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Queer supercrystals in SageMath
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Abstract. We describe the implementation of queer supercrystals. Our code is docu-
mented with test suites and has been integrated into SageMath. Through computer
explorations using this implementation, we provide a counterexample to Assaf’s and
Oguz’ conjecture that their local queer axioms uniquely characterize the queer super-
crystal.
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1 Introduction: SageMath and queer supercrystals

SageMath [7, 20] is a free open-source mathematical software licensed under GPL. It
is based on Python, supports object-oriented programming, and has interfaces to many
open source packages such as GAP, matplotlib, Numpy, R, and SciPy. Since its first
release in 2005, SageMath has an active pool of developers worldwide and supports
computations in diverse mathematical areas such as algebra, combinatorics, number
theory, numerical analysis, graph theory, and statistics.

Lie superalgebras [16] arose in physics in theories that unify bosons and fermions.
They are essential in modern string theories [8] and appear in other areas of mathe-
matics, such as the projective representations of the symmetric group. The crystal basis
theory has been developed for various quantum superalgebras [3, 10, 11, 12, 13, 17, 18].
In this paper, we are interested in the queer superalgebra q(n) (see for example [5]). A
theory of highest weight crystals for the queer superalgebra q(n) was recently developed
by Grantcharov et al. [10, 11, 12]. They provide an explicit combinatorial realization of
the highest weight crystal bases in terms of semistandard decomposition tableaux and
show how these crystals can be derived from a tensor product rule and the vector rep-
resentation. They also use the tensor product rule to derive a Littlewood–Richardson
rule. Choi and Kwon [6] provide a new characterization of Littlewood–Richardson–
Stembridge tableaux for Schur P-functions by using the theory of q(n)-crystals. Inde-
pendently, Hiroshima [15] and Assaf and Oguz [2, 1] defined a queer crystal structure
on semistandard shifted tableaux, extending the type A crystal structure of [14] on these
tableaux.
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The authors, in joint work with Gillespie and Hawkes [9], provided a characteriza-
tion of the queer supercrystals in analogy to Stembridge’s characterization of crystals
associated to classical simply-laced root systems [21]. In the initial stages of this work,
there was no implementation of queer supercrystals. As there is an extensive infrastruc-
ture to perform computations with other crystals within SageMath , it was a natural
choice to use the existing infrastructure in SageMath to code the queer supercrystals.
The implementation of queer supercrystals was achieved in the SageMath ticket [19].

Assaf and Oguz [2, 1] conjecture a local characterization of queer crystals in the spirit
of Stembridge [21], which involves local relations between the odd crystal operator f−1
with the type An−1 crystal operators fi for 1 6 i < n. However, through computer
explorations using the code in [19], we provide a counterexample to [1, Conjecture 4.16],
which conjectures that these local axioms uniquely characterize the queer supercrystals.

The remainder of this paper is organized as follows. In Section 2, we give the defini-
tion of queer supercrystals. In Section 3, we describe the main features and methods that
the user can access from our implementation of queer supercrystals. As an application,
we also outline how a counterexample to Assaf’s and Oguz’s conjecture is discovered
using this implementation in the same section. Finally, in Section 4, we elaborate how
our implementation of queer supercrystals was integrated and tested by the SageMath

community as well as provide references for documentation of our implementation.

2 Definition of queer supercrystals

An (abstract) crystal of type An is a nonempty set B together with the maps

ei, fi : B→ B t {0} for i ∈ I and wt : B→ Λ, (2.1)

where Λ = Zn+1
>0 is the weight lattice of the root of type An and I = {1, 2, . . . , n} is the

index set, subject to several conditions. Denote by αi = εi − εi+1 for i ∈ I the simple
roots of type An, where εi is the i-th standard basis vector of Zn+1. Then we require:

A1. For b, b′ ∈ B, we have fib = b′ if and only if b = eib′. In this case wt(b′) =
wt(b)− αi.

For b ∈ B, we also define ϕi(b) = max{k ∈ Z>0 | f k
i (b) 6= 0} and εi(b) = max{k ∈ Z>0 |

ek
i (b) 6= 0}. For further details, see for example [4, Definition 2.13].

There is an action of the symmetric group Sn on a type An crystal B given by the
operators

si(b) =

{
f k
i (b) if k > 0,

e−k
i (b) if k < 0,

(2.2)

for b ∈ B, where k = ϕi(b)− εi(b). An element b ∈ B is called highest weight if ei(b) = 0
for all i ∈ I. Similarly, b is called lowest weight if fi(b) = 0 for all i ∈ I. For a subset
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Figure 1: q(n + 1)-queer crystal of letters B

J ⊆ I, we say that b is J-highest weight if ei(b) = 0 for all i ∈ J and similarly b is J-lowest
weight if fi(b) = 0 for all i ∈ J. We are now ready to define an abstract queer crystal.

Definition 2.1. [11, Definition 1.9] An abstract q(n + 1)-crystal is a type An crystal B
together with the maps e−1, f−1 : B→ B t {0} satisfying the following conditions:

Q1. wt(B) ⊂ Λ;

Q2. wt(e−1b) = wt(b) + α1 and wt( f−1b) = wt(b)− α1;

Q3. for all b, b′ ∈ B, f−1b = b′ if and only if b = e−1b′;

Q4. if 3 6 i 6 n, we have

(a) the crystal operators e−1 and f−1 commute with ei and fi;

(b) if e−1b ∈ B, then εi(e−1b) = εi(b) and ϕi(e−1b) = ϕi(b).

Given two q(n + 1)-crystals B1 and B2, Grantcharov et al. [11, Theorem 1.8] provide
a crystal on the tensor product B1 ⊗ B2, which we state here in reverse convention. It
consists of the type An tensor product rule (see for example [4, Section 2.3]) and the
tensor product rule for b1 ⊗ b2 ∈ B1 ⊗ B2

e−1(b1 ⊗ b2) =

{
b1 ⊗ e−1b2 if wt(b1)1 = wt(b1)2 = 0,
e−1b1 ⊗ b2 otherwise,

(2.3)

and similarly for f−1. The crystals of interest are the crystals of words B⊗`, where B is the
q(n + 1)-queer crystal of letters depicted in Figure 1.

In addition to the queer crystal operators f−1, f1, . . . , fn and e−1, e1, . . . , en, we define
the crystal operators for 1 < i 6 n

f−i := sw−1
i

f−1swi and e−i := sw−1
i

e−1swi , (2.4)

where swi = s2 · · · sis1 · · · si−1 and si is the reflection along the i-string in the crystal
defined in (2.2).

By [11, Theorem 1.14], with all operators ei, fi for i ∈ {±1,±2, . . . ,±n} each con-
nected component of B⊗` has a unique highest weight vector.
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The operators fi for i ∈ I0 = {1, 2, . . . , n} have an easy combinatorial description
on b ∈ B⊗` given by the signature rule, which can be directly derived from the tensor
product rule (see for example [4, Section 2.4]). One can consider b as a word in the
alphabet {1, 2, . . . , n + 1}. Consider the subword of b consisting only of the letters i and
i + 1. Pair (or bracket) any consecutive letters i + 1, i in this order, remove this pair,
and repeat. Then fi changes the rightmost unpaired i to i + 1; if there is no such letter
fi(b) = 0. Similarly, ei changes the leftmost unpaired i + 1 to i; if there is no such letter
ei(b) = 0.

From (2.3), one may also derive a simple combinatorial rule for f−1 and e−1. Consider
the subword v of b ∈ B⊗` consisting of the letters 1 and 2. The crystal operator f−1 on
b is defined if the leftmost letter of v is a 1, in which case it turns it into a 2. Otherwise
f−1(b) = 0. Similarly, e−1 on b is defined if the leftmost letter of v is a 2, in which case it
turns it into a 1. Otherwise e−1(b) = 0.

3 Main Functionalities and Applications

3.1 Description of Features

The user can construct the crystal of words B⊗` via tensors of the standard queer su-
percrystal B of type q(n + 1) in SageMath [19]. As with the case of classical crys-
tals, for every b ∈ B⊗` the user can query wt(b), ei(b), fi(b), εi(b) and ϕi(b) for each
i ∈ {±1,±2, . . . ,±n}.

Additionally, the user may specify a subcrystal either by restricting to a certain subset
of indices in the index set or by specifying a set of generators. This is useful when one
wants to focus on say, J-highest weight elements, for J ⊂ {±1,±2, . . . ,±n} for computer
explorations. Moreover, if dot2tex is installed, the user may also view the crystal graph
and import the LaTeX commands for rendering the crystal graph.

Example 3.1. One can retrieve a list of {1, 2,−1,−2}-highest weight elements in B⊗6,
where B is a standard crystal of type q(3), using the following commands:

sage: Q = crystals.Letters([’Q’,3]); Q
The queer crystal of letters for q(3)
sage: T = tensor([Q]*6)
sage: L = [t for t in T if all(t.epsilon(i)==0 for i in Q.index_set())]
sage: L
[[1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 2, 1],
[1, 1, 1, 2, 1, 1],
[1, 1, 2, 1, 1, 1],
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[1, 1, 2, 1, 2, 1],
[1, 1, 2, 2, 1, 1],
[1, 2, 1, 1, 1, 1],
[1, 2, 1, 1, 2, 1],
[1, 2, 1, 2, 1, 1],
[1, 2, 1, 3, 2, 1],
[1, 2, 2, 1, 1, 1],
[1, 2, 3, 1, 2, 1]]

Example 3.2. To view a crystal or to obtain the latex code of the crystal graph, one may
type:

sage: Q = crystals.Letters([’Q’,3])
sage: T = tensor([Q]*2)
sage: view(T)
sage: latex(T)

The output is given in Figure 2. Note that the crystal graph contains the additional
arrows f−i′ := sw0e−(n+1−i)sw0 for i ∈ I0, where w0 is the long word in the symmetric
group Sn+1. The crystal operators f−i′ are labeled by i + n, whereas f−i are labeled by i
in SageMath .

3.2 Application: Discovery of a Counterexample

In [1, Definition 4.11], Assaf and Oguz give a definition of regular queer crystals. In
essence, their axioms are rephrased in the following definition, where Ĩ := I0 ∪ {−1}.

Definition 3.3 (Local queer axioms). Let C be a graph with labeled directed edges given
by fi for i ∈ I0 and f−1. If b′ = f jb for j ∈ Ĩ, define ej by b = ejb′.

LQ1. The subgraph with all vertices but only edges labeled by i ∈ I0 is a type An Stem-
bridge crystal [21].

LQ2. ϕ−1(b), ε−1(b) ∈ {0, 1} for all b ∈ C.

LQ3. ϕ−1(b) + ε−1(b) > 0 if wt(b)1 + wt(b)2 > 0.

LQ4. Assume ϕ−1(b) = 1 for b ∈ C.

(a) If ϕ1(b) > 2, we have f1 f−1(b) = f−1 f1(b), ϕ1(b) = ϕ1( f−1(b)) + 2, and
ε1(b) = ε1( f−1(b)).

(b) If ϕ1(b) = 1, we have f1(b) = f−1(b).
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Figure 2: The crystal B⊗2 of type q(3) of Example 3.2.
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Figure 3: Illustration of axioms LQ4 (left) and LQ5 (right). The (−1)-arrow at the
bottom of the right figure might or might not be there.

LQ5. Assume ϕ−1(b) = 1 for b ∈ C.

(a) If ϕ2(b) > 0, we have f2 f−1(b) = f−1 f2(b), ϕ2(b) = ϕ2( f−1(b)) − 1, and
ε2(b) = ε2( f−1(b)).

(b) If ϕ2(b) = 0, we have

ϕ2(b) = ϕ2( f−1(b))− 1 = 0, or ϕ2(b) = ϕ2( f−1(b)) = 0,
ε2(b) = ε2( f−1(b)), ε2(b) = ε2( f−1(b)) + 1.

LQ6. Assume that ϕ−1(b) = 1 and ϕi(b) > 0 with i > 3 for b ∈ C. Then fi f−1(b) =
f−1 fi(b), ϕi(b) = ϕi( f−1(b)), and εi(b) = εi( f−1(b)).

Axioms LQ4 and LQ5 are illustrated in Figure 3.

Proposition 3.4 ([1]). The queer crystal of words B⊗` satisfies the axioms in Definition 3.3.

In [1, Conjecture 4.16], Assaf and Oguz conjecture that every regular queer crystal is
a normal queer crystal. In other words, every connected graph satisfying the local queer
axioms of Definition 3.3 is isomorphic to a connected component in some B⊗`. Using the
implementation of crystals of words in SageMath [19], we provide a counterexample
to this claim [9]. The {1, 2,−1,−2}-highest weight elements within B⊗6 are listed in
Example 3.1. Now one may ask whether there is any choice in the −1 arrows after
retaining all edges labeled −1 that are asserted by LQ2, but cannot be deduced from
the top by axioms LQ4 to LQ6. The answer is that there is choice, which led to the
counterexample depicted in Figure 4.
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In Figure 4, the I0-components of the q(3)-crystal of highest weight (4, 2, 0) are shown.
Some of the f−1-arrows are drawn in green. The remaining arrows can be filled in using
the axioms of Figure 3 in a consistent manner. If the dashed green arrow from 331131 to
332131 and the dashed green arrow from 331132 to 332132 are replaced by the dashed
purple arrow from 331131 to 331231 and the dashed purple arrow from 331132 to 332231,
respectively, all axioms of Definition 3.3 are still satisfied with the remaining f−1-arrows
filled in. However, the I0-component with highest weight element 132121 has become
disconnected and hence the two crystals are not isomorphic.

4 Ease of use and sustainability

The standard queer supercrystals and their tensor product rule have been implemented
and integrated into SageMath within the classes Crystal of Letters and Tensor Product
of Crystal Elements, respectively. SageMath is a free open-source mathematical soft-
ware licensed under GPL and is available for download at http://www.sagemath.org/
or within the cloud service CoCalc https://cocalc.com/.

The trac ticket for this implementation was created during SageDays@ICERM in July
2018 (see [19]), received a positive review by a reviewer and was integrated into Sage-
Math . This implementation is available in the current stable release of SageMath

(v8.6) [20].
Documentation of this implementation is available in the SageMath online docu-

mentation for combinatorics as well as locally by appending a ? to a particular method
or attribute as in the example shown below:

sage: Q = crystals.Letters([’Q’,3])
sage: t = Q(1)
sage: t.e?

Furthermore, within the docstring of the implemented methods, the user can access
examples of usage within SageMath . These examples also serve as a test suite and are
run on a regular basis by SageMath to ensure that the code continues to work in future
version of SageMath .
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Figure 4: Counterexample to the unique characterization of the local queer axioms of
Definition 3.3.
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