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Abstract. A d-dimensional simplicial complex is balanced if the underlying graph is
(d + 1)-colorable. We present an implementation of cross-flips, a set of local moves
introduced by Izmestiev, Klee and Novik which connect any two PL-homeomorphic
balanced combinatorial manifolds without boundary. As a result we exhibit a vertex-
minimal balanced triangulation of the dunce hat and balanced triangulations of sev-
eral surfaces and 3-manifolds on few vertices. In particular we obtain small balanced
triangulations of the 3-sphere that are non-shellable or shellable but not vertex decom-
posable.

Sommario. Un complesso simpliciale di dimensione d si dice bilanciato se il suo grafo
è (d+1)-colorabile. In questo articolo presentiamo un’implementazione dei cross-flips,
un insieme di trasformazioni locali introdotte da Izmestiev, Klee e Novik, sufficienti a
connettere ogni due varietà combinatorie senza bordo che sono PL-omeomorfe. Come
risultato presentiamo una triangolazione bilanciata minimale (rispetto al numero di
vertici) del dunce hat e numerose triangolazioni bilanciate di superfici e 3-varietà con
pochi vertici. In particolare otteniamo triangolazioni bilanciate con pochi vertici della
3-sfera che sono non-shellable e shellable ma non vertex decomposable.
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1 Introduction

A classical problem in combinatorial topology is to determine the minimum number of
vertices that a triangulation of a fixed manifold can have. To study this and other related
questions we can make use of bistellar flips, a finite set of local moves which preserves
the PL-homeomorphism type and suffices to connect any two combinatorial triangulations
of a given manifold (equivalently, triangulations of PL-manifolds without boundary).
In this article we focus on balanced simplicial complexes, i.e., d-dimensional simplicial
complexes whose underlying graphs are (d+ 1)-colorable in the classical graph-theoretic
sense. Many questions and results for arbitrary triangulations have balanced analogs
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(see for instance [7, 9, 8, 10]), and in particular we can ask what is the minimum number
of vertices that a balanced triangulation of a fixed manifold can have. In [7] Izmestiev,
Klee and Novik introduced a finite set of local moves called cross-flips, which preserves
balancedness, the PL-homeomorphism type, and suffices to connect any two balanced
combinatorial triangulations of a manifold. We provide a computer program imple-
mented in Sage [14] to search through the set of balanced triangulations of a manifold
and we report several results in dimensions 2 and 3.

The source code and the list of facets of all the simplicial complexes appearing in
this paper are made available in [15], together with a short demo showing how to use
program.
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2 Preliminaries

An abstract simplicial complex ∆ on [n] = {1, . . . , n} is pure if all facets (i.e., inclusion
maximal face) have the same dimension. A simplicial complex is uniquely determined
by its facets: for elements Fi ∈ 2[n] we define the complex generated by {F1, . . . , Fm} as
⟨F1, . . . , Fm⟩ ∶= {F ∈ 2[n] ∶ F ⊆ Fi, for some i = 1, . . . , m}. We denote with fi(∆) the num-
ber of faces of ∆ of dimension i, and we collect them together in the f -vector f (∆) =
( f−1(∆), f0(∆), . . . , fdim(∆)

(∆)). Given two simplicial complexes ∆ and Γ, their join is de-
fined as ∆ ∗ Γ ∶= {F ∪G ∶ F ∈ ∆, G ∈ Γ}. In particular for two vertices i, j ∉ ∆ the operations
∆ ∗ ⟨{i}⟩ and ∆ ∗ ⟨{i} ,{j}⟩ are the cone and the suspension over ∆ respectively. To every
face F ∈ ∆ we associate the simplicial complex lk∆(F) ∶= {G ∈ ∆ ∶ F ∪G ∈ ∆, F ∩G = ∅},
called the link of ∆ at F. There is a canonical way to associate to an abstract simplicial
complex ∆ a topological space, denoted by ∣∆∣, and given a topological space X we say
that a triangulation of X is any simplicial complex ∆ such that ∣∆∣ ≅ X. For example the
complex ∂∆d+1 ∶= ⟨[d + 2]∖ {i} ∶ i ∈ [d + 2]⟩ is a standard triangulation of the d-sphere Sd.

Definition 2.1. A pure d-dimensional simplicial complex ∆ is a combinatorial d-sphere if
∣∆∣ is PL-homeomorphic to ∣∂∆d+1∣. A pure connected d-dimensional simplicial complex
is a combinatorial d-manifold if the link of each vertex is a combinatorial (d − 1)-sphere.

A relaxation of the above definitions is the class of F-homology d-manifold, that is a
pure d-dimensional simplicial complex ∆ such that the link of every nonempty face F is
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an F-homology (d −dim(F)− 1)-sphere, i.e., H̃i(lk∆(F), F) ≅ H̃i(Sd−dim(F)−1, F), for every i.
In this paper we study a family of simplicial complexes with an additional combinatorial
property, introduced by Stanley in [12].

Definition 2.2. A d-dimensional simplicial complex ∆ on [n] is balanced if there is a map
κ ∶ [n]Ð→ [d + 1], such that κ(i) ≠ κ(j) for every {i, j} ∈ ∆.

In other words ∆ is balanced if the graph given by its vertices and edges is (d +
1)-colorable in the classical graph-theoretic sense, and we often refer to the elements
in [d + 1] as colors and to the preimages of a color as color class. Although a pri-
ori the map κ is part of the data defining a balanced complex, in most of the fam-
ilies considered in this paper κ is unique up to permutations of the colors. Again
we turn our attention to balanced triangulations of interesting topological spaces. As
a guiding example we consider the d-dimensional complex ∂Cd+1 ∶= ⟨{0} ,{v0}⟩ ∗ ⋅ ⋅ ⋅ ∗
⟨{d} ,{vd}⟩ on the set {0, . . . , d, v0, . . . , vd}. This is indeed a balanced vertex minimal
triangulation of Sd, and it is in particular isomorphic to the boundary of the (d + 1)-
dimensional cross-polytope. In general it is possible to turn any triangulation ∆ of a
topological space into a balanced one by considering its barycentric subdivision Bd(∆) ∶=
{{vF1 , . . . , vFm} ∶ ∅ ≠ F1 ⊊ ⋅ ⋅ ⋅ ⊊ Fm, Fi ∈ ∆}. Still more generally, the order complex of a
ranked poset is balanced, since the rank function gives the required coloring (see [12]).
Among the many results on face enumeration that have been recently proved to have
analogs in the balanced setting, we focus on a work of Izmestiev, Klee and Novik. In
[7] the authors specialize the theory of bistellar flips to the balanced settings by defining
the following operation which preserves balancedness. Recall that a subcomplex Γ of
∆ ⊆ 2[n] is induced if Γ = {F ∶ F ∈ ∆, F ⊆ W}, for some W ⊆ [n].

Definition 2.3. Let ∆ be a pure d-dimensional simplicial complexes and let Φ ⊆ ∆ be an
induced subcomplex that is a d-ball and that is isomorphic to a subcomplex of ∂Cd+1.
The operation

∆ z→ χΦ(∆) ∶= (∆ ∖Φ)∪ (∂Cd+1 ∖Φ)
is called a cross-flip on ∆.

In [7] the authors require the subcomplexes Φ and ∂Cd+1 ∖Φ to be shellable (see Sec-
tion 5.1 for a definition). In our work we instead restrict ourselves to a specific family of
subcomplexes of ∂Cd+1: For 0 ≤ i ≤ d + 1 define

Φi ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⟨{v0}⟩ ∗ ⟨{i + 1} ,{vi+1}⟩ ∗ ⋅ ⋅ ⋅ ∗ ⟨{d} ,{vd}⟩ for i = 0,
⟨{0, . . . , i − 1, vi}⟩ ∗ ⟨{i + 1} ,{vi+1}⟩ ∗ ⋅ ⋅ ⋅ ∗ ⟨{d} ,{vd}⟩ for 1 ≤ i ≤ d,
⟨{0, . . . , d}⟩ for i = d + 1,

and let ΦI ∶= ⋃i∈I Φi, for every I ⊆ [d+1]. It is not hard to see that those complexes are in-
deed shellable subcomplexes of the boundary of the (d + 1)-dimensional cross-polytope.
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A cross-flip replacing a subcomplex ΦI with its complement ΦJ (note that this family
is closed under taking complements in ∂Cd+1) is called a basic cross-flip. The basic cross-
flip replacing Φ

{0} with ∂Cd+1 ∖Φ
{0} ≅ Φ

{0} is referred to as trivial flip, because it does
not affect the combinatorics, while every non-trivial basic cross-flips either increases or
decreases the number of vertices. We refer to the former as up-flips and to the latter as
down-flips. Moreover two distinct sets I, J ⊆ [d + 1], with I ≠ J, might lead to isomorphic
subcomplexes ΦI ≅ ΦJ , and certain basic cross-flips can be generated (i.e. written as
composition) by some others. As an example, the two flips in the middle of Figure 1 can
be obtained via a combination of the remaining four moves (we count the arrows sep-
arately). This issues, as well as a description of the possible f -vectors of the complexes
ΦI , have been studied in [9].

Figure 1: All 6 non-trivial basic cross-flips for d = 2.

Theorem 2.4. [9]. There are precisely 2d+1 − 2 non isomorphic non-trivial basic cross-flips in
dimension d. Moreover 2d of them suffice to generate all of them.

The interest in cross-flips, and in particular in basic cross-flips, relies on the following
result by Izmestiev, Klee and Novik.

Theorem 2.5. [7]. Let ∆ and Γ be balanced combinatorial d-manifolds. Then the following
conditions are equivalent:

• ∆ and Γ are PL-homeomorphic;

• ∆ and Γ are connected by a sequence of cross-flips;

• ∆ and Γ are connected by a sequence of basic cross-flips.

Essentially Theorem 2.5 states that any two balanced PL-homeomorphic combinato-
rial manifolds can be transformed one into the other by a sequence of a finite number
of flips. This serves as a motivation to develop an implementation of these moves, as
it was done in the setting of bistellar flips by Björner and Lutz in [2] with the software
BISTELLAR. In particular our goal is to find balanced triangulations of a given manifold
on few vertices, since taking barycentric subdivision typically yields complexes with a
large vertex set.
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3 The implementation

The main purpose of our implementation is to obtain small, possibly vertex-minimal,
balanced triangulations of surfaces and 3-manifolds starting from the barycentric sub-
division of a non-balanced triangulation, many of which can be found in the Manifold
Page [11]. We first establish some notation: a vertex v ∈ ∆ is called removable if there
exists a down flip χΦ such that v ∉ χΦ(∆). A balanced simplicial complex without re-
movable vertices is called irreducible. While a vertex-minimal balanced triangulation is
clearly irreducible, the converse is not true. Indeed irreducible triangulations are quite
frequent, and they can have a large vertex set, as shown in Corollary 3.2.

Lemma 3.1. Let ∆ be a pure d-dimensional balanced simplicial complex. If a vertex v ∈ ∆ is
removable then f0(lk∆(v)) = 2d.

Proof. If the vertex v is removable then there exists an induced subcomplex Γ ⊆ ∆ that is
isomorphic to an induced subcomplex of ∂Cd+1, such that Γ is a d-ball. Moreover v lies
in the interior of Γ, because vertices on the boundary are preserved. Since the link of a
vertex in the interior of a balanced d-ball is a balanced (d − 1)-sphere, and the only such
subcomplex of ∂Cd+1 is ∂Cd, it follows that lk∆(v) ≅ ∂Cd Hence f0(lk∆(v)) = 2d.

Corollary 3.2. Let ∆ be a combinatorial d-manifold, with d ≥ 3. Then the barycentric subdivision
Bd(∆) is irreducible.

Proof. For every vertex vF ∈ Bd(∆), corresponding to a k-face F ∈ ∆ we have lkBd(∆)
(vF) ≅

Bd(∂∆k) ∗Bd(lk∆(F)). Moreover, since lkBd(∆)
(vF) is a combinatorial (d − k − 1)-sphere,

it has at least fi(∂∆d−k) many i-faces. Hence

f0(lkBd(∆)
(vF)) = 2k+1 − 2+

d−k−1
∑
i=0

fi(lk∆(F)) ≥ 2k+1 − 2+
d−k−1
∑
i=0

fi(∂∆d−k) = 2d−k+1 + 2k+1 − 4.

For a fixed d the last expression is minimized when k = d
2 , and in that case we have

f0(lkBd(∆)
(vF)) ≥ 4 (2

d
2 − 1), which is strictly larger than 2d, for d ≥ 3.

The computation above shows that to reduce the barycentric subdivision of a com-
binatorial 3-manifold we are forced to start with some up-flips and to first increase the
number of vertices, before applying down-flips. Our code meets two main challenges:

• Problem 1. List all the flippable subcomplexes of any combinatorial type;

• Problem 2. Decide which type of move to apply and which subcomplex to flip.

For the first issue we reduce the problem to the one dimensional case, to employ struc-
tures and algorithms designed for graphs. We say that a pure strongly connected d-
dimensional simplicial complex is a pseudomanifold if every (d − 1)-face is contained in
exactly two facets.
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Definition 3.3. For a pure d-dimensional pseudomanifold ∆ the dual graph G(∆) is the
graph on vertex set {F ∈ ∆ ∶ dim(F) = d} and with edge set {{Fi, Fj} ∶ dim(Fi ∩ Fj) = d − 1}.

Given a d-dimensional pseudomanifold ∆ and a subcomplex ΦI ⊆ ∂Cd+1 we first list
all subgraphs of G(∆) that are isomorphic to G(ΦI) (using an algorithm such as the VF2
algorithm [3]), from which we keep only those that correspond to an induced subcom-
plex. Moreover once a flip ∆ z→ χΦI(∆) =∶ ∆′ is performed we do not need to rerun the
check on the entire complex to list all the flippable subcomplexes of ∆′, but it suffices to
update the list locally, by considering only the induced subcomplexes of ∆′ that are not
induced subcomplexes of ∆. Even though this idea allows to deal with relatively large
3-dimensional complexes, higher dimensions appear to be still out of reach.
For the second problem we propose and combine two naive strategies: given a balanced
pseudomanifold ∆ we choose any flippable subcomplex Φ which maximizes both

• ∣{v ∈ χΦ(∆) ∶ f0(lkχΦ(∆)
(v)) = 2d}∣;

• ∑
v∈χΦ(∆), dim(v)=0

( f0(lkχΦ(∆)
(v)))2.

With the first condition we simply maximize the number of potentially removable ver-
tices, while maximizing the sum of squares of the vertex degrees we force the new tri-
angulation to have an inhomogeneous degree distribution, and hence some very poorly
connected vertices.

4 Real projective plane, surfaces and the dunce hat
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Figure 2: ∆RP2

9 represented as the quotient of a disk in two different ways.

The first complexes we consider are triangulations of compact 2-manifolds. It is
well known that in this case the number of vertices uniquely determines the remaining
entries of the f -vector. In Table 1 we display the smallest known f -vector of balanced
triangulations of some surfaces found via our program. In particular we exhibit the
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unique vertex minimal balanced triangulation ∆RP2

9 of the real projective plane. The f -
vector is f (∆RP2

9 ) = (1, 9, 24, 16). The non-balanced vertex-minimal triangulation has 6
vertices.

Proposition 4.1. The simplicial complex ∆RP2

9 is a vertex-minimal balanced triangulation of the
projective plane. Hence it minimizes every fi.

Proof. The claim follows from a result of Klee and Novik ([10], Proposition 6.1) which
states that any balanced triangulation of an homology d-manifold ∆ that is not an ho-
mology d-sphere has at least three vertices in each color class.

∣∆∣ Min f (∆) f (Bd(∆)) Min. Balanced f known Notes
S2 (1, 4, 6, 4) (1, 14, 36, 24) (1, 6, 12, 8)∗ ∂C3

T (1, 7, 21, 14) (1, 42, 126, 84) (1, 9, 24, 16)∗ see [10]
T#2 (1, 10, 36, 24) (1, 70, 216, 144) (1, 12, 42, 28)
T#3 (1, 10, 42, 28) (1, 80, 252, 168) (1, 14, 54, 36)
T#4 (1, 11, 51, 34) (1, 96, 306, 204) (1, 14, 60, 36)
T#5 (1, 12, 60, 40) (1, 112, 360, 240) (1, 16, 72, 48)
RP2 (1, 6, 15, 10) (1, 31, 90, 60) (1, 9, 24, 16)∗ ∆RP2

9
(RP2)#2 (1, 8, 24, 16) (1, 48, 144, 96) (1, 11, 33, 22)
(RP2)#3 (1, 9, 30, 20) (1, 59, 180, 120) (1, 12, 39, 26)
(RP2)#4 (1, 9, 33, 22) (1, 64, 198, 132) (1, 12, 42, 28)
(RP2)#5 (1, 9, 36, 24) (1, 69, 216, 144) (1, 13, 48, 32)

Table 1: A table reporting some small f -vectors of balanced surfaces. The symbol "*"
indicates that the f -vector is minimal.

The dunce hat is a topological space which exhibits interesting properties: it is con-
tractible but non-collapsible, and it is Cohen-Macaulay (see [13]) over any field but none
of its triangulations are shellable (see Section 5.1). It can be visualized as a triangular
disk whose edges are identified with a non-coherent orientation. Figure 3 (left) depicts
a balanced triangulation of the dunce hat ∆DH, with f -vector f (∆DH) = (1, 11, 34, 24). We
prove that this is indeed the least number of vertices that a balanced triangulation of
the dunce hat can have. For the rest of this section with singularity of a triangulation
of the dunce hat we indicate the 1-dimensional subcomplex of faces whose links are
not spheres, and denote the number of vertices in the singularity by f sing

0 . Since the
dunce hat is not a manifold the number of vertices of a triangulation does not uniquely
determine the other face numbers, but its f -vector satisfies the following equations:

⎧⎪⎪⎨⎪⎪⎩

f0 − f1 + f2 = 1
f sing
0 + 2 f1 − 3 f2 = 0

. (4.1)
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In particular it holds that f1 = f sing
0 +3 f0 −3. We proceed now with a sequence of lemmas

leading to Theorem 4.4, proving that the triangulation in Figure 3 is indeed a balanced
vertex-minimal triangulation of the dunce hat.

Lemma 4.2. Let ∆ be a balanced 2-dimensional Cohen-Macaulay complex that is not shellable.
Then each color class contains at least two vertices. Moreover if every edge of ∆ is contained in
at least two triangles, then each color class contains at least three vertices.

Proof. If there exists a color class containing only one vertex v then ∆ is a cone over the
1-dimensional Cohen-Macaulay complex lk∆(v). But since every 1-dimensional Cohen-
Macaulay complex is shellable, and since coning preserves shellability this implies that
∆ is shellable. Assume that every edge of ∆ is contained in at least two triangles. If
there are only two vertices of color 1, then ∆ is the suspension over the 1-dimensional
complex ∆

[23] of all faces not containing color 1. ∆
[23] is Cohen-Macaulay (see [13]) and

1-dimensional, and hence shellable. Since taking suspensions preserves shellability this
yields a contradiction.

We call a pair of vertices i, j of ∆ such that {i, j} ∉ ∆ and κ(i) ≠ κ(j) a bichromatic
missing edge of ∆ .

Lemma 4.3. Let ∆ be a balanced triangulation of the dunce hat. If f sing
0 ≥ 4 then f0(∆) ≥ 10. Let

m be the number of bichromatic missing edges of ∆. If f sing
0 +m ≥ 7 then f0(∆) ≥ 11.

Proof. For any balanced 2-dimensional simplicial complex ∆ with ni vertices of color i
(i = 1, 2, 3), the number of edges of ∆ is the number of edges of the complete 3-partite
graph Kn1,n2,n3 , which equals ∣E(Kn1,n2,n3)∣ = n1n2 + n1n3 + n2n3, minus the number of
missing bichromatic edges m. Hence using (4.1) we obtain

f sing
0 + 3 f0(∆)− 3 = f1(∆) = n1n2 + n1n3 + n2n3 −m ≤ f0(∆)2

3
−m, (4.2)

where the last inequality follows by maximizing the function n1n2 + n1n3 + n2n3, under

the constraint ∑3
i=1 ni = f0(∆). Solving the inequality f sing

0 + 3 f0(∆) − 3 ≤ f0(∆)
2

3 for f0(∆)
yields

f0(∆) ≥
9+

√
81+ 12( f sing

0 +m)− 36
2

.

If we assume f sing
0 ≥ 4 we obtain f0(∆) ≥ 9, 32, for any m ≥ 0. The second statement

follows in the same way by imposing f sing
0 +m ≥ 7, which yields f0(∆) ≥ 10, 18.

In order to prove that the minimum number of vertices for a balanced triangulation
of the dunce hat is 11 it remains to show that no such simplicial complex exists with
f0(∆) ≤ 11 and f sing

0 = 3, or f0(∆) = 10 and f sing
0 ∈ {3, 4, 5, 6}. This is done by studying the
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Figure 3: Minimal balanced triangulation ∆DH of the dunce hat (left) and the (all
isomorphic) vertex links of the triangulation ∆RP3

16 (right).

possible configurations of colors in the singularity in each case. For the sake of brevity
the proof is not reported here.

Theorem 4.4. The simplicial complex in Figure 3 (left) is a vertex-minimal balanced triangula-
tion of the dunce hat.

Remark 4.5. We observe that the two simplicial complexes in this section are not order
complexes of a ranked poset. In fact order complexes are flag (i.e., their minimal non-
faces are edges), while both ∆RP2

9 and ∆DH have missing triangles.

5 Real projective space and balanced 3-manifolds

In this section we report some interesting and small balanced triangulations of 3-manifolds
found using our computer program.

There exists a peculiar balanced triangulation ∆RP3

16 of the real projective space with

f -vector f (∆RP3

16 ) = (1, 16, 88, 144, 72). An interesting feature of this complex is its strong
symmetry: it is centrally symmetric (i.e., there is a free involution acting) and all the
vertex links are isomorphic to the 2-sphere in Figure 3 (right). Since a result of Zheng
[16] shows that any balanced triangulation of a lens space L(p, q) with p > 1 has at least 4
vertices per color class, and RP3 ≅ L(2, 1) we obtain the following.

Proposition 5.1. The simplicial complex ∆RP3

16 is a vertex-minimal balanced triangulation of the
real projective space.

In Table 2 we report the smallest known f -vectors of balanced triangulations for
several 3-manifolds, such as several lens spaces L(p, q), connected sums, two additional
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spherical 3-manifolds called the octahedral space and the cube space, and the Poincaré
homology 3-sphere. The lists of facets of all the triangulations appearing in Table 2
can be found in [15]. We point out that some of these triangulations were previously
constructed, as referenced in the table. A classical theorem in topology by Edwards
and Cannon (see e.g., [4]) states that the k-fold suspension of any homology d-sphere is
homeomorphic to Sd+k, even though it is not a combinatorial sphere. Since balancedness
is preserved by taking suspensions we obtain a family of non-combinatorial balanced
triangulations of Sd, for d ≥ 5.

Corollary 5.2. There exists a balanced non-combinatorial 5-sphere with f -vector (1, 30, 288, 1132,
106, 1848, 616). Moreover by taking further suspensions we obtain a balanced non-combinatorial
d-sphere on 2d + 20 vertices, for every d ≥ 5.

∣∆∣ Min f (∆) f (Bd(∆)) Min. Bal. f obtained Notes
S3 (1, 5, 10, 10, 5) (1, 30, 150, 240, 120) (1, 8, 24, 32, 16)∗ ∂C4

S2 × S1 (1, 10, 42, 64, 32) (1, 148, 916, 1536, 768) (1, 14, 64, 100, 50)∗ see [10]
S2 " S1 (1, 9, 36, 54, 27) (1, 126, 774, 1296, 648) (1, 12, 54, 84, 42)∗ see [10]
RP3 (1, 11, 51, 80, 40) (1, 182, 1142, 1920, 960) (1, 16, 88, 144, 72)∗ ∆RP3

16
L(3, 1) (1, 12, 66, 108, 54) (1, 240, 1536, 2592, 1296) (1, 16, 96, 160, 80)∗ see [16]
L(4, 1) (1, 14, 84, 140, 70) (1, 308, 1988, 3360, 1680) (1, 20, 132, 224, 112)
L(5, 1) (1, 15, 97, 164, 82) (1, 358, 2326, 3936, 1968) (1, 22, 152, 260, 130)
L(5, 2) (1, 14, 86, 144, 72) (1, 316, 2044, 3456, 1728) (1, 20, 132, 224, 112)
L(6, 1) (1, 16, 110, 188, 94) (1, 408, 2664, 4512, 2256) (1, 24, 176, 304, 152)
(S2 × S1)#2 (1, 12, 58, 92, 46) (1, 208, 1312, 2208, 1104) (1, 16, 84, 136, 68)
(S2 " S1)#2 (1, 12, 58, 92, 46) (1, 208, 1312, 2208, 1104) (1, 16, 84, 136, 68)
(S2 × S1)#RP3 (1, 14, 73, 118, 59) (1, 264, 1680, 2832, 1416) (1, 20, 118, 196, 98)
(RP3)#2 (1, 15, 86, 142, 71) (1, 314, 2018, 3408, 1704) (1, 21, 137, 232, 116)
(S2 × S1)#3 (1, 13, 72, 118, 59) (1, 262, 1678, 2832, 1416) (1, 20, 118, 196, 98)
(S2 " S1)#3 (1, 13, 72, 118, 59) (1, 262, 1678, 2832, 1416) (1, 19, 111, 184, 92)
S1 × S1 × S1 (1, 15, 105, 180, 90) (1, 390, 2550, 4320, 2160) (1, 24, 168, 288, 144)
Oct. space (1, 15, 102, 174, 87) (1, 378, 2466, 4176, 2088) (1, 24, 168, 288, 144)
Cube space (1, 15, 90, 150, 75) (1, 330, 2130, 3600, 1800) (1, 23, 157, 268, 134)
Poincaré (1, 16, 106, 180, 90) (1, 392, 2552, 4320, 2160) (1, 26, 180, 308, 154)
RP2 × S1 (1, 14, 84, 140, 70) (1, 308, 1988, 3360, 1680) (1, 24, 156, 264, 132)
Triple-trefoil (1, 18, 143, 250, 125) (1, 536, 3536, 6000, 3000) (1, 28, 204, 352, 176) ∆3T

28
Double-trefoil (1, 16, 108, 184, 92) (1, 400, 2608, 4416, 2208) (1, 22, 136, 228, 114) ∆2T

22

Table 2: A table reporting some small f -vectors of balanced 3-manifolds. The symbol
"*" indicates that the f -vector is componentwise minimal.
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5.1 Non-vertex decomposable and non-shellable balanced 3-spheres

In this paragraph we exhibit two interesting balanced triangulations of the 3-sphere,
namely one that is shellable but not vertex decomposable and a second one which is not
constructible, and hence not shellable. We start with some definitions.

Definition 5.3. Let ∆ be a pure d-dimensional simplicial complex. We say that ∆ is vertex
decomposable if ∆ ≅ ∆d ∶= 2[d+1] or there exists a vertex v such that lk∆(v) and ∆ ∖ v ∶=
{F ∈ ∆ ∶ v ∉ F} are vertex decomposable. ∆ is shellable if there exists an ordering F1, . . . , Fm
of its facets such that the complex ⟨F1, . . . , Fi−1⟩∩ ⟨Fi⟩ is pure and (d − 1)-dimensional for
every 1 ≤ i ≤ m. ∆ is constructible if ∆ ≅ ∆d or ∆ = Γ1 ∪ Γ2, where Γ1, Γ2 and Γ1 ∩ Γ2 are
constructible, dim(Γ1) = dim(Γ2) = d and dim(Γ1 ∩ Γ2) = d − 1.

It is well known that shellable complexes are constructible, and vertex decompos-
able complexes are shellable. Interestingly while there exist shellable 3-spheres which
are not vertex decomposable, the existence of constructible, but not shellable 3-spheres
is still open. In order to obtain interesting, possibly small balanced triangulations we
again start from the barycentric subdivision of 3-spheres with a sufficiently complicated
knot embedded in their 1-skeleta (i.e., the subcomplex of all faces of dimension at most
1). In particular we turn our attention to the connected sum of 2 or 3 trefoil knots,
called a double-trefoil and a triple-trefoil. The reason for this choice is that in general
the barycentric subdivision might turn non-shellable simplicial complexes into shellable
ones, while complicated knot are obstructions to shellability which resist to the subdivi-
sion. We employ the following rephrasing of results by Ehrenborg and Hachimori ([5]),
and Hachimori and Ziegler [6].

Theorem 5.4. [5], [6]. Let ∆ be a triangulation of a 3-sphere. If the 1-skeleton of ∆ contains a
double-trefoil knot on 6 edges then ∆ is not vertex decomposable. If the 1-skeleton of ∆ contains
a triple-trefoil knot on 6 edges then ∆ is not constructible (hence not shellable).

For an introduction to knot theory and a rigorous definition of complicatedness of
knots we defer to a work of Benedetti and Lutz [1], where triangulations of the 3-sphere
containing the double and triple-trefoil knot on 3 edges were constructed: the first has 16
vertices (see S16,92 in [1]), while the second has 18 vertices (S18,125). Using our computer
program we take the barycentric subdivision of these two complexes and we reduce
them only applying cross-flips preserving the subdivision of the knots, which consist
of 6 vertices and 6 edges. More precisely we only allow flips of the form ∆ z→ χΦ(∆),
where the interior of Φ does not contain any of the 6 edges of the knot. Theorem 5.4
guarantees that in this way the obstructions for vertex decomposability and shellability
are preserved, so as an output we obtain the following.

Proposition 5.5. There exist balanced triangulations of the 3-sphere ∆2T
22 ∆3T

28 , such that: ∆2T
22

is shellable, but not vertex decomposable, and f (∆2T
22 ) = (1, 22, 136, 228, 114), while ∆3T

28 is non-
constructible (hence non-shellable), and f (∆3T

28 ) = (1, 28, 204, 352, 176).
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