ) :=

n↓k
Xξ(π∪1n−k)

Xξ(1n)
= n↓k 2

k−`(π)
2

φ̃ξ(π∪1n−k)
φ̃ξ(1n)

if n ≥ k,

0 otherwise,
(1.1)

where n = |ξ|, k = |π|, and `(π) denotes the number of parts of π. We will find a
closed formula for such spin characters Chspin

π . We will achieve it by finding a link
between the families (Chspin

π ) and (Chπ) of spin and linear characters.

2 Stanley character formulas

Let σ1, σ2 ∈ Sk be permutations and let λ be a Young diagram. Following [4], we say
that ( f1, f2) is a coloring of (σ1, σ2) which is compatible with λ if:

• fi : C(σi) → Z+ is a function on the set of cycles of σi for each i ∈ {1, 2}; we view
the values of f1 as columns of λ and the values of f2 as rows;

• whenever c1 ∈ C(σ1) and c2 ∈ C(σ2) are cycles which are not disjoint, the box with
the Cartesian coordinates

(
f1(c1), f2(c2)

)
belongs to λ.

We denote by Nσ1,σ2(λ) the number of colorings of (σ1, σ2) which are compatible with λ.
Example 2.1. Let

σ1 = (1, 5, 4, 2)︸ ︷︷ ︸
V

(3)︸︷︷︸
W

, σ2 = (2, 3, 5)︸ ︷︷ ︸
Π

(1, 4)︸ ︷︷ ︸
Σ

. (2.1)

There are three pairs of cycles (σ1, σ2) ∈ C(σ1) × C(σ2) with the property that σ1 and
σ2 are not disjoint, namely (V, Π), (V, Σ), (W, Π). It is now easy to check graphically
(cf. Figure 2) that ( f1, f2) is indeed a coloring compatible with λ = (3, 1) for

f1(V) = 1, f1(W) = 3, f2(Π) = 1, f2(Σ) = 2. (2.2)

By considering four possible choices for the values of f2 and counting the choices for
the values of f1 one can verify that Nσ1,σ2(λ) = 32 + 3 + 1 + 1 = 14 for λ = (3, 1).
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Figure 2: Graphical representation of the coloring (2.2) of the permutations (2.1) which
is compatible with the Young diagram λ = (3, 1).

2.1 Linear Stanley character formula

Stanley [15] conjectured a certain closed formula for the linear characters of the sym-
metric groups. One of its proofs [4] was obtained by rewriting it in an equivalent form
which we will recall in the following.

We will identify a given integer partition π = (π1, . . . , π`) ` k with an arbitrary
permutation π ∈ Sk with the corresponding cycle structure.

Theorem 2.2 ([4]). For any partition π ` k and any Young diagram λ

Chπ(λ) = ∑
σ1,σ2∈Sk
σ1σ2=π

(−1)σ1 Nσ1,σ2(λ), (2.3)

where (−1)σ1 ∈ {−1, 1} denotes the sign of the permutation σ1.

This formula is closely related to Kerov polynomials [2] which are expressions of the
characters Chπ in terms of free cumulants of Young diagrams. Recently, the first author
[8] found spin counterparts for Kerov polynomials. The current paper was initiated by
attempts to understand the underlying structures behind this result.

2.2 The main result: spin Stanley character formula

For a strict partition ξ ∈ SPn we consider its double D(ξ) which is an integer partition
of 2n. Graphically, D(ξ) corresponds to a Young diagram obtained by arranging the
shifted Young diagram ξ and its ‘transpose’ so that they nicely fit along the ‘diagonal’,
cf. Figure 1, see also [7, page 9].

For σ1, σ2 ∈ Sk we denote by |σ1 ∨ σ2| the number of orbits in the set [k] = {1, . . . , k}
under the action of the group 〈σ1, σ2〉 generated by σ1 and σ2. As before, we identify an
integer partition π ` k with an arbitrary permutation π ∈ Sk with the corresponding
cycle structure.
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Figure 3: Multirectangular Young diagram P×Q and multirectangular shifted Young
diagram P o Q.

Theorem 2.3 (The main result). For any odd partition π ∈ OPk and ξ ∈ SP

Chspin
π (ξ) = ∑

σ1,σ2∈Sk
σ1σ2=π

1
2|σ1∨σ2|

(−1)σ1 Nσ1,σ2

(
D(ξ)

)
. (2.4)

The remaining sections of this paper (Sections 3 to 5) are devoted to a sketch of the
proof of this result. In the following we will discuss some of its applications.

2.3 Application: bounds on spin characters

The following character bound is a spin version of an analogous result for the linear
characters of the symmetric group [4]. It is a direct application of Theorem 2.3 and its
proof follows the same line as its linear counterpart [4].

Corollary 2.4. There exists a universal constant a > 0 with the property that for any integer
n ≥ 1, any strict partition ξ ∈ SPn, and any odd partition π ∈ OPn

2
n−`(π)

2

∣∣∣∣ φ̃ξ (π)

φ̃ξ (1n)

∣∣∣∣ = ∣∣∣∣ Xξ (π)

Xξ (1n)

∣∣∣∣ < [a max
(

ξ1

n
,

n− `(π)

n

)]n−`(π)

.

Several asymptotic results about (random) Young diagrams and tableaux which use
the inequality from [4] can be generalized in a rather straightforward way to (random)
shifted Young diagrams and shifted tableaux thanks to Corollary 2.4. A good example is
provided by the results about the asymptotics of the number of skew standard Young
tableaux of prescribed shape [3] which can be generalized in this way to asymptotics of
the number of skew shifted standard Young tableaux.

2.4 Application: characters on multirectangular Young diagrams

Following Stanley [14], for tuples of integers P = (p1, . . . , pl), Q = (q1, . . . , ql) which ful-
fill some obvious inequalities we consider the corresponding multirectangular Young dia-
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gram P×Q, cf. Figure 3. Stanley [14, 15] initiated investigation of the characters Chπ(P×
Q) viewed as polynomials in the multirectangular coordinates p1, . . . , pl, q1, . . . , ql; these
polynomials now are referred to as (linear) Stanley character polynomials.

The number of colorings Nσ1,σ2(P × Q) ∈ Z[p1, . . . , pl, q1, . . . , ql] is given by a very
explicit, convenient polynomial. In this way the linear Stanley formula (Theorem 2.2)
gives an explicit expression for the linear Stanley polynomials.

De Stavola [1] adapted these concepts to shifted multirectangular Young diagrams
P o Q cf. Figure 3 and initiated investigation of spin Stanley polynomials Chspin

π (P o Q).
Thanks to Theorem 2.3, by expressing the multirectangular coordinates P, Q of the
double P × Q = D(P o Q) in terms of the shifted multirectangular coordinates P, Q
one can obtain a rather straightforward expression for the spin Stanley polynomial
Chspin

π (P o Q). Applications of this result to spin Kerov polynomials will be discussed
in a forthcoming paper.

2.5 Towards irreducible representations of spin groups

The proof of the linear Stanley formula (2.3) presented in [4] was found in the following
way. We attempted to reverse-engineer the right-hand side of (2.3) and to find

• some natural vector space V with the basis indexed by combinatorial objects; the
space V should be a representation of the symmetric group Sn with n := |λ|, and

• a projection Π : V → V such that Π commutes with the action of Sn and such
that its image ΠV is an irreducible representation of Sn which corresponds to the
specified Young diagram λ

in such a way that the corresponding character of ΠV would coincide with the right-
hand side of (2.3).

Our attempt was successful: one could consider a vector space V with the basis
indexed by fillings of the boxes of λ with the numbers from [n]. The action of Sn on this
basis was given by pointwise relabelling of the values in the boxes. The projection Π
turned out to be the Young symmetrizer with the action given by shuffling of the boxes
in the rows and columns of λ. The resulting representation ΠV clearly coincides with
the Specht module, which concluded the proof.

The structure of the right-hand side of (2.4) might be an indication that an analogous
reverse-engineering process could be applied to the spin case. The result would be a
very explicit construction of the irreducible spin representations which would be an
alternative to the somewhat complicated approach of Nazarov [11].
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3 Linear characters in terms of spin characters

For ξ ∈ SP and π ∈ OP we denote

C̃hπ(ξ) :=
1
2

Chπ

(
D(ξ)

)
.

The following result is an intermediate step in the proof of Theorem 2.3 but it might
be of independent interest. In particular, in a forthcoming paper [10] we shall discuss its
applications in the study of random strict partitions as well as random shifted standard
Young tableaux.

Theorem 3.1. For any odd integers k1, k2, . . . ≥ 1 the following equalities between functions on
the set SP of strict partitions hold true:

C̃hk1 = Chspin
k1

, (3.1)

C̃hk1,k2 = Chspin
k1,k2

+ Chspin
k1

Chspin
k2

,

C̃hk1,k2,k3 = Chspin
k1,k2,k3

+ Chspin
k1,k2

Chspin
k3

+ Chspin
k1,k3

Chspin
k2

+ Chspin
k2,k3

Chspin
k1

,
...

C̃hk1,...,kl
= ∑

I:
|I|≤2

∏
b∈I

Chspin
(ki :i∈b), (3.2)

where the sum in (3.2) runs over all set-partitions of [l] into at most two blocks.

Proof. For an integer partition π we consider the standard numerical factor

zπ = ∏
j≥1

jmj(π)mj(π)!,

where mj(π) denotes the multiplicity of j in the partition π. We denote by f λ = χλ
(

1|λ|
)

the number of standard tableaux of shape λ. For a strict partition ξ we denote

gξ = Xξ
(

1|ξ|
)

which also happens to be the number of shifted standard tableaux with the shape given
by the shifted Young diagram ξ, see [7, III–8, Ex. 12].

Recall the symmetric function algebra Λ = C[p1, p2, p3, . . . ] and its subalgebra, the
algebra of supersymmetric functions Γ = C[p1, p3, p5, . . . ], where the pr are Newton’s power-
sums. Define the algebra homomorphism ϕ : Λ→ Γ by

ϕ(pr) =

{
2pr if r is odd,
0 if r is even.
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Then [7, III–8, Ex. 10] implies that for any strict partition ξ we have

ϕ(sD(ξ)) = 2−`(ξ)(Qξ)
2, (3.3)

where Qξ = Qξ(x;−1) denotes Schur’s Q-function [7, pp. III–8].
Recall the Frobenius formula for Schur functions:

sµ = ∑
π

z−1
π χµ (π) pπ.

Applying the homomorphism ϕ to this identity with µ = D(ξ), we obtain

ϕ(sD(ξ)) = ∑
π∈OP2n

2`(π)z−1
π χD(ξ) (π) pπ.

And, recall the Frobenius formula for Schur Q-functions:

Qξ = ∑
ν∈OPn

2`(ν)z−1
ν Xξ (ν) pν.

Substituting these formulas to (3.3), we have for any ξ ∈ SPn

∑
π∈OP2n

2`(π)z−1
π χD(ξ) (π) pπ = 2−`(ξ)

(
∑

ν∈OPn

2`(ν)z−1
ν Xξ (ν) pν

)2

. (3.4)

By comparing the coefficients of p(12n) = p(1n)p(1n) in both sides of (3.4), we find

f D(ξ)

(2n)!
= 2−`(ξ)

(
gξ

n!

)2

. (3.5)

First we assume that π is an odd partition which does not have parts equal to 1, i.e.,
m1(π) = 0. By comparing the coefficients of pπ∪(12n−|π|) in both sides of (3.4) we find

χD(ξ)
(

π ∪ (1n−|π|)
)

zπ∪(1n−|π|)
= 2−`(ξ) ∑

µ1,µ2

µ1∪µ2=π

Xξ
(

µ1 ∪ (1n−|µ1|)
)

z
µ1∪(1n−|µ1|)

Xξ
(

µ2 ∪ (1n−|µ2|)
)

z
µ1∪(1n−|µ2|)

.

By the assumption m1(π) = 0, we have zπ∪(12n−|π|) = zπ · (2n− |π|)! and z
µi∪(1n−|µi |)

=

zµi · (n− |µi|)!. Thus, we obtain

χD(ξ)
(

π ∪ (1n−|π|)
)

zπ · (2n− |π|)! = 2−`(ξ) ∑
µ1,µ2

µ1∪µ2=π

Xξ
(

µ1 ∪ (1n−|µ1|)
)

zµ1 · (n− |µ1|)!
Xξ
(

µ2 ∪ (1n−|µ2|)
)

zµ2 · (n− |µ2|)! .
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Taking the quotient of this and (3.5), we have

1
zπ

(2n)!
(2n− |π|)!

χD(ξ)
(

π ∪ (12n−|π|)
)

f D(ξ)
=

∑
µ1,µ2

µ1∪µ2=π

1
zµ1zµ2

n!
(n− |µ1|)!

Xξ
(

µ1 ∪ (1n−|µ1|)
)

gξ

n!
(n− |µ2|)!

Xξ
(

µ2 ∪ (1n−|µ2|)
)

gξ
,

which is equivalent to

Chπ

(
D(ξ)

)
= ∑

µ1,µ2

µ1∪µ2=π

zπ

zµ1zµ2
Chspin

µ1 (ξ) Chspin
µ2 (ξ).

It is easy to see that this is equivalent to the desired formula. Thus, we completed the
proof of the theorem under the assumption m1(π) = 0.

In the general case we write π = π̃ ∪ (1r) with m1(π̃) = 0 and r = m1(π). We apply
Theorem 3.1 for π̃; simple manipulations with the binomial coefficients imply that the
claim holds true for π as well.

4 Spin characters in terms of linear characters

Formulas (3.1)–(3.2) can be viewed as an upper-triangular system of equations with
unknowns (Chspin

π )π∈OP. It can be solved, for example

Chspin
k1

= C̃hk1 ,

Chspin
k1,k2

= C̃hk1,k2 − C̃hk1 C̃hk2 ,

Chspin
k1,k2,k3

= C̃hk1,k2,k3

− C̃hk1,k2 C̃hk3 − C̃hk1,k3 C̃hk2 − C̃hk2,k3 C̃hk1

+ 3C̃hk1C̃hk2C̃hk3 ,
...


(4.1)

The general pattern is given by the following result. In this way several problems
involving spin characters are reduced to investigation of their linear counterparts.

Theorem 4.1. For any π ∈ OP

Chspin
π = ∑

I
(−1)|I|−1 (2|I| − 3)!! ∏

b∈I
C̃h(πi :i∈b), (4.2)

where the sum runs over all set-partitions of the set [`(π)]; by definition (−1)!! = 1.
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Proof. The process of solving the upper-triangular system of equations (3.1)–(3.2) can be
formalized as follows. By singling out the partition I in (3.2) which consists of exactly
one block we may express the spin character Chspin

π in terms of the linear character C̃hπ

and spin characters Chspin
π′ which correspond to partitions π′ ∈ OP with `(π′) < `(π):

Chspin
π = C̃hπ − ∑

I:
|I|=2

∏
b∈I

Chspin
(πi :i∈b). (4.3)

By applying this procedure recursively to the spin characters on the right-hand side, we
end up with an expression for Chspin

π as a linear combination (with integer coefficients)
of the products of the form

∏
b∈I

C̃h(πi :i∈b) (4.4)

over set-partitions I of [`(π)]. The remaining difficulty is to determine the exact value
of the coefficient of (4.4) in this linear combination.

The above recursive procedure can be encoded by a tree in which each non-leaf vertex
has two children and the leaves are labelled by the factors in (4.4) or, equivalently, by
the blocks of the set-partition I. Such trees are known under the name of total binary
partitions; the cardinality of such trees with prescribed leaf labels I is equal to (2|I| − 3)!!
[13, Example 5.2.6].

Our recursive procedure involves change of the sign; such a change occurs once for
each non-leaf vertex. Thus each total binary tree contributes with multiplicity (−1)|I|−1

which concludes the proof.

5 Proof of spin Stanley formula

Proof of Theorem 2.3. We start with Theorem 4.1 and substitute each normalized linear
character Chν which contributes to the right-hand side of (4.2) by linear Stanley character
formula (2.3).

We shall discuss in detail the case when π = (π1, π2) consists of just two parts. We
will view Sπ1 , Sπ2 and Sπ1+π2 as the groups of permutations of, respectively, the set
{1, . . . , π1}, {π1 + 1, . . . , π1 + π2} and {1, . . . , π1 + π2}. In this way we may identify
Sπ1 ×Sπ2 as a subgroup of Sπ1+π2 . Thanks to these notations

Chspin
π1,π2(ξ) =

(−1)!!
2

Chπ1,π2

(
D(ξ)

)
− 1!!

22 Chπ1

(
D(ξ)

)
Chπ2

(
D(ξ)

)
=

(−1)!!
2 ∑

σ1,σ2∈Sπ1+π2
σ1σ2=(π1,π2)

(−1)σ1 Nσ1,σ2

(
D(ξ)

)
− 1!!

22 ∑
σ1,σ2∈Sπ1×Sπ2

σ1σ2=(π1,π2)

(−1)σ1 Nσ1,σ2

(
D(ξ)

)
, (5.1)
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where the last equality follows from the observation that a double sum over factoriza-
tions of π1 ∈ Sπ1 and over factorizations of π2 ∈ Sπ2 can be combined into a single sum
over factorizations of (π1, π2) ∈ Sπ1 ×Sπ2 .

In general,
Chspin

π (ξ) = ∑
σ1,σ2∈S|π|

σ1σ2=π

cσ1,σ2 (−1)σ1 Nσ1,σ2

(
D(ξ)

)
(5.2)

for some combinatorial factor cσ1,σ2 . The exact value of this factor is equal to

cσ1,σ2 = Cm = (−1)∑
p

{
m
p

}(
−1

2

)p
(2p− 3)!!, (5.3)

where m denotes the number of orbits in [|π|] under the action of 〈σ1, σ2〉, and {m
p}

denotes Stirling numbers of the second kind. Indeed, the set-partition I (over which
we sum in (4.2)) can be identified with a set-partition of the set C(π) of the cycles of
the permutation π ∈ S|π|. With this in mind we see that to cσ1,σ2 contribute only these
set-partitions I on the right-hand side of (4.2) for which I is bigger than the set-partition
given by the orbits of 〈σ1, σ2〉. The collection of such set-partitions can be identified with
the collection of set-partitions of an m-element set (i.e. the set of orbits of 〈σ1, σ2〉).

The exact form of the right-hand side of (5.3) is not important; the key point is that it
depends only on m, the number of orbits of 〈σ1, σ2〉. In order to evaluate its exact value
Cm we shall consider (5.2) in the special case of π = 1m. In this case σ2 = σ−1

1 ; we denote
by l = |C(σ1)| the number of cycles of σ1. It follows that

Chspin
1m (ξ) = n↓m = ∑

l

[
m
l

]
Cl (−1)m−l (2n)l,

where n = |ξ| and [ml ] denotes Stirling number of the first kind. Both sides of the equality
are polynomials in the variable n; by comparing the leading coefficients we conclude that

Cm =
1

2m .

By substituting this value to (5.2) we conclude the proof.
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We thank Valentin Féray and Maciej Dołęga for several inspiring discussions.

References

[1] D. De Stavola. “Asymptotic results for Representation Theory”. 2017. arXiv:1805.04065.

https://arxiv.org/abs/1805.04065


12 Sho Matsumoto and Piotr Śniady
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